mirror of
https://github.com/freebsd/freebsd-src.git
synced 2024-12-03 10:29:15 +00:00
Redo Kernel NTP PLL support, kernel side.
This code is mostly taken from the 1.1 port (which was in turn taken from Dave Mills's kern.tar.Z example). A few significant differences: 1) ntp_gettime() is now a MIB variable rather than a system call. A few fiddles are done in libc to make it behave the same. 2) mono_time does not participate in the PLL adjustments. 3) A new interface has been defined (in <machine/clock.h>) for doing possibly machine-dependent things around the time of the clock update. This is used in Pentium kernels to disable interrupts, set `time', and reset the CPU cycle counter as quickly as possible to avoid jitter in microtime(). Measurements show an apparent resolution of a bit more than 8.14usec, which is reasonable given system-call overhead.
This commit is contained in:
parent
69f5174d9a
commit
3f31c649d1
Notes:
svn2git
2020-12-20 02:59:44 +00:00
svn path=/head/; revision=2858
@ -34,7 +34,7 @@
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* from: @(#)clock.c 7.2 (Berkeley) 5/12/91
|
||||
* $Id: clock.c,v 1.16 1994/08/18 22:34:50 wollman Exp $
|
||||
* $Id: clock.c,v 1.17 1994/09/14 23:09:06 ache Exp $
|
||||
*/
|
||||
|
||||
/*
|
||||
@ -79,27 +79,6 @@ void
|
||||
clkintr(frame)
|
||||
struct clockframe frame;
|
||||
{
|
||||
#ifdef I586_CPU
|
||||
/*
|
||||
* This resets the CPU cycle counter to zero, to make our
|
||||
* job easier in microtime(). Some fancy ifdefs could speed
|
||||
* this up for Pentium-only kernels.
|
||||
* We want this to be done as close as possible to the actual
|
||||
* timer incrementing in hardclock(), because there is a window
|
||||
* between the two where the value is no longer valid. Experimentation
|
||||
* may reveal a good precompensation to apply in microtime().
|
||||
*/
|
||||
if(pentium_mhz) {
|
||||
__asm __volatile("movl $0x10,%%ecx\n"
|
||||
"xorl %%eax,%%eax\n"
|
||||
"movl %%eax,%%edx\n"
|
||||
".byte 0x0f, 0x30\n"
|
||||
"#%0%1"
|
||||
: "=m"(frame) /* no outputs */
|
||||
: "b"(&frame) /* fake input */
|
||||
: "ax", "cx", "dx");
|
||||
}
|
||||
#endif
|
||||
hardclock(&frame);
|
||||
}
|
||||
|
||||
|
49
sys/amd64/include/clock.h
Normal file
49
sys/amd64/include/clock.h
Normal file
@ -0,0 +1,49 @@
|
||||
/*
|
||||
* Kernel interface to machine-dependent clock driver.
|
||||
* Garrett Wollman, September 1994.
|
||||
* This file is in the public domain.
|
||||
*/
|
||||
|
||||
#ifndef _MACHINE_CLOCK_H_
|
||||
#define _MACHINE_CLOCK_H_ 1
|
||||
|
||||
extern int pentium_mhz;
|
||||
|
||||
#ifdef I586_CPU
|
||||
/*
|
||||
* This resets the CPU cycle counter to zero, to make our
|
||||
* job easier in microtime(). Some fancy ifdefs could speed
|
||||
* this up for Pentium-only kernels.
|
||||
* We want this to be done as close as possible to the actual
|
||||
* timer incrementing in hardclock(), because there is a window
|
||||
* between the two where the value is no longer valid. Experimentation
|
||||
* may reveal a good precompensation to apply in microtime().
|
||||
*/
|
||||
#define CPU_CLOCKUPDATE(otime, ntime) \
|
||||
do { \
|
||||
if(pentium_mhz) { \
|
||||
__asm __volatile("cli\n" \
|
||||
"movl (%2),%%eax\n" \
|
||||
"movl %%eax,(%1)\n" \
|
||||
"movl 4(%2),%%eax\n" \
|
||||
"movl %%eax,4(%1)\n" \
|
||||
"movl $0x10,%%ecx\n" \
|
||||
"xorl %%eax,%%eax\n" \
|
||||
"movl %%eax,%%edx\n" \
|
||||
".byte 0x0f, 0x30\n" \
|
||||
"sti\n" \
|
||||
"#%0%1%2" \
|
||||
: "=m"(*otime) /* no outputs */ \
|
||||
: "c"(otime), "b"(ntime) /* fake input */ \
|
||||
: "ax", "cx", "dx"); \
|
||||
} else { \
|
||||
*(otime) = *(ntime); \
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
#else
|
||||
#define CPU_CLOCKUPDATE(otime, ntime) \
|
||||
(*(otime) = *(ntime))
|
||||
#endif
|
||||
|
||||
#endif /* _MACHINE_CLOCK_H_ */
|
@ -34,7 +34,7 @@
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* from: @(#)clock.c 7.2 (Berkeley) 5/12/91
|
||||
* $Id: clock.c,v 1.16 1994/08/18 22:34:50 wollman Exp $
|
||||
* $Id: clock.c,v 1.17 1994/09/14 23:09:06 ache Exp $
|
||||
*/
|
||||
|
||||
/*
|
||||
@ -79,27 +79,6 @@ void
|
||||
clkintr(frame)
|
||||
struct clockframe frame;
|
||||
{
|
||||
#ifdef I586_CPU
|
||||
/*
|
||||
* This resets the CPU cycle counter to zero, to make our
|
||||
* job easier in microtime(). Some fancy ifdefs could speed
|
||||
* this up for Pentium-only kernels.
|
||||
* We want this to be done as close as possible to the actual
|
||||
* timer incrementing in hardclock(), because there is a window
|
||||
* between the two where the value is no longer valid. Experimentation
|
||||
* may reveal a good precompensation to apply in microtime().
|
||||
*/
|
||||
if(pentium_mhz) {
|
||||
__asm __volatile("movl $0x10,%%ecx\n"
|
||||
"xorl %%eax,%%eax\n"
|
||||
"movl %%eax,%%edx\n"
|
||||
".byte 0x0f, 0x30\n"
|
||||
"#%0%1"
|
||||
: "=m"(frame) /* no outputs */
|
||||
: "b"(&frame) /* fake input */
|
||||
: "ax", "cx", "dx");
|
||||
}
|
||||
#endif
|
||||
hardclock(&frame);
|
||||
}
|
||||
|
||||
|
@ -49,6 +49,7 @@ kern/kern_ktrace.c standard
|
||||
kern/kern_lockf.c standard
|
||||
kern/kern_lkm.c optional lkm
|
||||
kern/kern_malloc.c standard
|
||||
kern/kern_ntptime.c standard
|
||||
kern/kern_physio.c standard
|
||||
kern/kern_proc.c standard
|
||||
kern/kern_prot.c standard
|
||||
|
@ -34,7 +34,7 @@
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* from: @(#)clock.c 7.2 (Berkeley) 5/12/91
|
||||
* $Id: clock.c,v 1.16 1994/08/18 22:34:50 wollman Exp $
|
||||
* $Id: clock.c,v 1.17 1994/09/14 23:09:06 ache Exp $
|
||||
*/
|
||||
|
||||
/*
|
||||
@ -79,27 +79,6 @@ void
|
||||
clkintr(frame)
|
||||
struct clockframe frame;
|
||||
{
|
||||
#ifdef I586_CPU
|
||||
/*
|
||||
* This resets the CPU cycle counter to zero, to make our
|
||||
* job easier in microtime(). Some fancy ifdefs could speed
|
||||
* this up for Pentium-only kernels.
|
||||
* We want this to be done as close as possible to the actual
|
||||
* timer incrementing in hardclock(), because there is a window
|
||||
* between the two where the value is no longer valid. Experimentation
|
||||
* may reveal a good precompensation to apply in microtime().
|
||||
*/
|
||||
if(pentium_mhz) {
|
||||
__asm __volatile("movl $0x10,%%ecx\n"
|
||||
"xorl %%eax,%%eax\n"
|
||||
"movl %%eax,%%edx\n"
|
||||
".byte 0x0f, 0x30\n"
|
||||
"#%0%1"
|
||||
: "=m"(frame) /* no outputs */
|
||||
: "b"(&frame) /* fake input */
|
||||
: "ax", "cx", "dx");
|
||||
}
|
||||
#endif
|
||||
hardclock(&frame);
|
||||
}
|
||||
|
||||
|
49
sys/i386/include/clock.h
Normal file
49
sys/i386/include/clock.h
Normal file
@ -0,0 +1,49 @@
|
||||
/*
|
||||
* Kernel interface to machine-dependent clock driver.
|
||||
* Garrett Wollman, September 1994.
|
||||
* This file is in the public domain.
|
||||
*/
|
||||
|
||||
#ifndef _MACHINE_CLOCK_H_
|
||||
#define _MACHINE_CLOCK_H_ 1
|
||||
|
||||
extern int pentium_mhz;
|
||||
|
||||
#ifdef I586_CPU
|
||||
/*
|
||||
* This resets the CPU cycle counter to zero, to make our
|
||||
* job easier in microtime(). Some fancy ifdefs could speed
|
||||
* this up for Pentium-only kernels.
|
||||
* We want this to be done as close as possible to the actual
|
||||
* timer incrementing in hardclock(), because there is a window
|
||||
* between the two where the value is no longer valid. Experimentation
|
||||
* may reveal a good precompensation to apply in microtime().
|
||||
*/
|
||||
#define CPU_CLOCKUPDATE(otime, ntime) \
|
||||
do { \
|
||||
if(pentium_mhz) { \
|
||||
__asm __volatile("cli\n" \
|
||||
"movl (%2),%%eax\n" \
|
||||
"movl %%eax,(%1)\n" \
|
||||
"movl 4(%2),%%eax\n" \
|
||||
"movl %%eax,4(%1)\n" \
|
||||
"movl $0x10,%%ecx\n" \
|
||||
"xorl %%eax,%%eax\n" \
|
||||
"movl %%eax,%%edx\n" \
|
||||
".byte 0x0f, 0x30\n" \
|
||||
"sti\n" \
|
||||
"#%0%1%2" \
|
||||
: "=m"(*otime) /* no outputs */ \
|
||||
: "c"(otime), "b"(ntime) /* fake input */ \
|
||||
: "ax", "cx", "dx"); \
|
||||
} else { \
|
||||
*(otime) = *(ntime); \
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
#else
|
||||
#define CPU_CLOCKUPDATE(otime, ntime) \
|
||||
(*(otime) = *(ntime))
|
||||
#endif
|
||||
|
||||
#endif /* _MACHINE_CLOCK_H_ */
|
@ -34,7 +34,7 @@
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* from: @(#)clock.c 7.2 (Berkeley) 5/12/91
|
||||
* $Id: clock.c,v 1.16 1994/08/18 22:34:50 wollman Exp $
|
||||
* $Id: clock.c,v 1.17 1994/09/14 23:09:06 ache Exp $
|
||||
*/
|
||||
|
||||
/*
|
||||
@ -79,27 +79,6 @@ void
|
||||
clkintr(frame)
|
||||
struct clockframe frame;
|
||||
{
|
||||
#ifdef I586_CPU
|
||||
/*
|
||||
* This resets the CPU cycle counter to zero, to make our
|
||||
* job easier in microtime(). Some fancy ifdefs could speed
|
||||
* this up for Pentium-only kernels.
|
||||
* We want this to be done as close as possible to the actual
|
||||
* timer incrementing in hardclock(), because there is a window
|
||||
* between the two where the value is no longer valid. Experimentation
|
||||
* may reveal a good precompensation to apply in microtime().
|
||||
*/
|
||||
if(pentium_mhz) {
|
||||
__asm __volatile("movl $0x10,%%ecx\n"
|
||||
"xorl %%eax,%%eax\n"
|
||||
"movl %%eax,%%edx\n"
|
||||
".byte 0x0f, 0x30\n"
|
||||
"#%0%1"
|
||||
: "=m"(frame) /* no outputs */
|
||||
: "b"(&frame) /* fake input */
|
||||
: "ax", "cx", "dx");
|
||||
}
|
||||
#endif
|
||||
hardclock(&frame);
|
||||
}
|
||||
|
||||
|
@ -34,7 +34,7 @@
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* from: @(#)clock.c 7.2 (Berkeley) 5/12/91
|
||||
* $Id: clock.c,v 1.16 1994/08/18 22:34:50 wollman Exp $
|
||||
* $Id: clock.c,v 1.17 1994/09/14 23:09:06 ache Exp $
|
||||
*/
|
||||
|
||||
/*
|
||||
@ -79,27 +79,6 @@ void
|
||||
clkintr(frame)
|
||||
struct clockframe frame;
|
||||
{
|
||||
#ifdef I586_CPU
|
||||
/*
|
||||
* This resets the CPU cycle counter to zero, to make our
|
||||
* job easier in microtime(). Some fancy ifdefs could speed
|
||||
* this up for Pentium-only kernels.
|
||||
* We want this to be done as close as possible to the actual
|
||||
* timer incrementing in hardclock(), because there is a window
|
||||
* between the two where the value is no longer valid. Experimentation
|
||||
* may reveal a good precompensation to apply in microtime().
|
||||
*/
|
||||
if(pentium_mhz) {
|
||||
__asm __volatile("movl $0x10,%%ecx\n"
|
||||
"xorl %%eax,%%eax\n"
|
||||
"movl %%eax,%%edx\n"
|
||||
".byte 0x0f, 0x30\n"
|
||||
"#%0%1"
|
||||
: "=m"(frame) /* no outputs */
|
||||
: "b"(&frame) /* fake input */
|
||||
: "ax", "cx", "dx");
|
||||
}
|
||||
#endif
|
||||
hardclock(&frame);
|
||||
}
|
||||
|
||||
|
@ -2,7 +2,7 @@
|
||||
* System call switch table.
|
||||
*
|
||||
* DO NOT EDIT-- this file is automatically generated.
|
||||
* created from $Id: syscalls.master,v 1.7 1994/09/13 00:48:19 wollman Exp $
|
||||
* created from $Id: syscalls.master,v 1.8 1994/09/13 14:46:54 dfr Exp $
|
||||
*/
|
||||
|
||||
#include <sys/param.h>
|
||||
@ -473,7 +473,7 @@ struct sysent sysent[] = {
|
||||
{ 0, nosys }, /* 172 = nosys */
|
||||
{ 0, nosys }, /* 173 = nosys */
|
||||
{ 0, nosys }, /* 174 = nosys */
|
||||
{ 1, nosys }, /* 175 = ntp_gettime */
|
||||
{ 0, nosys }, /* 175 = nosys */
|
||||
{ 1, nosys }, /* 176 = ntp_adjtime */
|
||||
{ 0, nosys }, /* 177 = nosys */
|
||||
{ 0, nosys }, /* 178 = nosys */
|
||||
|
@ -36,9 +36,26 @@
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
|
||||
* $Id: kern_clock.c,v 1.4 1994/08/18 22:34:58 wollman Exp $
|
||||
* $Id: kern_clock.c,v 1.5 1994/08/27 16:14:26 davidg Exp $
|
||||
*/
|
||||
|
||||
/* Portions of this software are covered by the following: */
|
||||
/******************************************************************************
|
||||
* *
|
||||
* Copyright (c) David L. Mills 1993, 1994 *
|
||||
* *
|
||||
* Permission to use, copy, modify, and distribute this software and its *
|
||||
* documentation for any purpose and without fee is hereby granted, provided *
|
||||
* that the above copyright notice appears in all copies and that both the *
|
||||
* copyright notice and this permission notice appear in supporting *
|
||||
* documentation, and that the name University of Delaware not be used in *
|
||||
* advertising or publicity pertaining to distribution of the software *
|
||||
* without specific, written prior permission. The University of Delaware *
|
||||
* makes no representations about the suitability this software for any *
|
||||
* purpose. It is provided "as is" without express or implied warranty. *
|
||||
* *
|
||||
*****************************************************************************/
|
||||
|
||||
#include <sys/param.h>
|
||||
#include <sys/systm.h>
|
||||
#include <sys/dkstat.h>
|
||||
@ -46,9 +63,11 @@
|
||||
#include <sys/kernel.h>
|
||||
#include <sys/proc.h>
|
||||
#include <sys/resourcevar.h>
|
||||
#include <sys/timex.h>
|
||||
#include <vm/vm.h>
|
||||
|
||||
#include <machine/cpu.h>
|
||||
#include <machine/clock.h>
|
||||
|
||||
#ifdef GPROF
|
||||
#include <sys/gmon.h>
|
||||
@ -127,6 +146,238 @@ int psratio; /* ratio: prof / stat */
|
||||
volatile struct timeval time;
|
||||
volatile struct timeval mono_time;
|
||||
|
||||
/*
|
||||
* Phase-lock loop (PLL) definitions
|
||||
*
|
||||
* The following variables are read and set by the ntp_adjtime() system
|
||||
* call.
|
||||
*
|
||||
* time_state shows the state of the system clock, with values defined
|
||||
* in the timex.h header file.
|
||||
*
|
||||
* time_status shows the status of the system clock, with bits defined
|
||||
* in the timex.h header file.
|
||||
*
|
||||
* time_offset is used by the PLL to adjust the system time in small
|
||||
* increments.
|
||||
*
|
||||
* time_constant determines the bandwidth or "stiffness" of the PLL.
|
||||
*
|
||||
* time_tolerance determines maximum frequency error or tolerance of the
|
||||
* CPU clock oscillator and is a property of the architecture; however,
|
||||
* in principle it could change as result of the presence of external
|
||||
* discipline signals, for instance.
|
||||
*
|
||||
* time_precision is usually equal to the kernel tick variable; however,
|
||||
* in cases where a precision clock counter or external clock is
|
||||
* available, the resolution can be much less than this and depend on
|
||||
* whether the external clock is working or not.
|
||||
*
|
||||
* time_maxerror is initialized by a ntp_adjtime() call and increased by
|
||||
* the kernel once each second to reflect the maximum error
|
||||
* bound growth.
|
||||
*
|
||||
* time_esterror is set and read by the ntp_adjtime() call, but
|
||||
* otherwise not used by the kernel.
|
||||
*/
|
||||
int time_status = STA_UNSYNC; /* clock status bits */
|
||||
int time_state = TIME_OK; /* clock state */
|
||||
long time_offset = 0; /* time offset (us) */
|
||||
long time_constant = 0; /* pll time constant */
|
||||
long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
|
||||
long time_precision = 1; /* clock precision (us) */
|
||||
long time_maxerror = MAXPHASE; /* maximum error (us) */
|
||||
long time_esterror = MAXPHASE; /* estimated error (us) */
|
||||
|
||||
/*
|
||||
* The following variables establish the state of the PLL and the
|
||||
* residual time and frequency offset of the local clock. The scale
|
||||
* factors are defined in the timex.h header file.
|
||||
*
|
||||
* time_phase and time_freq are the phase increment and the frequency
|
||||
* increment, respectively, of the kernel time variable at each tick of
|
||||
* the clock.
|
||||
*
|
||||
* time_freq is set via ntp_adjtime() from a value stored in a file when
|
||||
* the synchronization daemon is first started. Its value is retrieved
|
||||
* via ntp_adjtime() and written to the file about once per hour by the
|
||||
* daemon.
|
||||
*
|
||||
* time_adj is the adjustment added to the value of tick at each timer
|
||||
* interrupt and is recomputed at each timer interrupt.
|
||||
*
|
||||
* time_reftime is the second's portion of the system time on the last
|
||||
* call to ntp_adjtime(). It is used to adjust the time_freq variable
|
||||
* and to increase the time_maxerror as the time since last update
|
||||
* increases.
|
||||
*/
|
||||
long time_phase = 0; /* phase offset (scaled us) */
|
||||
long time_freq = 0; /* frequency offset (scaled ppm) */
|
||||
long time_adj = 0; /* tick adjust (scaled 1 / hz) */
|
||||
long time_reftime = 0; /* time at last adjustment (s) */
|
||||
|
||||
#ifdef PPS_SYNC
|
||||
/*
|
||||
* The following variables are used only if the if the kernel PPS
|
||||
* discipline code is configured (PPS_SYNC). The scale factors are
|
||||
* defined in the timex.h header file.
|
||||
*
|
||||
* pps_time contains the time at each calibration interval, as read by
|
||||
* microtime().
|
||||
*
|
||||
* pps_offset is the time offset produced by the time median filter
|
||||
* pps_tf[], while pps_jitter is the dispersion measured by this
|
||||
* filter.
|
||||
*
|
||||
* pps_freq is the frequency offset produced by the frequency median
|
||||
* filter pps_ff[], while pps_stabil is the dispersion measured by
|
||||
* this filter.
|
||||
*
|
||||
* pps_usec is latched from a high resolution counter or external clock
|
||||
* at pps_time. Here we want the hardware counter contents only, not the
|
||||
* contents plus the time_tv.usec as usual.
|
||||
*
|
||||
* pps_valid counts the number of seconds since the last PPS update. It
|
||||
* is used as a watchdog timer to disable the PPS discipline should the
|
||||
* PPS signal be lost.
|
||||
*
|
||||
* pps_glitch counts the number of seconds since the beginning of an
|
||||
* offset burst more than tick/2 from current nominal offset. It is used
|
||||
* mainly to suppress error bursts due to priority conflicts between the
|
||||
* PPS interrupt and timer interrupt.
|
||||
*
|
||||
* pps_count counts the seconds of the calibration interval, the
|
||||
* duration of which is pps_shift in powers of two.
|
||||
*
|
||||
* pps_intcnt counts the calibration intervals for use in the interval-
|
||||
* adaptation algorithm. It's just too complicated for words.
|
||||
*/
|
||||
struct timeval pps_time; /* kernel time at last interval */
|
||||
long pps_offset = 0; /* pps time offset (us) */
|
||||
long pps_jitter = MAXTIME; /* pps time dispersion (jitter) (us) */
|
||||
long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
|
||||
long pps_freq = 0; /* frequency offset (scaled ppm) */
|
||||
long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
|
||||
long pps_ff[] = {0, 0, 0}; /* frequency offset median filter */
|
||||
long pps_usec = 0; /* microsec counter at last interval */
|
||||
long pps_valid = PPS_VALID; /* pps signal watchdog counter */
|
||||
int pps_glitch = 0; /* pps signal glitch counter */
|
||||
int pps_count = 0; /* calibration interval counter (s) */
|
||||
int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
|
||||
int pps_intcnt = 0; /* intervals at current duration */
|
||||
|
||||
/*
|
||||
* PPS signal quality monitors
|
||||
*
|
||||
* pps_jitcnt counts the seconds that have been discarded because the
|
||||
* jitter measured by the time median filter exceeds the limit MAXTIME
|
||||
* (100 us).
|
||||
*
|
||||
* pps_calcnt counts the frequency calibration intervals, which are
|
||||
* variable from 4 s to 256 s.
|
||||
*
|
||||
* pps_errcnt counts the calibration intervals which have been discarded
|
||||
* because the wander exceeds the limit MAXFREQ (100 ppm) or where the
|
||||
* calibration interval jitter exceeds two ticks.
|
||||
*
|
||||
* pps_stbcnt counts the calibration intervals that have been discarded
|
||||
* because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
|
||||
*/
|
||||
long pps_jitcnt = 0; /* jitter limit exceeded */
|
||||
long pps_calcnt = 0; /* calibration intervals */
|
||||
long pps_errcnt = 0; /* calibration errors */
|
||||
long pps_stbcnt = 0; /* stability limit exceeded */
|
||||
#endif /* PPS_SYNC */
|
||||
|
||||
/* XXX none of this stuff works under FreeBSD */
|
||||
#ifdef EXT_CLOCK
|
||||
/*
|
||||
* External clock definitions
|
||||
*
|
||||
* The following definitions and declarations are used only if an
|
||||
* external clock (HIGHBALL or TPRO) is configured on the system.
|
||||
*/
|
||||
#define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
|
||||
|
||||
/*
|
||||
* The clock_count variable is set to CLOCK_INTERVAL at each PPS
|
||||
* interrupt and decremented once each second.
|
||||
*/
|
||||
int clock_count = 0; /* CPU clock counter */
|
||||
|
||||
#ifdef HIGHBALL
|
||||
/*
|
||||
* The clock_offset and clock_cpu variables are used by the HIGHBALL
|
||||
* interface. The clock_offset variable defines the offset between
|
||||
* system time and the HIGBALL counters. The clock_cpu variable contains
|
||||
* the offset between the system clock and the HIGHBALL clock for use in
|
||||
* disciplining the kernel time variable.
|
||||
*/
|
||||
extern struct timeval clock_offset; /* Highball clock offset */
|
||||
long clock_cpu = 0; /* CPU clock adjust */
|
||||
#endif /* HIGHBALL */
|
||||
#endif /* EXT_CLOCK */
|
||||
|
||||
/*
|
||||
* hardupdate() - local clock update
|
||||
*
|
||||
* This routine is called by ntp_adjtime() to update the local clock
|
||||
* phase and frequency. This is used to implement an adaptive-parameter,
|
||||
* first-order, type-II phase-lock loop. The code computes new time and
|
||||
* frequency offsets each time it is called. The hardclock() routine
|
||||
* amortizes these offsets at each tick interrupt. If the kernel PPS
|
||||
* discipline code is configured (PPS_SYNC), the PPS signal itself
|
||||
* determines the new time offset, instead of the calling argument.
|
||||
* Presumably, calls to ntp_adjtime() occur only when the caller
|
||||
* believes the local clock is valid within some bound (+-128 ms with
|
||||
* NTP). If the caller's time is far different than the PPS time, an
|
||||
* argument will ensue, and it's not clear who will lose.
|
||||
*
|
||||
* For default SHIFT_UPDATE = 12, the offset is limited to +-512 ms, the
|
||||
* maximum interval between updates is 4096 s and the maximum frequency
|
||||
* offset is +-31.25 ms/s.
|
||||
*
|
||||
* Note: splclock() is in effect.
|
||||
*/
|
||||
void
|
||||
hardupdate(offset)
|
||||
long offset;
|
||||
{
|
||||
long ltemp, mtemp;
|
||||
|
||||
if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
|
||||
return;
|
||||
ltemp = offset;
|
||||
#ifdef PPS_SYNC
|
||||
if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
|
||||
ltemp = pps_offset;
|
||||
#endif /* PPS_SYNC */
|
||||
if (ltemp > MAXPHASE)
|
||||
time_offset = MAXPHASE << SHIFT_UPDATE;
|
||||
else if (ltemp < -MAXPHASE)
|
||||
time_offset = -(MAXPHASE << SHIFT_UPDATE);
|
||||
else
|
||||
time_offset = ltemp << SHIFT_UPDATE;
|
||||
mtemp = time.tv_sec - time_reftime;
|
||||
time_reftime = time.tv_sec;
|
||||
if (mtemp > MAXSEC)
|
||||
mtemp = 0;
|
||||
|
||||
/* ugly multiply should be replaced */
|
||||
if (ltemp < 0)
|
||||
time_freq -= (-ltemp * mtemp) >> (time_constant +
|
||||
time_constant + SHIFT_KF - SHIFT_USEC);
|
||||
else
|
||||
time_freq += (ltemp * mtemp) >> (time_constant +
|
||||
time_constant + SHIFT_KF - SHIFT_USEC);
|
||||
if (time_freq > time_tolerance)
|
||||
time_freq = time_tolerance;
|
||||
else if (time_freq < -time_tolerance)
|
||||
time_freq = -time_tolerance;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Initialize clock frequencies and start both clocks running.
|
||||
*/
|
||||
@ -207,18 +458,164 @@ hardclock(frame)
|
||||
statclock(frame);
|
||||
|
||||
/*
|
||||
* Increment the time-of-day. The increment is just ``tick'' unless
|
||||
* we are still adjusting the clock; see adjtime().
|
||||
* Increment the time-of-day.
|
||||
*/
|
||||
ticks++;
|
||||
if (timedelta == 0)
|
||||
delta = tick;
|
||||
else {
|
||||
delta = tick + tickdelta;
|
||||
timedelta -= tickdelta;
|
||||
{
|
||||
int time_update;
|
||||
struct timeval newtime = time;
|
||||
long ltemp;
|
||||
|
||||
if (timedelta == 0) {
|
||||
time_update = tick;
|
||||
} else {
|
||||
if (timedelta < 0) {
|
||||
time_update = tick - tickdelta;
|
||||
timedelta += tickdelta;
|
||||
} else {
|
||||
time_update = tick + tickdelta;
|
||||
timedelta -= tickdelta;
|
||||
}
|
||||
}
|
||||
BUMPTIME(&mono_time, time_update);
|
||||
|
||||
/*
|
||||
* Compute the phase adjustment. If the low-order bits
|
||||
* (time_phase) of the update overflow, bump the high-order bits
|
||||
* (time_update).
|
||||
*/
|
||||
time_phase += time_adj;
|
||||
if (time_phase <= -FINEUSEC) {
|
||||
ltemp = -time_phase >> SHIFT_SCALE;
|
||||
time_phase += ltemp << SHIFT_SCALE;
|
||||
time_update -= ltemp;
|
||||
}
|
||||
else if (time_phase >= FINEUSEC) {
|
||||
ltemp = time_phase >> SHIFT_SCALE;
|
||||
time_phase -= ltemp << SHIFT_SCALE;
|
||||
time_update += ltemp;
|
||||
}
|
||||
|
||||
newtime.tv_usec += time_update;
|
||||
/*
|
||||
* On rollover of the second the phase adjustment to be used for
|
||||
* the next second is calculated. Also, the maximum error is
|
||||
* increased by the tolerance. If the PPS frequency discipline
|
||||
* code is present, the phase is increased to compensate for the
|
||||
* CPU clock oscillator frequency error.
|
||||
*
|
||||
* With SHIFT_SCALE = 23, the maximum frequency adjustment is
|
||||
* +-256 us per tick, or 25.6 ms/s at a clock frequency of 100
|
||||
* Hz. The time contribution is shifted right a minimum of two
|
||||
* bits, while the frequency contribution is a right shift.
|
||||
* Thus, overflow is prevented if the frequency contribution is
|
||||
* limited to half the maximum or 15.625 ms/s.
|
||||
*/
|
||||
if (newtime.tv_usec >= 1000000) {
|
||||
newtime.tv_usec -= 1000000;
|
||||
newtime.tv_sec++;
|
||||
time_maxerror += time_tolerance >> SHIFT_USEC;
|
||||
if (time_offset < 0) {
|
||||
ltemp = -time_offset >>
|
||||
(SHIFT_KG + time_constant);
|
||||
time_offset += ltemp;
|
||||
time_adj = -ltemp <<
|
||||
(SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
|
||||
} else {
|
||||
ltemp = time_offset >>
|
||||
(SHIFT_KG + time_constant);
|
||||
time_offset -= ltemp;
|
||||
time_adj = ltemp <<
|
||||
(SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
|
||||
}
|
||||
#ifdef PPS_SYNC
|
||||
/*
|
||||
* Gnaw on the watchdog counter and update the frequency
|
||||
* computed by the pll and the PPS signal.
|
||||
*/
|
||||
pps_valid++;
|
||||
if (pps_valid == PPS_VALID) {
|
||||
pps_jitter = MAXTIME;
|
||||
pps_stabil = MAXFREQ;
|
||||
time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
|
||||
STA_PPSWANDER | STA_PPSERROR);
|
||||
}
|
||||
ltemp = time_freq + pps_freq;
|
||||
#else
|
||||
ltemp = time_freq;
|
||||
#endif /* PPS_SYNC */
|
||||
if (ltemp < 0)
|
||||
time_adj -= -ltemp >>
|
||||
(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
|
||||
else
|
||||
time_adj += ltemp >>
|
||||
(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
|
||||
|
||||
/*
|
||||
* When the CPU clock oscillator frequency is not a
|
||||
* power of two in Hz, the SHIFT_HZ is only an
|
||||
* approximate scale factor. In the SunOS kernel, this
|
||||
* results in a PLL gain factor of 1/1.28 = 0.78 what it
|
||||
* should be. In the following code the overall gain is
|
||||
* increased by a factor of 1.25, which results in a
|
||||
* residual error less than 3 percent.
|
||||
*/
|
||||
/* Same thing applies for FreeBSD --GAW */
|
||||
if (hz == 100) {
|
||||
if (time_adj < 0)
|
||||
time_adj -= -time_adj >> 2;
|
||||
else
|
||||
time_adj += time_adj >> 2;
|
||||
}
|
||||
|
||||
/* XXX - this is really bogus, but can't be fixed until
|
||||
xntpd's idea of the system clock is fixed to know how
|
||||
the user wants leap seconds handled; in the mean time,
|
||||
we assume that users of NTP are running without proper
|
||||
leap second support (this is now the default anyway) */
|
||||
/*
|
||||
* Leap second processing. If in leap-insert state at
|
||||
* the end of the day, the system clock is set back one
|
||||
* second; if in leap-delete state, the system clock is
|
||||
* set ahead one second. The microtime() routine or
|
||||
* external clock driver will insure that reported time
|
||||
* is always monotonic. The ugly divides should be
|
||||
* replaced.
|
||||
*/
|
||||
switch (time_state) {
|
||||
|
||||
case TIME_OK:
|
||||
if (time_status & STA_INS)
|
||||
time_state = TIME_INS;
|
||||
else if (time_status & STA_DEL)
|
||||
time_state = TIME_DEL;
|
||||
break;
|
||||
|
||||
case TIME_INS:
|
||||
if (newtime.tv_sec % 86400 == 0) {
|
||||
newtime.tv_sec--;
|
||||
time_state = TIME_OOP;
|
||||
}
|
||||
break;
|
||||
|
||||
case TIME_DEL:
|
||||
if ((newtime.tv_sec + 1) % 86400 == 0) {
|
||||
newtime.tv_sec++;
|
||||
time_state = TIME_WAIT;
|
||||
}
|
||||
break;
|
||||
|
||||
case TIME_OOP:
|
||||
time_state = TIME_WAIT;
|
||||
break;
|
||||
|
||||
case TIME_WAIT:
|
||||
if (!(time_status & (STA_INS | STA_DEL)))
|
||||
time_state = TIME_OK;
|
||||
}
|
||||
}
|
||||
CPU_CLOCKUPDATE(&time, &newtime);
|
||||
}
|
||||
BUMPTIME(&time, delta);
|
||||
BUMPTIME(&mono_time, delta);
|
||||
|
||||
/*
|
||||
* Process callouts at a very low cpu priority, so we don't keep the
|
||||
@ -563,3 +960,171 @@ sysctl_clockrate(where, sizep)
|
||||
clkinfo.stathz = stathz ? stathz : hz;
|
||||
return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
|
||||
}
|
||||
|
||||
/*#ifdef PPS_SYNC*/
|
||||
#if 0
|
||||
/* This code is completely bogus; if anybody ever wants to use it, get
|
||||
* the current version from Dave Mills. */
|
||||
|
||||
/*
|
||||
* hardpps() - discipline CPU clock oscillator to external pps signal
|
||||
*
|
||||
* This routine is called at each PPS interrupt in order to discipline
|
||||
* the CPU clock oscillator to the PPS signal. It integrates successive
|
||||
* phase differences between the two oscillators and calculates the
|
||||
* frequency offset. This is used in hardclock() to discipline the CPU
|
||||
* clock oscillator so that intrinsic frequency error is cancelled out.
|
||||
* The code requires the caller to capture the time and hardware
|
||||
* counter value at the designated PPS signal transition.
|
||||
*/
|
||||
void
|
||||
hardpps(tvp, usec)
|
||||
struct timeval *tvp; /* time at PPS */
|
||||
long usec; /* hardware counter at PPS */
|
||||
{
|
||||
long u_usec, v_usec, bigtick;
|
||||
long cal_sec, cal_usec;
|
||||
|
||||
/*
|
||||
* During the calibration interval adjust the starting time when
|
||||
* the tick overflows. At the end of the interval compute the
|
||||
* duration of the interval and the difference of the hardware
|
||||
* counters at the beginning and end of the interval. This code
|
||||
* is deliciously complicated by the fact valid differences may
|
||||
* exceed the value of tick when using long calibration
|
||||
* intervals and small ticks. Note that the counter can be
|
||||
* greater than tick if caught at just the wrong instant, but
|
||||
* the values returned and used here are correct.
|
||||
*/
|
||||
bigtick = (long)tick << SHIFT_USEC;
|
||||
pps_usec -= ntp_pll.ybar;
|
||||
if (pps_usec >= bigtick)
|
||||
pps_usec -= bigtick;
|
||||
if (pps_usec < 0)
|
||||
pps_usec += bigtick;
|
||||
pps_time.tv_sec++;
|
||||
pps_count++;
|
||||
if (pps_count < (1 << pps_shift))
|
||||
return;
|
||||
pps_count = 0;
|
||||
ntp_pll.calcnt++;
|
||||
u_usec = usec << SHIFT_USEC;
|
||||
v_usec = pps_usec - u_usec;
|
||||
if (v_usec >= bigtick >> 1)
|
||||
v_usec -= bigtick;
|
||||
if (v_usec < -(bigtick >> 1))
|
||||
v_usec += bigtick;
|
||||
if (v_usec < 0)
|
||||
v_usec = -(-v_usec >> ntp_pll.shift);
|
||||
else
|
||||
v_usec = v_usec >> ntp_pll.shift;
|
||||
pps_usec = u_usec;
|
||||
cal_sec = tvp->tv_sec;
|
||||
cal_usec = tvp->tv_usec;
|
||||
cal_sec -= pps_time.tv_sec;
|
||||
cal_usec -= pps_time.tv_usec;
|
||||
if (cal_usec < 0) {
|
||||
cal_usec += 1000000;
|
||||
cal_sec--;
|
||||
}
|
||||
pps_time = *tvp;
|
||||
|
||||
/*
|
||||
* Check for lost interrupts, noise, excessive jitter and
|
||||
* excessive frequency error. The number of timer ticks during
|
||||
* the interval may vary +-1 tick. Add to this a margin of one
|
||||
* tick for the PPS signal jitter and maximum frequency
|
||||
* deviation. If the limits are exceeded, the calibration
|
||||
* interval is reset to the minimum and we start over.
|
||||
*/
|
||||
u_usec = (long)tick << 1;
|
||||
if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
|
||||
|| (cal_sec == 0 && cal_usec < u_usec))
|
||||
|| v_usec > ntp_pll.tolerance || v_usec < -ntp_pll.tolerance) {
|
||||
ntp_pll.jitcnt++;
|
||||
ntp_pll.shift = NTP_PLL.SHIFT;
|
||||
pps_dispinc = PPS_DISPINC;
|
||||
ntp_pll.intcnt = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* A three-stage median filter is used to help deglitch the pps
|
||||
* signal. The median sample becomes the offset estimate; the
|
||||
* difference between the other two samples becomes the
|
||||
* dispersion estimate.
|
||||
*/
|
||||
pps_mf[2] = pps_mf[1];
|
||||
pps_mf[1] = pps_mf[0];
|
||||
pps_mf[0] = v_usec;
|
||||
if (pps_mf[0] > pps_mf[1]) {
|
||||
if (pps_mf[1] > pps_mf[2]) {
|
||||
u_usec = pps_mf[1]; /* 0 1 2 */
|
||||
v_usec = pps_mf[0] - pps_mf[2];
|
||||
} else if (pps_mf[2] > pps_mf[0]) {
|
||||
u_usec = pps_mf[0]; /* 2 0 1 */
|
||||
v_usec = pps_mf[2] - pps_mf[1];
|
||||
} else {
|
||||
u_usec = pps_mf[2]; /* 0 2 1 */
|
||||
v_usec = pps_mf[0] - pps_mf[1];
|
||||
}
|
||||
} else {
|
||||
if (pps_mf[1] < pps_mf[2]) {
|
||||
u_usec = pps_mf[1]; /* 2 1 0 */
|
||||
v_usec = pps_mf[2] - pps_mf[0];
|
||||
} else if (pps_mf[2] < pps_mf[0]) {
|
||||
u_usec = pps_mf[0]; /* 1 0 2 */
|
||||
v_usec = pps_mf[1] - pps_mf[2];
|
||||
} else {
|
||||
u_usec = pps_mf[2]; /* 1 2 0 */
|
||||
v_usec = pps_mf[1] - pps_mf[0];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Here the dispersion average is updated. If it is less than
|
||||
* the threshold pps_dispmax, the frequency average is updated
|
||||
* as well, but clamped to the tolerance.
|
||||
*/
|
||||
v_usec = (v_usec >> 1) - ntp_pll.disp;
|
||||
if (v_usec < 0)
|
||||
ntp_pll.disp -= -v_usec >> PPS_AVG;
|
||||
else
|
||||
ntp_pll.disp += v_usec >> PPS_AVG;
|
||||
if (ntp_pll.disp > pps_dispmax) {
|
||||
ntp_pll.discnt++;
|
||||
return;
|
||||
}
|
||||
if (u_usec < 0) {
|
||||
ntp_pll.ybar -= -u_usec >> PPS_AVG;
|
||||
if (ntp_pll.ybar < -ntp_pll.tolerance)
|
||||
ntp_pll.ybar = -ntp_pll.tolerance;
|
||||
u_usec = -u_usec;
|
||||
} else {
|
||||
ntp_pll.ybar += u_usec >> PPS_AVG;
|
||||
if (ntp_pll.ybar > ntp_pll.tolerance)
|
||||
ntp_pll.ybar = ntp_pll.tolerance;
|
||||
}
|
||||
|
||||
/*
|
||||
* Here the calibration interval is adjusted. If the maximum
|
||||
* time difference is greater than tick/4, reduce the interval
|
||||
* by half. If this is not the case for four consecutive
|
||||
* intervals, double the interval.
|
||||
*/
|
||||
if (u_usec << ntp_pll.shift > bigtick >> 2) {
|
||||
ntp_pll.intcnt = 0;
|
||||
if (ntp_pll.shift > NTP_PLL.SHIFT) {
|
||||
ntp_pll.shift--;
|
||||
pps_dispinc <<= 1;
|
||||
}
|
||||
} else if (ntp_pll.intcnt >= 4) {
|
||||
ntp_pll.intcnt = 0;
|
||||
if (ntp_pll.shift < NTP_PLL.SHIFTMAX) {
|
||||
ntp_pll.shift++;
|
||||
pps_dispinc >>= 1;
|
||||
}
|
||||
} else
|
||||
ntp_pll.intcnt++;
|
||||
}
|
||||
#endif /* PPS_SYNC */
|
||||
|
269
sys/kern/kern_ntptime.c
Normal file
269
sys/kern/kern_ntptime.c
Normal file
@ -0,0 +1,269 @@
|
||||
/******************************************************************************
|
||||
* *
|
||||
* Copyright (c) David L. Mills 1993, 1994 *
|
||||
* *
|
||||
* Permission to use, copy, modify, and distribute this software and its *
|
||||
* documentation for any purpose and without fee is hereby granted, provided *
|
||||
* that the above copyright notice appears in all copies and that both the *
|
||||
* copyright notice and this permission notice appear in supporting *
|
||||
* documentation, and that the name University of Delaware not be used in *
|
||||
* advertising or publicity pertaining to distribution of the software *
|
||||
* without specific, written prior permission. The University of Delaware *
|
||||
* makes no representations about the suitability this software for any *
|
||||
* purpose. It is provided "as is" without express or implied warranty. *
|
||||
* *
|
||||
******************************************************************************/
|
||||
|
||||
/*
|
||||
* Modification history kern_ntptime.c
|
||||
*
|
||||
* 24 Mar 94 David L. Mills
|
||||
* Revised syscall interface to include new variables for PPS
|
||||
* time discipline.
|
||||
*
|
||||
* 14 Feb 94 David L. Mills
|
||||
* Added code for external clock
|
||||
*
|
||||
* 28 Nov 93 David L. Mills
|
||||
* Revised frequency scaling to conform with adjusted parameters
|
||||
*
|
||||
* 17 Sep 93 David L. Mills
|
||||
* Created file
|
||||
*/
|
||||
/*
|
||||
* ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
|
||||
* 4.1.1 and 4.1.3
|
||||
*
|
||||
* These routines consitute the Network Time Protocol (NTP) interfaces
|
||||
* for user and daemon application programs. The ntp_gettime() routine
|
||||
* provides the time, maximum error (synch distance) and estimated error
|
||||
* (dispersion) to client user application programs. The ntp_adjtime()
|
||||
* routine is used by the NTP daemon to adjust the system clock to an
|
||||
* externally derived time. The time offset and related variables set by
|
||||
* this routine are used by hardclock() to adjust the phase and
|
||||
* frequency of the phase-lock loop which controls the system clock.
|
||||
*/
|
||||
#include <sys/param.h>
|
||||
#include <sys/systm.h>
|
||||
#include <sys/kernel.h>
|
||||
#include <sys/proc.h>
|
||||
#include <sys/timex.h>
|
||||
#include <sys/sysctl.h>
|
||||
|
||||
/*
|
||||
* The following variables are used by the hardclock() routine in the
|
||||
* kern_clock.c module and are described in that module.
|
||||
*/
|
||||
extern struct timeval time; /* kernel time variable */
|
||||
extern int time_state; /* clock state */
|
||||
extern int time_status; /* clock status bits */
|
||||
extern long time_offset; /* time adjustment (us) */
|
||||
extern long time_freq; /* frequency offset (scaled ppm) */
|
||||
extern long time_maxerror; /* maximum error (us) */
|
||||
extern long time_esterror; /* estimated error (us) */
|
||||
extern long time_constant; /* pll time constant */
|
||||
extern long time_precision; /* clock precision (us) */
|
||||
extern long time_tolerance; /* frequency tolerance (scaled ppm) */
|
||||
|
||||
#ifdef PPS_SYNC
|
||||
/*
|
||||
* The following variables are used only if the PPS signal discipline
|
||||
* is configured in the kernel.
|
||||
*/
|
||||
extern int pps_shift; /* interval duration (s) (shift) */
|
||||
extern long pps_freq; /* pps frequency offset (scaled ppm) */
|
||||
extern long pps_jitter; /* pps jitter (us) */
|
||||
extern long pps_stabil; /* pps stability (scaled ppm) */
|
||||
extern long pps_jitcnt; /* jitter limit exceeded */
|
||||
extern long pps_calcnt; /* calibration intervals */
|
||||
extern long pps_errcnt; /* calibration errors */
|
||||
extern long pps_stbcnt; /* stability limit exceeded */
|
||||
#endif /* PPS_SYNC */
|
||||
|
||||
int
|
||||
ntp_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
|
||||
void *newp, size_t newlen, struct proc *p)
|
||||
{
|
||||
struct timeval atv;
|
||||
struct ntptimeval ntv;
|
||||
int s;
|
||||
|
||||
/* All names at this level are terminal. */
|
||||
if (namelen != 1) {
|
||||
return ENOTDIR;
|
||||
}
|
||||
|
||||
if (name[0] != NTP_PLL_GETTIME) {
|
||||
return EOPNOTSUPP;
|
||||
}
|
||||
|
||||
s = splclock();
|
||||
#ifdef EXT_CLOCK
|
||||
/*
|
||||
* The microtime() external clock routine returns a
|
||||
* status code. If less than zero, we declare an error
|
||||
* in the clock status word and return the kernel
|
||||
* (software) time variable. While there are other
|
||||
* places that call microtime(), this is the only place
|
||||
* that matters from an application point of view.
|
||||
*/
|
||||
if (microtime(&atv) < 0) {
|
||||
time_status |= STA_CLOCKERR;
|
||||
ntv.time = time;
|
||||
} else {
|
||||
time_status &= ~STA_CLOCKERR;
|
||||
}
|
||||
#else /* EXT_CLOCK */
|
||||
microtime(&atv);
|
||||
#endif /* EXT_CLOCK */
|
||||
ntv.time = atv;
|
||||
ntv.maxerror = time_maxerror;
|
||||
ntv.esterror = time_esterror;
|
||||
splx(s);
|
||||
|
||||
ntv.time_state = time_state;
|
||||
|
||||
/*
|
||||
* Status word error decode. If any of these conditions
|
||||
* occur, an error is returned, instead of the status
|
||||
* word. Most applications will care only about the fact
|
||||
* the system clock may not be trusted, not about the
|
||||
* details.
|
||||
*
|
||||
* Hardware or software error
|
||||
*/
|
||||
if (time_status & (STA_UNSYNC | STA_CLOCKERR)) {
|
||||
ntv.time_state = TIME_ERROR;
|
||||
}
|
||||
|
||||
/*
|
||||
* PPS signal lost when either time or frequency
|
||||
* synchronization requested
|
||||
*/
|
||||
if (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
|
||||
!(time_status & STA_PPSSIGNAL)) {
|
||||
ntv.time_state = TIME_ERROR;
|
||||
}
|
||||
|
||||
/*
|
||||
* PPS jitter exceeded when time synchronization
|
||||
* requested
|
||||
*/
|
||||
if (time_status & STA_PPSTIME &&
|
||||
time_status & STA_PPSJITTER) {
|
||||
ntv.time_state = TIME_ERROR;
|
||||
}
|
||||
|
||||
/*
|
||||
* PPS wander exceeded or calibration error when
|
||||
* frequency synchronization requested
|
||||
*/
|
||||
if (time_status & STA_PPSFREQ &&
|
||||
time_status & (STA_PPSWANDER | STA_PPSERROR)) {
|
||||
ntv.time_state = TIME_ERROR;
|
||||
}
|
||||
return(sysctl_rdstruct(oldp, oldlenp, newp, &ntv, sizeof ntv));
|
||||
}
|
||||
|
||||
/*
|
||||
* ntp_adjtime() - NTP daemon application interface
|
||||
*/
|
||||
struct ntp_adjtime_args {
|
||||
struct timex *tp;
|
||||
};
|
||||
|
||||
int
|
||||
ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap, int *retval)
|
||||
{
|
||||
struct timex ntv;
|
||||
int modes;
|
||||
int s;
|
||||
int error;
|
||||
|
||||
error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
|
||||
if (error)
|
||||
return error;
|
||||
|
||||
/*
|
||||
* Update selected clock variables - only the superuser can
|
||||
* change anything. Note that there is no error checking here on
|
||||
* the assumption the superuser should know what it is doing.
|
||||
*/
|
||||
modes = ntv.modes;
|
||||
if ((modes != 0)
|
||||
&& (error = suser(p->p_cred->pc_ucred, &p->p_acflag)))
|
||||
return error;
|
||||
|
||||
s = splclock();
|
||||
if (modes & MOD_FREQUENCY)
|
||||
#ifdef PPS_SYNC
|
||||
time_freq = ntv.freq - pps_freq;
|
||||
#else /* PPS_SYNC */
|
||||
time_freq = ntv.freq;
|
||||
#endif /* PPS_SYNC */
|
||||
if (modes & MOD_MAXERROR)
|
||||
time_maxerror = ntv.maxerror;
|
||||
if (modes & MOD_ESTERROR)
|
||||
time_esterror = ntv.esterror;
|
||||
if (modes & MOD_STATUS) {
|
||||
time_status &= STA_RONLY;
|
||||
time_status |= ntv.status & ~STA_RONLY;
|
||||
}
|
||||
if (modes & MOD_TIMECONST)
|
||||
time_constant = ntv.constant;
|
||||
if (modes & MOD_OFFSET)
|
||||
hardupdate(ntv.offset);
|
||||
|
||||
/*
|
||||
* Retrieve all clock variables
|
||||
*/
|
||||
if (time_offset < 0)
|
||||
ntv.offset = -(-time_offset >> SHIFT_UPDATE);
|
||||
else
|
||||
ntv.offset = time_offset >> SHIFT_UPDATE;
|
||||
#ifdef PPS_SYNC
|
||||
ntv.freq = time_freq + pps_freq;
|
||||
#else /* PPS_SYNC */
|
||||
ntv.freq = time_freq;
|
||||
#endif /* PPS_SYNC */
|
||||
ntv.maxerror = time_maxerror;
|
||||
ntv.esterror = time_esterror;
|
||||
ntv.status = time_status;
|
||||
ntv.constant = time_constant;
|
||||
ntv.precision = time_precision;
|
||||
ntv.tolerance = time_tolerance;
|
||||
#ifdef PPS_SYNC
|
||||
ntv.shift = pps_shift;
|
||||
ntv.ppsfreq = pps_freq;
|
||||
ntv.jitter = pps_jitter >> PPS_AVG;
|
||||
ntv.stabil = pps_stabil;
|
||||
ntv.calcnt = pps_calcnt;
|
||||
ntv.errcnt = pps_errcnt;
|
||||
ntv.jitcnt = pps_jitcnt;
|
||||
ntv.stbcnt = pps_stbcnt;
|
||||
#endif /* PPS_SYNC */
|
||||
(void)splx(s);
|
||||
|
||||
error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
|
||||
if (!error) {
|
||||
/*
|
||||
* Status word error decode. See comments in
|
||||
* ntp_gettime() routine.
|
||||
*/
|
||||
retval[0] = time_state;
|
||||
if (time_status & (STA_UNSYNC | STA_CLOCKERR))
|
||||
retval[0] = TIME_ERROR;
|
||||
if (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
|
||||
!(time_status & STA_PPSSIGNAL))
|
||||
retval[0] = TIME_ERROR;
|
||||
if (time_status & STA_PPSTIME &&
|
||||
time_status & STA_PPSJITTER)
|
||||
retval[0] = TIME_ERROR;
|
||||
if (time_status & STA_PPSFREQ &&
|
||||
time_status & (STA_PPSWANDER | STA_PPSERROR))
|
||||
retval[0] = TIME_ERROR;
|
||||
}
|
||||
return error;
|
||||
}
|
||||
|
||||
|
@ -34,7 +34,7 @@
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* @(#)kern_sysctl.c 8.4 (Berkeley) 4/14/94
|
||||
* $Id: kern_sysctl.c,v 1.10 1994/09/14 23:21:00 ache Exp $
|
||||
* $Id: kern_sysctl.c,v 1.11 1994/09/16 00:53:58 ache Exp $
|
||||
*/
|
||||
|
||||
/*
|
||||
@ -64,6 +64,7 @@ extern sysctlfn vm_sysctl;
|
||||
extern sysctlfn fs_sysctl;
|
||||
extern sysctlfn net_sysctl;
|
||||
extern sysctlfn cpu_sysctl;
|
||||
extern sysctlfn ntp_sysctl;
|
||||
|
||||
/*
|
||||
* Locking and stats
|
||||
@ -201,7 +202,8 @@ kern_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
|
||||
extern char ostype[], osrelease[];
|
||||
|
||||
/* all sysctl names at this level are terminal */
|
||||
if (namelen != 1 && !(name[0] == KERN_PROC || name[0] == KERN_PROF))
|
||||
if (namelen != 1 && !(name[0] == KERN_PROC || name[0] == KERN_PROF
|
||||
|| name[0] == KERN_NTP_PLL))
|
||||
return (ENOTDIR); /* overloaded */
|
||||
|
||||
switch (name[0]) {
|
||||
@ -289,6 +291,9 @@ kern_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
|
||||
#else
|
||||
return (sysctl_rdint(oldp, oldlenp, newp, 0));
|
||||
#endif
|
||||
case KERN_NTP_PLL:
|
||||
return (ntp_sysctl(name + 1, namelen - 1, oldp, oldlenp,
|
||||
newp, newlen, p));
|
||||
default:
|
||||
return (EOPNOTSUPP);
|
||||
}
|
||||
|
@ -36,9 +36,26 @@
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
|
||||
* $Id: kern_clock.c,v 1.4 1994/08/18 22:34:58 wollman Exp $
|
||||
* $Id: kern_clock.c,v 1.5 1994/08/27 16:14:26 davidg Exp $
|
||||
*/
|
||||
|
||||
/* Portions of this software are covered by the following: */
|
||||
/******************************************************************************
|
||||
* *
|
||||
* Copyright (c) David L. Mills 1993, 1994 *
|
||||
* *
|
||||
* Permission to use, copy, modify, and distribute this software and its *
|
||||
* documentation for any purpose and without fee is hereby granted, provided *
|
||||
* that the above copyright notice appears in all copies and that both the *
|
||||
* copyright notice and this permission notice appear in supporting *
|
||||
* documentation, and that the name University of Delaware not be used in *
|
||||
* advertising or publicity pertaining to distribution of the software *
|
||||
* without specific, written prior permission. The University of Delaware *
|
||||
* makes no representations about the suitability this software for any *
|
||||
* purpose. It is provided "as is" without express or implied warranty. *
|
||||
* *
|
||||
*****************************************************************************/
|
||||
|
||||
#include <sys/param.h>
|
||||
#include <sys/systm.h>
|
||||
#include <sys/dkstat.h>
|
||||
@ -46,9 +63,11 @@
|
||||
#include <sys/kernel.h>
|
||||
#include <sys/proc.h>
|
||||
#include <sys/resourcevar.h>
|
||||
#include <sys/timex.h>
|
||||
#include <vm/vm.h>
|
||||
|
||||
#include <machine/cpu.h>
|
||||
#include <machine/clock.h>
|
||||
|
||||
#ifdef GPROF
|
||||
#include <sys/gmon.h>
|
||||
@ -127,6 +146,238 @@ int psratio; /* ratio: prof / stat */
|
||||
volatile struct timeval time;
|
||||
volatile struct timeval mono_time;
|
||||
|
||||
/*
|
||||
* Phase-lock loop (PLL) definitions
|
||||
*
|
||||
* The following variables are read and set by the ntp_adjtime() system
|
||||
* call.
|
||||
*
|
||||
* time_state shows the state of the system clock, with values defined
|
||||
* in the timex.h header file.
|
||||
*
|
||||
* time_status shows the status of the system clock, with bits defined
|
||||
* in the timex.h header file.
|
||||
*
|
||||
* time_offset is used by the PLL to adjust the system time in small
|
||||
* increments.
|
||||
*
|
||||
* time_constant determines the bandwidth or "stiffness" of the PLL.
|
||||
*
|
||||
* time_tolerance determines maximum frequency error or tolerance of the
|
||||
* CPU clock oscillator and is a property of the architecture; however,
|
||||
* in principle it could change as result of the presence of external
|
||||
* discipline signals, for instance.
|
||||
*
|
||||
* time_precision is usually equal to the kernel tick variable; however,
|
||||
* in cases where a precision clock counter or external clock is
|
||||
* available, the resolution can be much less than this and depend on
|
||||
* whether the external clock is working or not.
|
||||
*
|
||||
* time_maxerror is initialized by a ntp_adjtime() call and increased by
|
||||
* the kernel once each second to reflect the maximum error
|
||||
* bound growth.
|
||||
*
|
||||
* time_esterror is set and read by the ntp_adjtime() call, but
|
||||
* otherwise not used by the kernel.
|
||||
*/
|
||||
int time_status = STA_UNSYNC; /* clock status bits */
|
||||
int time_state = TIME_OK; /* clock state */
|
||||
long time_offset = 0; /* time offset (us) */
|
||||
long time_constant = 0; /* pll time constant */
|
||||
long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
|
||||
long time_precision = 1; /* clock precision (us) */
|
||||
long time_maxerror = MAXPHASE; /* maximum error (us) */
|
||||
long time_esterror = MAXPHASE; /* estimated error (us) */
|
||||
|
||||
/*
|
||||
* The following variables establish the state of the PLL and the
|
||||
* residual time and frequency offset of the local clock. The scale
|
||||
* factors are defined in the timex.h header file.
|
||||
*
|
||||
* time_phase and time_freq are the phase increment and the frequency
|
||||
* increment, respectively, of the kernel time variable at each tick of
|
||||
* the clock.
|
||||
*
|
||||
* time_freq is set via ntp_adjtime() from a value stored in a file when
|
||||
* the synchronization daemon is first started. Its value is retrieved
|
||||
* via ntp_adjtime() and written to the file about once per hour by the
|
||||
* daemon.
|
||||
*
|
||||
* time_adj is the adjustment added to the value of tick at each timer
|
||||
* interrupt and is recomputed at each timer interrupt.
|
||||
*
|
||||
* time_reftime is the second's portion of the system time on the last
|
||||
* call to ntp_adjtime(). It is used to adjust the time_freq variable
|
||||
* and to increase the time_maxerror as the time since last update
|
||||
* increases.
|
||||
*/
|
||||
long time_phase = 0; /* phase offset (scaled us) */
|
||||
long time_freq = 0; /* frequency offset (scaled ppm) */
|
||||
long time_adj = 0; /* tick adjust (scaled 1 / hz) */
|
||||
long time_reftime = 0; /* time at last adjustment (s) */
|
||||
|
||||
#ifdef PPS_SYNC
|
||||
/*
|
||||
* The following variables are used only if the if the kernel PPS
|
||||
* discipline code is configured (PPS_SYNC). The scale factors are
|
||||
* defined in the timex.h header file.
|
||||
*
|
||||
* pps_time contains the time at each calibration interval, as read by
|
||||
* microtime().
|
||||
*
|
||||
* pps_offset is the time offset produced by the time median filter
|
||||
* pps_tf[], while pps_jitter is the dispersion measured by this
|
||||
* filter.
|
||||
*
|
||||
* pps_freq is the frequency offset produced by the frequency median
|
||||
* filter pps_ff[], while pps_stabil is the dispersion measured by
|
||||
* this filter.
|
||||
*
|
||||
* pps_usec is latched from a high resolution counter or external clock
|
||||
* at pps_time. Here we want the hardware counter contents only, not the
|
||||
* contents plus the time_tv.usec as usual.
|
||||
*
|
||||
* pps_valid counts the number of seconds since the last PPS update. It
|
||||
* is used as a watchdog timer to disable the PPS discipline should the
|
||||
* PPS signal be lost.
|
||||
*
|
||||
* pps_glitch counts the number of seconds since the beginning of an
|
||||
* offset burst more than tick/2 from current nominal offset. It is used
|
||||
* mainly to suppress error bursts due to priority conflicts between the
|
||||
* PPS interrupt and timer interrupt.
|
||||
*
|
||||
* pps_count counts the seconds of the calibration interval, the
|
||||
* duration of which is pps_shift in powers of two.
|
||||
*
|
||||
* pps_intcnt counts the calibration intervals for use in the interval-
|
||||
* adaptation algorithm. It's just too complicated for words.
|
||||
*/
|
||||
struct timeval pps_time; /* kernel time at last interval */
|
||||
long pps_offset = 0; /* pps time offset (us) */
|
||||
long pps_jitter = MAXTIME; /* pps time dispersion (jitter) (us) */
|
||||
long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
|
||||
long pps_freq = 0; /* frequency offset (scaled ppm) */
|
||||
long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
|
||||
long pps_ff[] = {0, 0, 0}; /* frequency offset median filter */
|
||||
long pps_usec = 0; /* microsec counter at last interval */
|
||||
long pps_valid = PPS_VALID; /* pps signal watchdog counter */
|
||||
int pps_glitch = 0; /* pps signal glitch counter */
|
||||
int pps_count = 0; /* calibration interval counter (s) */
|
||||
int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
|
||||
int pps_intcnt = 0; /* intervals at current duration */
|
||||
|
||||
/*
|
||||
* PPS signal quality monitors
|
||||
*
|
||||
* pps_jitcnt counts the seconds that have been discarded because the
|
||||
* jitter measured by the time median filter exceeds the limit MAXTIME
|
||||
* (100 us).
|
||||
*
|
||||
* pps_calcnt counts the frequency calibration intervals, which are
|
||||
* variable from 4 s to 256 s.
|
||||
*
|
||||
* pps_errcnt counts the calibration intervals which have been discarded
|
||||
* because the wander exceeds the limit MAXFREQ (100 ppm) or where the
|
||||
* calibration interval jitter exceeds two ticks.
|
||||
*
|
||||
* pps_stbcnt counts the calibration intervals that have been discarded
|
||||
* because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
|
||||
*/
|
||||
long pps_jitcnt = 0; /* jitter limit exceeded */
|
||||
long pps_calcnt = 0; /* calibration intervals */
|
||||
long pps_errcnt = 0; /* calibration errors */
|
||||
long pps_stbcnt = 0; /* stability limit exceeded */
|
||||
#endif /* PPS_SYNC */
|
||||
|
||||
/* XXX none of this stuff works under FreeBSD */
|
||||
#ifdef EXT_CLOCK
|
||||
/*
|
||||
* External clock definitions
|
||||
*
|
||||
* The following definitions and declarations are used only if an
|
||||
* external clock (HIGHBALL or TPRO) is configured on the system.
|
||||
*/
|
||||
#define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
|
||||
|
||||
/*
|
||||
* The clock_count variable is set to CLOCK_INTERVAL at each PPS
|
||||
* interrupt and decremented once each second.
|
||||
*/
|
||||
int clock_count = 0; /* CPU clock counter */
|
||||
|
||||
#ifdef HIGHBALL
|
||||
/*
|
||||
* The clock_offset and clock_cpu variables are used by the HIGHBALL
|
||||
* interface. The clock_offset variable defines the offset between
|
||||
* system time and the HIGBALL counters. The clock_cpu variable contains
|
||||
* the offset between the system clock and the HIGHBALL clock for use in
|
||||
* disciplining the kernel time variable.
|
||||
*/
|
||||
extern struct timeval clock_offset; /* Highball clock offset */
|
||||
long clock_cpu = 0; /* CPU clock adjust */
|
||||
#endif /* HIGHBALL */
|
||||
#endif /* EXT_CLOCK */
|
||||
|
||||
/*
|
||||
* hardupdate() - local clock update
|
||||
*
|
||||
* This routine is called by ntp_adjtime() to update the local clock
|
||||
* phase and frequency. This is used to implement an adaptive-parameter,
|
||||
* first-order, type-II phase-lock loop. The code computes new time and
|
||||
* frequency offsets each time it is called. The hardclock() routine
|
||||
* amortizes these offsets at each tick interrupt. If the kernel PPS
|
||||
* discipline code is configured (PPS_SYNC), the PPS signal itself
|
||||
* determines the new time offset, instead of the calling argument.
|
||||
* Presumably, calls to ntp_adjtime() occur only when the caller
|
||||
* believes the local clock is valid within some bound (+-128 ms with
|
||||
* NTP). If the caller's time is far different than the PPS time, an
|
||||
* argument will ensue, and it's not clear who will lose.
|
||||
*
|
||||
* For default SHIFT_UPDATE = 12, the offset is limited to +-512 ms, the
|
||||
* maximum interval between updates is 4096 s and the maximum frequency
|
||||
* offset is +-31.25 ms/s.
|
||||
*
|
||||
* Note: splclock() is in effect.
|
||||
*/
|
||||
void
|
||||
hardupdate(offset)
|
||||
long offset;
|
||||
{
|
||||
long ltemp, mtemp;
|
||||
|
||||
if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
|
||||
return;
|
||||
ltemp = offset;
|
||||
#ifdef PPS_SYNC
|
||||
if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
|
||||
ltemp = pps_offset;
|
||||
#endif /* PPS_SYNC */
|
||||
if (ltemp > MAXPHASE)
|
||||
time_offset = MAXPHASE << SHIFT_UPDATE;
|
||||
else if (ltemp < -MAXPHASE)
|
||||
time_offset = -(MAXPHASE << SHIFT_UPDATE);
|
||||
else
|
||||
time_offset = ltemp << SHIFT_UPDATE;
|
||||
mtemp = time.tv_sec - time_reftime;
|
||||
time_reftime = time.tv_sec;
|
||||
if (mtemp > MAXSEC)
|
||||
mtemp = 0;
|
||||
|
||||
/* ugly multiply should be replaced */
|
||||
if (ltemp < 0)
|
||||
time_freq -= (-ltemp * mtemp) >> (time_constant +
|
||||
time_constant + SHIFT_KF - SHIFT_USEC);
|
||||
else
|
||||
time_freq += (ltemp * mtemp) >> (time_constant +
|
||||
time_constant + SHIFT_KF - SHIFT_USEC);
|
||||
if (time_freq > time_tolerance)
|
||||
time_freq = time_tolerance;
|
||||
else if (time_freq < -time_tolerance)
|
||||
time_freq = -time_tolerance;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Initialize clock frequencies and start both clocks running.
|
||||
*/
|
||||
@ -207,18 +458,164 @@ hardclock(frame)
|
||||
statclock(frame);
|
||||
|
||||
/*
|
||||
* Increment the time-of-day. The increment is just ``tick'' unless
|
||||
* we are still adjusting the clock; see adjtime().
|
||||
* Increment the time-of-day.
|
||||
*/
|
||||
ticks++;
|
||||
if (timedelta == 0)
|
||||
delta = tick;
|
||||
else {
|
||||
delta = tick + tickdelta;
|
||||
timedelta -= tickdelta;
|
||||
{
|
||||
int time_update;
|
||||
struct timeval newtime = time;
|
||||
long ltemp;
|
||||
|
||||
if (timedelta == 0) {
|
||||
time_update = tick;
|
||||
} else {
|
||||
if (timedelta < 0) {
|
||||
time_update = tick - tickdelta;
|
||||
timedelta += tickdelta;
|
||||
} else {
|
||||
time_update = tick + tickdelta;
|
||||
timedelta -= tickdelta;
|
||||
}
|
||||
}
|
||||
BUMPTIME(&mono_time, time_update);
|
||||
|
||||
/*
|
||||
* Compute the phase adjustment. If the low-order bits
|
||||
* (time_phase) of the update overflow, bump the high-order bits
|
||||
* (time_update).
|
||||
*/
|
||||
time_phase += time_adj;
|
||||
if (time_phase <= -FINEUSEC) {
|
||||
ltemp = -time_phase >> SHIFT_SCALE;
|
||||
time_phase += ltemp << SHIFT_SCALE;
|
||||
time_update -= ltemp;
|
||||
}
|
||||
else if (time_phase >= FINEUSEC) {
|
||||
ltemp = time_phase >> SHIFT_SCALE;
|
||||
time_phase -= ltemp << SHIFT_SCALE;
|
||||
time_update += ltemp;
|
||||
}
|
||||
|
||||
newtime.tv_usec += time_update;
|
||||
/*
|
||||
* On rollover of the second the phase adjustment to be used for
|
||||
* the next second is calculated. Also, the maximum error is
|
||||
* increased by the tolerance. If the PPS frequency discipline
|
||||
* code is present, the phase is increased to compensate for the
|
||||
* CPU clock oscillator frequency error.
|
||||
*
|
||||
* With SHIFT_SCALE = 23, the maximum frequency adjustment is
|
||||
* +-256 us per tick, or 25.6 ms/s at a clock frequency of 100
|
||||
* Hz. The time contribution is shifted right a minimum of two
|
||||
* bits, while the frequency contribution is a right shift.
|
||||
* Thus, overflow is prevented if the frequency contribution is
|
||||
* limited to half the maximum or 15.625 ms/s.
|
||||
*/
|
||||
if (newtime.tv_usec >= 1000000) {
|
||||
newtime.tv_usec -= 1000000;
|
||||
newtime.tv_sec++;
|
||||
time_maxerror += time_tolerance >> SHIFT_USEC;
|
||||
if (time_offset < 0) {
|
||||
ltemp = -time_offset >>
|
||||
(SHIFT_KG + time_constant);
|
||||
time_offset += ltemp;
|
||||
time_adj = -ltemp <<
|
||||
(SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
|
||||
} else {
|
||||
ltemp = time_offset >>
|
||||
(SHIFT_KG + time_constant);
|
||||
time_offset -= ltemp;
|
||||
time_adj = ltemp <<
|
||||
(SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
|
||||
}
|
||||
#ifdef PPS_SYNC
|
||||
/*
|
||||
* Gnaw on the watchdog counter and update the frequency
|
||||
* computed by the pll and the PPS signal.
|
||||
*/
|
||||
pps_valid++;
|
||||
if (pps_valid == PPS_VALID) {
|
||||
pps_jitter = MAXTIME;
|
||||
pps_stabil = MAXFREQ;
|
||||
time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
|
||||
STA_PPSWANDER | STA_PPSERROR);
|
||||
}
|
||||
ltemp = time_freq + pps_freq;
|
||||
#else
|
||||
ltemp = time_freq;
|
||||
#endif /* PPS_SYNC */
|
||||
if (ltemp < 0)
|
||||
time_adj -= -ltemp >>
|
||||
(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
|
||||
else
|
||||
time_adj += ltemp >>
|
||||
(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
|
||||
|
||||
/*
|
||||
* When the CPU clock oscillator frequency is not a
|
||||
* power of two in Hz, the SHIFT_HZ is only an
|
||||
* approximate scale factor. In the SunOS kernel, this
|
||||
* results in a PLL gain factor of 1/1.28 = 0.78 what it
|
||||
* should be. In the following code the overall gain is
|
||||
* increased by a factor of 1.25, which results in a
|
||||
* residual error less than 3 percent.
|
||||
*/
|
||||
/* Same thing applies for FreeBSD --GAW */
|
||||
if (hz == 100) {
|
||||
if (time_adj < 0)
|
||||
time_adj -= -time_adj >> 2;
|
||||
else
|
||||
time_adj += time_adj >> 2;
|
||||
}
|
||||
|
||||
/* XXX - this is really bogus, but can't be fixed until
|
||||
xntpd's idea of the system clock is fixed to know how
|
||||
the user wants leap seconds handled; in the mean time,
|
||||
we assume that users of NTP are running without proper
|
||||
leap second support (this is now the default anyway) */
|
||||
/*
|
||||
* Leap second processing. If in leap-insert state at
|
||||
* the end of the day, the system clock is set back one
|
||||
* second; if in leap-delete state, the system clock is
|
||||
* set ahead one second. The microtime() routine or
|
||||
* external clock driver will insure that reported time
|
||||
* is always monotonic. The ugly divides should be
|
||||
* replaced.
|
||||
*/
|
||||
switch (time_state) {
|
||||
|
||||
case TIME_OK:
|
||||
if (time_status & STA_INS)
|
||||
time_state = TIME_INS;
|
||||
else if (time_status & STA_DEL)
|
||||
time_state = TIME_DEL;
|
||||
break;
|
||||
|
||||
case TIME_INS:
|
||||
if (newtime.tv_sec % 86400 == 0) {
|
||||
newtime.tv_sec--;
|
||||
time_state = TIME_OOP;
|
||||
}
|
||||
break;
|
||||
|
||||
case TIME_DEL:
|
||||
if ((newtime.tv_sec + 1) % 86400 == 0) {
|
||||
newtime.tv_sec++;
|
||||
time_state = TIME_WAIT;
|
||||
}
|
||||
break;
|
||||
|
||||
case TIME_OOP:
|
||||
time_state = TIME_WAIT;
|
||||
break;
|
||||
|
||||
case TIME_WAIT:
|
||||
if (!(time_status & (STA_INS | STA_DEL)))
|
||||
time_state = TIME_OK;
|
||||
}
|
||||
}
|
||||
CPU_CLOCKUPDATE(&time, &newtime);
|
||||
}
|
||||
BUMPTIME(&time, delta);
|
||||
BUMPTIME(&mono_time, delta);
|
||||
|
||||
/*
|
||||
* Process callouts at a very low cpu priority, so we don't keep the
|
||||
@ -563,3 +960,171 @@ sysctl_clockrate(where, sizep)
|
||||
clkinfo.stathz = stathz ? stathz : hz;
|
||||
return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
|
||||
}
|
||||
|
||||
/*#ifdef PPS_SYNC*/
|
||||
#if 0
|
||||
/* This code is completely bogus; if anybody ever wants to use it, get
|
||||
* the current version from Dave Mills. */
|
||||
|
||||
/*
|
||||
* hardpps() - discipline CPU clock oscillator to external pps signal
|
||||
*
|
||||
* This routine is called at each PPS interrupt in order to discipline
|
||||
* the CPU clock oscillator to the PPS signal. It integrates successive
|
||||
* phase differences between the two oscillators and calculates the
|
||||
* frequency offset. This is used in hardclock() to discipline the CPU
|
||||
* clock oscillator so that intrinsic frequency error is cancelled out.
|
||||
* The code requires the caller to capture the time and hardware
|
||||
* counter value at the designated PPS signal transition.
|
||||
*/
|
||||
void
|
||||
hardpps(tvp, usec)
|
||||
struct timeval *tvp; /* time at PPS */
|
||||
long usec; /* hardware counter at PPS */
|
||||
{
|
||||
long u_usec, v_usec, bigtick;
|
||||
long cal_sec, cal_usec;
|
||||
|
||||
/*
|
||||
* During the calibration interval adjust the starting time when
|
||||
* the tick overflows. At the end of the interval compute the
|
||||
* duration of the interval and the difference of the hardware
|
||||
* counters at the beginning and end of the interval. This code
|
||||
* is deliciously complicated by the fact valid differences may
|
||||
* exceed the value of tick when using long calibration
|
||||
* intervals and small ticks. Note that the counter can be
|
||||
* greater than tick if caught at just the wrong instant, but
|
||||
* the values returned and used here are correct.
|
||||
*/
|
||||
bigtick = (long)tick << SHIFT_USEC;
|
||||
pps_usec -= ntp_pll.ybar;
|
||||
if (pps_usec >= bigtick)
|
||||
pps_usec -= bigtick;
|
||||
if (pps_usec < 0)
|
||||
pps_usec += bigtick;
|
||||
pps_time.tv_sec++;
|
||||
pps_count++;
|
||||
if (pps_count < (1 << pps_shift))
|
||||
return;
|
||||
pps_count = 0;
|
||||
ntp_pll.calcnt++;
|
||||
u_usec = usec << SHIFT_USEC;
|
||||
v_usec = pps_usec - u_usec;
|
||||
if (v_usec >= bigtick >> 1)
|
||||
v_usec -= bigtick;
|
||||
if (v_usec < -(bigtick >> 1))
|
||||
v_usec += bigtick;
|
||||
if (v_usec < 0)
|
||||
v_usec = -(-v_usec >> ntp_pll.shift);
|
||||
else
|
||||
v_usec = v_usec >> ntp_pll.shift;
|
||||
pps_usec = u_usec;
|
||||
cal_sec = tvp->tv_sec;
|
||||
cal_usec = tvp->tv_usec;
|
||||
cal_sec -= pps_time.tv_sec;
|
||||
cal_usec -= pps_time.tv_usec;
|
||||
if (cal_usec < 0) {
|
||||
cal_usec += 1000000;
|
||||
cal_sec--;
|
||||
}
|
||||
pps_time = *tvp;
|
||||
|
||||
/*
|
||||
* Check for lost interrupts, noise, excessive jitter and
|
||||
* excessive frequency error. The number of timer ticks during
|
||||
* the interval may vary +-1 tick. Add to this a margin of one
|
||||
* tick for the PPS signal jitter and maximum frequency
|
||||
* deviation. If the limits are exceeded, the calibration
|
||||
* interval is reset to the minimum and we start over.
|
||||
*/
|
||||
u_usec = (long)tick << 1;
|
||||
if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
|
||||
|| (cal_sec == 0 && cal_usec < u_usec))
|
||||
|| v_usec > ntp_pll.tolerance || v_usec < -ntp_pll.tolerance) {
|
||||
ntp_pll.jitcnt++;
|
||||
ntp_pll.shift = NTP_PLL.SHIFT;
|
||||
pps_dispinc = PPS_DISPINC;
|
||||
ntp_pll.intcnt = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* A three-stage median filter is used to help deglitch the pps
|
||||
* signal. The median sample becomes the offset estimate; the
|
||||
* difference between the other two samples becomes the
|
||||
* dispersion estimate.
|
||||
*/
|
||||
pps_mf[2] = pps_mf[1];
|
||||
pps_mf[1] = pps_mf[0];
|
||||
pps_mf[0] = v_usec;
|
||||
if (pps_mf[0] > pps_mf[1]) {
|
||||
if (pps_mf[1] > pps_mf[2]) {
|
||||
u_usec = pps_mf[1]; /* 0 1 2 */
|
||||
v_usec = pps_mf[0] - pps_mf[2];
|
||||
} else if (pps_mf[2] > pps_mf[0]) {
|
||||
u_usec = pps_mf[0]; /* 2 0 1 */
|
||||
v_usec = pps_mf[2] - pps_mf[1];
|
||||
} else {
|
||||
u_usec = pps_mf[2]; /* 0 2 1 */
|
||||
v_usec = pps_mf[0] - pps_mf[1];
|
||||
}
|
||||
} else {
|
||||
if (pps_mf[1] < pps_mf[2]) {
|
||||
u_usec = pps_mf[1]; /* 2 1 0 */
|
||||
v_usec = pps_mf[2] - pps_mf[0];
|
||||
} else if (pps_mf[2] < pps_mf[0]) {
|
||||
u_usec = pps_mf[0]; /* 1 0 2 */
|
||||
v_usec = pps_mf[1] - pps_mf[2];
|
||||
} else {
|
||||
u_usec = pps_mf[2]; /* 1 2 0 */
|
||||
v_usec = pps_mf[1] - pps_mf[0];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Here the dispersion average is updated. If it is less than
|
||||
* the threshold pps_dispmax, the frequency average is updated
|
||||
* as well, but clamped to the tolerance.
|
||||
*/
|
||||
v_usec = (v_usec >> 1) - ntp_pll.disp;
|
||||
if (v_usec < 0)
|
||||
ntp_pll.disp -= -v_usec >> PPS_AVG;
|
||||
else
|
||||
ntp_pll.disp += v_usec >> PPS_AVG;
|
||||
if (ntp_pll.disp > pps_dispmax) {
|
||||
ntp_pll.discnt++;
|
||||
return;
|
||||
}
|
||||
if (u_usec < 0) {
|
||||
ntp_pll.ybar -= -u_usec >> PPS_AVG;
|
||||
if (ntp_pll.ybar < -ntp_pll.tolerance)
|
||||
ntp_pll.ybar = -ntp_pll.tolerance;
|
||||
u_usec = -u_usec;
|
||||
} else {
|
||||
ntp_pll.ybar += u_usec >> PPS_AVG;
|
||||
if (ntp_pll.ybar > ntp_pll.tolerance)
|
||||
ntp_pll.ybar = ntp_pll.tolerance;
|
||||
}
|
||||
|
||||
/*
|
||||
* Here the calibration interval is adjusted. If the maximum
|
||||
* time difference is greater than tick/4, reduce the interval
|
||||
* by half. If this is not the case for four consecutive
|
||||
* intervals, double the interval.
|
||||
*/
|
||||
if (u_usec << ntp_pll.shift > bigtick >> 2) {
|
||||
ntp_pll.intcnt = 0;
|
||||
if (ntp_pll.shift > NTP_PLL.SHIFT) {
|
||||
ntp_pll.shift--;
|
||||
pps_dispinc <<= 1;
|
||||
}
|
||||
} else if (ntp_pll.intcnt >= 4) {
|
||||
ntp_pll.intcnt = 0;
|
||||
if (ntp_pll.shift < NTP_PLL.SHIFTMAX) {
|
||||
ntp_pll.shift++;
|
||||
pps_dispinc >>= 1;
|
||||
}
|
||||
} else
|
||||
ntp_pll.intcnt++;
|
||||
}
|
||||
#endif /* PPS_SYNC */
|
||||
|
@ -36,9 +36,26 @@
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
|
||||
* $Id: kern_clock.c,v 1.4 1994/08/18 22:34:58 wollman Exp $
|
||||
* $Id: kern_clock.c,v 1.5 1994/08/27 16:14:26 davidg Exp $
|
||||
*/
|
||||
|
||||
/* Portions of this software are covered by the following: */
|
||||
/******************************************************************************
|
||||
* *
|
||||
* Copyright (c) David L. Mills 1993, 1994 *
|
||||
* *
|
||||
* Permission to use, copy, modify, and distribute this software and its *
|
||||
* documentation for any purpose and without fee is hereby granted, provided *
|
||||
* that the above copyright notice appears in all copies and that both the *
|
||||
* copyright notice and this permission notice appear in supporting *
|
||||
* documentation, and that the name University of Delaware not be used in *
|
||||
* advertising or publicity pertaining to distribution of the software *
|
||||
* without specific, written prior permission. The University of Delaware *
|
||||
* makes no representations about the suitability this software for any *
|
||||
* purpose. It is provided "as is" without express or implied warranty. *
|
||||
* *
|
||||
*****************************************************************************/
|
||||
|
||||
#include <sys/param.h>
|
||||
#include <sys/systm.h>
|
||||
#include <sys/dkstat.h>
|
||||
@ -46,9 +63,11 @@
|
||||
#include <sys/kernel.h>
|
||||
#include <sys/proc.h>
|
||||
#include <sys/resourcevar.h>
|
||||
#include <sys/timex.h>
|
||||
#include <vm/vm.h>
|
||||
|
||||
#include <machine/cpu.h>
|
||||
#include <machine/clock.h>
|
||||
|
||||
#ifdef GPROF
|
||||
#include <sys/gmon.h>
|
||||
@ -127,6 +146,238 @@ int psratio; /* ratio: prof / stat */
|
||||
volatile struct timeval time;
|
||||
volatile struct timeval mono_time;
|
||||
|
||||
/*
|
||||
* Phase-lock loop (PLL) definitions
|
||||
*
|
||||
* The following variables are read and set by the ntp_adjtime() system
|
||||
* call.
|
||||
*
|
||||
* time_state shows the state of the system clock, with values defined
|
||||
* in the timex.h header file.
|
||||
*
|
||||
* time_status shows the status of the system clock, with bits defined
|
||||
* in the timex.h header file.
|
||||
*
|
||||
* time_offset is used by the PLL to adjust the system time in small
|
||||
* increments.
|
||||
*
|
||||
* time_constant determines the bandwidth or "stiffness" of the PLL.
|
||||
*
|
||||
* time_tolerance determines maximum frequency error or tolerance of the
|
||||
* CPU clock oscillator and is a property of the architecture; however,
|
||||
* in principle it could change as result of the presence of external
|
||||
* discipline signals, for instance.
|
||||
*
|
||||
* time_precision is usually equal to the kernel tick variable; however,
|
||||
* in cases where a precision clock counter or external clock is
|
||||
* available, the resolution can be much less than this and depend on
|
||||
* whether the external clock is working or not.
|
||||
*
|
||||
* time_maxerror is initialized by a ntp_adjtime() call and increased by
|
||||
* the kernel once each second to reflect the maximum error
|
||||
* bound growth.
|
||||
*
|
||||
* time_esterror is set and read by the ntp_adjtime() call, but
|
||||
* otherwise not used by the kernel.
|
||||
*/
|
||||
int time_status = STA_UNSYNC; /* clock status bits */
|
||||
int time_state = TIME_OK; /* clock state */
|
||||
long time_offset = 0; /* time offset (us) */
|
||||
long time_constant = 0; /* pll time constant */
|
||||
long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
|
||||
long time_precision = 1; /* clock precision (us) */
|
||||
long time_maxerror = MAXPHASE; /* maximum error (us) */
|
||||
long time_esterror = MAXPHASE; /* estimated error (us) */
|
||||
|
||||
/*
|
||||
* The following variables establish the state of the PLL and the
|
||||
* residual time and frequency offset of the local clock. The scale
|
||||
* factors are defined in the timex.h header file.
|
||||
*
|
||||
* time_phase and time_freq are the phase increment and the frequency
|
||||
* increment, respectively, of the kernel time variable at each tick of
|
||||
* the clock.
|
||||
*
|
||||
* time_freq is set via ntp_adjtime() from a value stored in a file when
|
||||
* the synchronization daemon is first started. Its value is retrieved
|
||||
* via ntp_adjtime() and written to the file about once per hour by the
|
||||
* daemon.
|
||||
*
|
||||
* time_adj is the adjustment added to the value of tick at each timer
|
||||
* interrupt and is recomputed at each timer interrupt.
|
||||
*
|
||||
* time_reftime is the second's portion of the system time on the last
|
||||
* call to ntp_adjtime(). It is used to adjust the time_freq variable
|
||||
* and to increase the time_maxerror as the time since last update
|
||||
* increases.
|
||||
*/
|
||||
long time_phase = 0; /* phase offset (scaled us) */
|
||||
long time_freq = 0; /* frequency offset (scaled ppm) */
|
||||
long time_adj = 0; /* tick adjust (scaled 1 / hz) */
|
||||
long time_reftime = 0; /* time at last adjustment (s) */
|
||||
|
||||
#ifdef PPS_SYNC
|
||||
/*
|
||||
* The following variables are used only if the if the kernel PPS
|
||||
* discipline code is configured (PPS_SYNC). The scale factors are
|
||||
* defined in the timex.h header file.
|
||||
*
|
||||
* pps_time contains the time at each calibration interval, as read by
|
||||
* microtime().
|
||||
*
|
||||
* pps_offset is the time offset produced by the time median filter
|
||||
* pps_tf[], while pps_jitter is the dispersion measured by this
|
||||
* filter.
|
||||
*
|
||||
* pps_freq is the frequency offset produced by the frequency median
|
||||
* filter pps_ff[], while pps_stabil is the dispersion measured by
|
||||
* this filter.
|
||||
*
|
||||
* pps_usec is latched from a high resolution counter or external clock
|
||||
* at pps_time. Here we want the hardware counter contents only, not the
|
||||
* contents plus the time_tv.usec as usual.
|
||||
*
|
||||
* pps_valid counts the number of seconds since the last PPS update. It
|
||||
* is used as a watchdog timer to disable the PPS discipline should the
|
||||
* PPS signal be lost.
|
||||
*
|
||||
* pps_glitch counts the number of seconds since the beginning of an
|
||||
* offset burst more than tick/2 from current nominal offset. It is used
|
||||
* mainly to suppress error bursts due to priority conflicts between the
|
||||
* PPS interrupt and timer interrupt.
|
||||
*
|
||||
* pps_count counts the seconds of the calibration interval, the
|
||||
* duration of which is pps_shift in powers of two.
|
||||
*
|
||||
* pps_intcnt counts the calibration intervals for use in the interval-
|
||||
* adaptation algorithm. It's just too complicated for words.
|
||||
*/
|
||||
struct timeval pps_time; /* kernel time at last interval */
|
||||
long pps_offset = 0; /* pps time offset (us) */
|
||||
long pps_jitter = MAXTIME; /* pps time dispersion (jitter) (us) */
|
||||
long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
|
||||
long pps_freq = 0; /* frequency offset (scaled ppm) */
|
||||
long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
|
||||
long pps_ff[] = {0, 0, 0}; /* frequency offset median filter */
|
||||
long pps_usec = 0; /* microsec counter at last interval */
|
||||
long pps_valid = PPS_VALID; /* pps signal watchdog counter */
|
||||
int pps_glitch = 0; /* pps signal glitch counter */
|
||||
int pps_count = 0; /* calibration interval counter (s) */
|
||||
int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
|
||||
int pps_intcnt = 0; /* intervals at current duration */
|
||||
|
||||
/*
|
||||
* PPS signal quality monitors
|
||||
*
|
||||
* pps_jitcnt counts the seconds that have been discarded because the
|
||||
* jitter measured by the time median filter exceeds the limit MAXTIME
|
||||
* (100 us).
|
||||
*
|
||||
* pps_calcnt counts the frequency calibration intervals, which are
|
||||
* variable from 4 s to 256 s.
|
||||
*
|
||||
* pps_errcnt counts the calibration intervals which have been discarded
|
||||
* because the wander exceeds the limit MAXFREQ (100 ppm) or where the
|
||||
* calibration interval jitter exceeds two ticks.
|
||||
*
|
||||
* pps_stbcnt counts the calibration intervals that have been discarded
|
||||
* because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
|
||||
*/
|
||||
long pps_jitcnt = 0; /* jitter limit exceeded */
|
||||
long pps_calcnt = 0; /* calibration intervals */
|
||||
long pps_errcnt = 0; /* calibration errors */
|
||||
long pps_stbcnt = 0; /* stability limit exceeded */
|
||||
#endif /* PPS_SYNC */
|
||||
|
||||
/* XXX none of this stuff works under FreeBSD */
|
||||
#ifdef EXT_CLOCK
|
||||
/*
|
||||
* External clock definitions
|
||||
*
|
||||
* The following definitions and declarations are used only if an
|
||||
* external clock (HIGHBALL or TPRO) is configured on the system.
|
||||
*/
|
||||
#define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
|
||||
|
||||
/*
|
||||
* The clock_count variable is set to CLOCK_INTERVAL at each PPS
|
||||
* interrupt and decremented once each second.
|
||||
*/
|
||||
int clock_count = 0; /* CPU clock counter */
|
||||
|
||||
#ifdef HIGHBALL
|
||||
/*
|
||||
* The clock_offset and clock_cpu variables are used by the HIGHBALL
|
||||
* interface. The clock_offset variable defines the offset between
|
||||
* system time and the HIGBALL counters. The clock_cpu variable contains
|
||||
* the offset between the system clock and the HIGHBALL clock for use in
|
||||
* disciplining the kernel time variable.
|
||||
*/
|
||||
extern struct timeval clock_offset; /* Highball clock offset */
|
||||
long clock_cpu = 0; /* CPU clock adjust */
|
||||
#endif /* HIGHBALL */
|
||||
#endif /* EXT_CLOCK */
|
||||
|
||||
/*
|
||||
* hardupdate() - local clock update
|
||||
*
|
||||
* This routine is called by ntp_adjtime() to update the local clock
|
||||
* phase and frequency. This is used to implement an adaptive-parameter,
|
||||
* first-order, type-II phase-lock loop. The code computes new time and
|
||||
* frequency offsets each time it is called. The hardclock() routine
|
||||
* amortizes these offsets at each tick interrupt. If the kernel PPS
|
||||
* discipline code is configured (PPS_SYNC), the PPS signal itself
|
||||
* determines the new time offset, instead of the calling argument.
|
||||
* Presumably, calls to ntp_adjtime() occur only when the caller
|
||||
* believes the local clock is valid within some bound (+-128 ms with
|
||||
* NTP). If the caller's time is far different than the PPS time, an
|
||||
* argument will ensue, and it's not clear who will lose.
|
||||
*
|
||||
* For default SHIFT_UPDATE = 12, the offset is limited to +-512 ms, the
|
||||
* maximum interval between updates is 4096 s and the maximum frequency
|
||||
* offset is +-31.25 ms/s.
|
||||
*
|
||||
* Note: splclock() is in effect.
|
||||
*/
|
||||
void
|
||||
hardupdate(offset)
|
||||
long offset;
|
||||
{
|
||||
long ltemp, mtemp;
|
||||
|
||||
if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
|
||||
return;
|
||||
ltemp = offset;
|
||||
#ifdef PPS_SYNC
|
||||
if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
|
||||
ltemp = pps_offset;
|
||||
#endif /* PPS_SYNC */
|
||||
if (ltemp > MAXPHASE)
|
||||
time_offset = MAXPHASE << SHIFT_UPDATE;
|
||||
else if (ltemp < -MAXPHASE)
|
||||
time_offset = -(MAXPHASE << SHIFT_UPDATE);
|
||||
else
|
||||
time_offset = ltemp << SHIFT_UPDATE;
|
||||
mtemp = time.tv_sec - time_reftime;
|
||||
time_reftime = time.tv_sec;
|
||||
if (mtemp > MAXSEC)
|
||||
mtemp = 0;
|
||||
|
||||
/* ugly multiply should be replaced */
|
||||
if (ltemp < 0)
|
||||
time_freq -= (-ltemp * mtemp) >> (time_constant +
|
||||
time_constant + SHIFT_KF - SHIFT_USEC);
|
||||
else
|
||||
time_freq += (ltemp * mtemp) >> (time_constant +
|
||||
time_constant + SHIFT_KF - SHIFT_USEC);
|
||||
if (time_freq > time_tolerance)
|
||||
time_freq = time_tolerance;
|
||||
else if (time_freq < -time_tolerance)
|
||||
time_freq = -time_tolerance;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Initialize clock frequencies and start both clocks running.
|
||||
*/
|
||||
@ -207,18 +458,164 @@ hardclock(frame)
|
||||
statclock(frame);
|
||||
|
||||
/*
|
||||
* Increment the time-of-day. The increment is just ``tick'' unless
|
||||
* we are still adjusting the clock; see adjtime().
|
||||
* Increment the time-of-day.
|
||||
*/
|
||||
ticks++;
|
||||
if (timedelta == 0)
|
||||
delta = tick;
|
||||
else {
|
||||
delta = tick + tickdelta;
|
||||
timedelta -= tickdelta;
|
||||
{
|
||||
int time_update;
|
||||
struct timeval newtime = time;
|
||||
long ltemp;
|
||||
|
||||
if (timedelta == 0) {
|
||||
time_update = tick;
|
||||
} else {
|
||||
if (timedelta < 0) {
|
||||
time_update = tick - tickdelta;
|
||||
timedelta += tickdelta;
|
||||
} else {
|
||||
time_update = tick + tickdelta;
|
||||
timedelta -= tickdelta;
|
||||
}
|
||||
}
|
||||
BUMPTIME(&mono_time, time_update);
|
||||
|
||||
/*
|
||||
* Compute the phase adjustment. If the low-order bits
|
||||
* (time_phase) of the update overflow, bump the high-order bits
|
||||
* (time_update).
|
||||
*/
|
||||
time_phase += time_adj;
|
||||
if (time_phase <= -FINEUSEC) {
|
||||
ltemp = -time_phase >> SHIFT_SCALE;
|
||||
time_phase += ltemp << SHIFT_SCALE;
|
||||
time_update -= ltemp;
|
||||
}
|
||||
else if (time_phase >= FINEUSEC) {
|
||||
ltemp = time_phase >> SHIFT_SCALE;
|
||||
time_phase -= ltemp << SHIFT_SCALE;
|
||||
time_update += ltemp;
|
||||
}
|
||||
|
||||
newtime.tv_usec += time_update;
|
||||
/*
|
||||
* On rollover of the second the phase adjustment to be used for
|
||||
* the next second is calculated. Also, the maximum error is
|
||||
* increased by the tolerance. If the PPS frequency discipline
|
||||
* code is present, the phase is increased to compensate for the
|
||||
* CPU clock oscillator frequency error.
|
||||
*
|
||||
* With SHIFT_SCALE = 23, the maximum frequency adjustment is
|
||||
* +-256 us per tick, or 25.6 ms/s at a clock frequency of 100
|
||||
* Hz. The time contribution is shifted right a minimum of two
|
||||
* bits, while the frequency contribution is a right shift.
|
||||
* Thus, overflow is prevented if the frequency contribution is
|
||||
* limited to half the maximum or 15.625 ms/s.
|
||||
*/
|
||||
if (newtime.tv_usec >= 1000000) {
|
||||
newtime.tv_usec -= 1000000;
|
||||
newtime.tv_sec++;
|
||||
time_maxerror += time_tolerance >> SHIFT_USEC;
|
||||
if (time_offset < 0) {
|
||||
ltemp = -time_offset >>
|
||||
(SHIFT_KG + time_constant);
|
||||
time_offset += ltemp;
|
||||
time_adj = -ltemp <<
|
||||
(SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
|
||||
} else {
|
||||
ltemp = time_offset >>
|
||||
(SHIFT_KG + time_constant);
|
||||
time_offset -= ltemp;
|
||||
time_adj = ltemp <<
|
||||
(SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
|
||||
}
|
||||
#ifdef PPS_SYNC
|
||||
/*
|
||||
* Gnaw on the watchdog counter and update the frequency
|
||||
* computed by the pll and the PPS signal.
|
||||
*/
|
||||
pps_valid++;
|
||||
if (pps_valid == PPS_VALID) {
|
||||
pps_jitter = MAXTIME;
|
||||
pps_stabil = MAXFREQ;
|
||||
time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
|
||||
STA_PPSWANDER | STA_PPSERROR);
|
||||
}
|
||||
ltemp = time_freq + pps_freq;
|
||||
#else
|
||||
ltemp = time_freq;
|
||||
#endif /* PPS_SYNC */
|
||||
if (ltemp < 0)
|
||||
time_adj -= -ltemp >>
|
||||
(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
|
||||
else
|
||||
time_adj += ltemp >>
|
||||
(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
|
||||
|
||||
/*
|
||||
* When the CPU clock oscillator frequency is not a
|
||||
* power of two in Hz, the SHIFT_HZ is only an
|
||||
* approximate scale factor. In the SunOS kernel, this
|
||||
* results in a PLL gain factor of 1/1.28 = 0.78 what it
|
||||
* should be. In the following code the overall gain is
|
||||
* increased by a factor of 1.25, which results in a
|
||||
* residual error less than 3 percent.
|
||||
*/
|
||||
/* Same thing applies for FreeBSD --GAW */
|
||||
if (hz == 100) {
|
||||
if (time_adj < 0)
|
||||
time_adj -= -time_adj >> 2;
|
||||
else
|
||||
time_adj += time_adj >> 2;
|
||||
}
|
||||
|
||||
/* XXX - this is really bogus, but can't be fixed until
|
||||
xntpd's idea of the system clock is fixed to know how
|
||||
the user wants leap seconds handled; in the mean time,
|
||||
we assume that users of NTP are running without proper
|
||||
leap second support (this is now the default anyway) */
|
||||
/*
|
||||
* Leap second processing. If in leap-insert state at
|
||||
* the end of the day, the system clock is set back one
|
||||
* second; if in leap-delete state, the system clock is
|
||||
* set ahead one second. The microtime() routine or
|
||||
* external clock driver will insure that reported time
|
||||
* is always monotonic. The ugly divides should be
|
||||
* replaced.
|
||||
*/
|
||||
switch (time_state) {
|
||||
|
||||
case TIME_OK:
|
||||
if (time_status & STA_INS)
|
||||
time_state = TIME_INS;
|
||||
else if (time_status & STA_DEL)
|
||||
time_state = TIME_DEL;
|
||||
break;
|
||||
|
||||
case TIME_INS:
|
||||
if (newtime.tv_sec % 86400 == 0) {
|
||||
newtime.tv_sec--;
|
||||
time_state = TIME_OOP;
|
||||
}
|
||||
break;
|
||||
|
||||
case TIME_DEL:
|
||||
if ((newtime.tv_sec + 1) % 86400 == 0) {
|
||||
newtime.tv_sec++;
|
||||
time_state = TIME_WAIT;
|
||||
}
|
||||
break;
|
||||
|
||||
case TIME_OOP:
|
||||
time_state = TIME_WAIT;
|
||||
break;
|
||||
|
||||
case TIME_WAIT:
|
||||
if (!(time_status & (STA_INS | STA_DEL)))
|
||||
time_state = TIME_OK;
|
||||
}
|
||||
}
|
||||
CPU_CLOCKUPDATE(&time, &newtime);
|
||||
}
|
||||
BUMPTIME(&time, delta);
|
||||
BUMPTIME(&mono_time, delta);
|
||||
|
||||
/*
|
||||
* Process callouts at a very low cpu priority, so we don't keep the
|
||||
@ -563,3 +960,171 @@ sysctl_clockrate(where, sizep)
|
||||
clkinfo.stathz = stathz ? stathz : hz;
|
||||
return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
|
||||
}
|
||||
|
||||
/*#ifdef PPS_SYNC*/
|
||||
#if 0
|
||||
/* This code is completely bogus; if anybody ever wants to use it, get
|
||||
* the current version from Dave Mills. */
|
||||
|
||||
/*
|
||||
* hardpps() - discipline CPU clock oscillator to external pps signal
|
||||
*
|
||||
* This routine is called at each PPS interrupt in order to discipline
|
||||
* the CPU clock oscillator to the PPS signal. It integrates successive
|
||||
* phase differences between the two oscillators and calculates the
|
||||
* frequency offset. This is used in hardclock() to discipline the CPU
|
||||
* clock oscillator so that intrinsic frequency error is cancelled out.
|
||||
* The code requires the caller to capture the time and hardware
|
||||
* counter value at the designated PPS signal transition.
|
||||
*/
|
||||
void
|
||||
hardpps(tvp, usec)
|
||||
struct timeval *tvp; /* time at PPS */
|
||||
long usec; /* hardware counter at PPS */
|
||||
{
|
||||
long u_usec, v_usec, bigtick;
|
||||
long cal_sec, cal_usec;
|
||||
|
||||
/*
|
||||
* During the calibration interval adjust the starting time when
|
||||
* the tick overflows. At the end of the interval compute the
|
||||
* duration of the interval and the difference of the hardware
|
||||
* counters at the beginning and end of the interval. This code
|
||||
* is deliciously complicated by the fact valid differences may
|
||||
* exceed the value of tick when using long calibration
|
||||
* intervals and small ticks. Note that the counter can be
|
||||
* greater than tick if caught at just the wrong instant, but
|
||||
* the values returned and used here are correct.
|
||||
*/
|
||||
bigtick = (long)tick << SHIFT_USEC;
|
||||
pps_usec -= ntp_pll.ybar;
|
||||
if (pps_usec >= bigtick)
|
||||
pps_usec -= bigtick;
|
||||
if (pps_usec < 0)
|
||||
pps_usec += bigtick;
|
||||
pps_time.tv_sec++;
|
||||
pps_count++;
|
||||
if (pps_count < (1 << pps_shift))
|
||||
return;
|
||||
pps_count = 0;
|
||||
ntp_pll.calcnt++;
|
||||
u_usec = usec << SHIFT_USEC;
|
||||
v_usec = pps_usec - u_usec;
|
||||
if (v_usec >= bigtick >> 1)
|
||||
v_usec -= bigtick;
|
||||
if (v_usec < -(bigtick >> 1))
|
||||
v_usec += bigtick;
|
||||
if (v_usec < 0)
|
||||
v_usec = -(-v_usec >> ntp_pll.shift);
|
||||
else
|
||||
v_usec = v_usec >> ntp_pll.shift;
|
||||
pps_usec = u_usec;
|
||||
cal_sec = tvp->tv_sec;
|
||||
cal_usec = tvp->tv_usec;
|
||||
cal_sec -= pps_time.tv_sec;
|
||||
cal_usec -= pps_time.tv_usec;
|
||||
if (cal_usec < 0) {
|
||||
cal_usec += 1000000;
|
||||
cal_sec--;
|
||||
}
|
||||
pps_time = *tvp;
|
||||
|
||||
/*
|
||||
* Check for lost interrupts, noise, excessive jitter and
|
||||
* excessive frequency error. The number of timer ticks during
|
||||
* the interval may vary +-1 tick. Add to this a margin of one
|
||||
* tick for the PPS signal jitter and maximum frequency
|
||||
* deviation. If the limits are exceeded, the calibration
|
||||
* interval is reset to the minimum and we start over.
|
||||
*/
|
||||
u_usec = (long)tick << 1;
|
||||
if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
|
||||
|| (cal_sec == 0 && cal_usec < u_usec))
|
||||
|| v_usec > ntp_pll.tolerance || v_usec < -ntp_pll.tolerance) {
|
||||
ntp_pll.jitcnt++;
|
||||
ntp_pll.shift = NTP_PLL.SHIFT;
|
||||
pps_dispinc = PPS_DISPINC;
|
||||
ntp_pll.intcnt = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* A three-stage median filter is used to help deglitch the pps
|
||||
* signal. The median sample becomes the offset estimate; the
|
||||
* difference between the other two samples becomes the
|
||||
* dispersion estimate.
|
||||
*/
|
||||
pps_mf[2] = pps_mf[1];
|
||||
pps_mf[1] = pps_mf[0];
|
||||
pps_mf[0] = v_usec;
|
||||
if (pps_mf[0] > pps_mf[1]) {
|
||||
if (pps_mf[1] > pps_mf[2]) {
|
||||
u_usec = pps_mf[1]; /* 0 1 2 */
|
||||
v_usec = pps_mf[0] - pps_mf[2];
|
||||
} else if (pps_mf[2] > pps_mf[0]) {
|
||||
u_usec = pps_mf[0]; /* 2 0 1 */
|
||||
v_usec = pps_mf[2] - pps_mf[1];
|
||||
} else {
|
||||
u_usec = pps_mf[2]; /* 0 2 1 */
|
||||
v_usec = pps_mf[0] - pps_mf[1];
|
||||
}
|
||||
} else {
|
||||
if (pps_mf[1] < pps_mf[2]) {
|
||||
u_usec = pps_mf[1]; /* 2 1 0 */
|
||||
v_usec = pps_mf[2] - pps_mf[0];
|
||||
} else if (pps_mf[2] < pps_mf[0]) {
|
||||
u_usec = pps_mf[0]; /* 1 0 2 */
|
||||
v_usec = pps_mf[1] - pps_mf[2];
|
||||
} else {
|
||||
u_usec = pps_mf[2]; /* 1 2 0 */
|
||||
v_usec = pps_mf[1] - pps_mf[0];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Here the dispersion average is updated. If it is less than
|
||||
* the threshold pps_dispmax, the frequency average is updated
|
||||
* as well, but clamped to the tolerance.
|
||||
*/
|
||||
v_usec = (v_usec >> 1) - ntp_pll.disp;
|
||||
if (v_usec < 0)
|
||||
ntp_pll.disp -= -v_usec >> PPS_AVG;
|
||||
else
|
||||
ntp_pll.disp += v_usec >> PPS_AVG;
|
||||
if (ntp_pll.disp > pps_dispmax) {
|
||||
ntp_pll.discnt++;
|
||||
return;
|
||||
}
|
||||
if (u_usec < 0) {
|
||||
ntp_pll.ybar -= -u_usec >> PPS_AVG;
|
||||
if (ntp_pll.ybar < -ntp_pll.tolerance)
|
||||
ntp_pll.ybar = -ntp_pll.tolerance;
|
||||
u_usec = -u_usec;
|
||||
} else {
|
||||
ntp_pll.ybar += u_usec >> PPS_AVG;
|
||||
if (ntp_pll.ybar > ntp_pll.tolerance)
|
||||
ntp_pll.ybar = ntp_pll.tolerance;
|
||||
}
|
||||
|
||||
/*
|
||||
* Here the calibration interval is adjusted. If the maximum
|
||||
* time difference is greater than tick/4, reduce the interval
|
||||
* by half. If this is not the case for four consecutive
|
||||
* intervals, double the interval.
|
||||
*/
|
||||
if (u_usec << ntp_pll.shift > bigtick >> 2) {
|
||||
ntp_pll.intcnt = 0;
|
||||
if (ntp_pll.shift > NTP_PLL.SHIFT) {
|
||||
ntp_pll.shift--;
|
||||
pps_dispinc <<= 1;
|
||||
}
|
||||
} else if (ntp_pll.intcnt >= 4) {
|
||||
ntp_pll.intcnt = 0;
|
||||
if (ntp_pll.shift < NTP_PLL.SHIFTMAX) {
|
||||
ntp_pll.shift++;
|
||||
pps_dispinc >>= 1;
|
||||
}
|
||||
} else
|
||||
ntp_pll.intcnt++;
|
||||
}
|
||||
#endif /* PPS_SYNC */
|
||||
|
@ -2,7 +2,7 @@
|
||||
* System call names.
|
||||
*
|
||||
* DO NOT EDIT-- this file is automatically generated.
|
||||
* created from $Id: syscalls.master,v 1.7 1994/09/13 00:48:19 wollman Exp $
|
||||
* created from $Id: syscalls.master,v 1.8 1994/09/13 14:46:54 dfr Exp $
|
||||
*/
|
||||
|
||||
char *syscallnames[] = {
|
||||
@ -213,7 +213,7 @@ char *syscallnames[] = {
|
||||
"#172", /* 172 = nosys */
|
||||
"#173", /* 173 = nosys */
|
||||
"#174", /* 174 = nosys */
|
||||
"ntp_gettime", /* 175 = ntp_gettime */
|
||||
"#175", /* 175 = nosys */
|
||||
"ntp_adjtime", /* 176 = ntp_adjtime */
|
||||
"#177", /* 177 = nosys */
|
||||
"#178", /* 178 = nosys */
|
||||
|
@ -1,4 +1,4 @@
|
||||
$Id: syscalls.master,v 1.7 1994/09/13 00:48:19 wollman Exp $
|
||||
$Id: syscalls.master,v 1.8 1994/09/13 14:46:54 dfr Exp $
|
||||
; from: @(#)syscalls.master 8.2 (Berkeley) 1/13/94
|
||||
;
|
||||
; System call name/number master file.
|
||||
@ -240,7 +240,7 @@
|
||||
172 UNIMPL 0 NOHIDE nosys
|
||||
173 UNIMPL 0 NOHIDE nosys
|
||||
174 UNIMPL 0 NOHIDE nosys
|
||||
175 STD 1 BSD nosys ntp_gettime
|
||||
175 UNIMPL 0 NOHIDE nosys
|
||||
176 STD 1 BSD nosys ntp_adjtime
|
||||
177 UNIMPL 0 NOHIDE nosys
|
||||
178 UNIMPL 0 NOHIDE nosys
|
||||
|
@ -2,7 +2,7 @@
|
||||
* System call hiders.
|
||||
*
|
||||
* DO NOT EDIT-- this file is automatically generated.
|
||||
* created from $Id: syscalls.master,v 1.7 1994/09/13 00:48:19 wollman Exp $
|
||||
* created from $Id: syscalls.master,v 1.8 1994/09/13 14:46:54 dfr Exp $
|
||||
*/
|
||||
|
||||
HIDE_POSIX(fork)
|
||||
@ -189,7 +189,6 @@ HIDE_BSD(shmsys)
|
||||
HIDE_BSD(nosys)
|
||||
#endif
|
||||
HIDE_BSD(nosys)
|
||||
HIDE_BSD(nosys)
|
||||
HIDE_POSIX(setgid)
|
||||
HIDE_BSD(setegid)
|
||||
HIDE_BSD(seteuid)
|
||||
|
@ -2,7 +2,7 @@
|
||||
* System call numbers.
|
||||
*
|
||||
* DO NOT EDIT-- this file is automatically generated.
|
||||
* created from $Id: syscalls.master,v 1.7 1994/09/13 00:48:19 wollman Exp $
|
||||
* created from $Id: syscalls.master,v 1.8 1994/09/13 14:46:54 dfr Exp $
|
||||
*/
|
||||
|
||||
#define SYS_syscall 0
|
||||
@ -168,7 +168,6 @@
|
||||
#define SYS_semsys 169
|
||||
#define SYS_msgsys 170
|
||||
#define SYS_shmsys 171
|
||||
#define SYS_ntp_gettime 175
|
||||
#define SYS_ntp_adjtime 176
|
||||
#define SYS_setgid 181
|
||||
#define SYS_setegid 182
|
||||
|
@ -34,7 +34,7 @@
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* @(#)sysctl.h 8.1 (Berkeley) 6/2/93
|
||||
* $Id: sysctl.h,v 1.8 1994/09/16 00:50:02 ache Exp $
|
||||
* $Id: sysctl.h,v 1.9 1994/09/16 01:09:42 ache Exp $
|
||||
*/
|
||||
|
||||
#ifndef _SYS_SYSCTL_H_
|
||||
@ -131,7 +131,8 @@ struct ctlname {
|
||||
#define KERN_DOMAINNAME 22 /* string: YP domain name */
|
||||
#define KERN_UPDATEINTERVAL 23 /* int: update process sleep time */
|
||||
#define KERN_OSRELDATE 24 /* int: OS release date */
|
||||
#define KERN_MAXID 25 /* number of valid kern ids */
|
||||
#define KERN_NTP_PLL 25 /* node: NTP PLL control */
|
||||
#define KERN_MAXID 26 /* number of valid kern ids */
|
||||
|
||||
#define CTL_KERN_NAMES { \
|
||||
{ 0, 0 }, \
|
||||
@ -159,6 +160,7 @@ struct ctlname {
|
||||
{ "domainname", CTLTYPE_STRING }, \
|
||||
{ "update", CTLTYPE_INT }, \
|
||||
{ "osreldate", CTLTYPE_INT }, \
|
||||
{ "ntp_pll", CTLTYPE_NODE }, \
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -242,6 +242,7 @@ struct ntptimeval {
|
||||
struct timeval time; /* current time (ro) */
|
||||
long maxerror; /* maximum error (us) (ro) */
|
||||
long esterror; /* estimated error (us) (ro) */
|
||||
int time_state; /* what ntp_gettime returns */
|
||||
};
|
||||
|
||||
/*
|
||||
@ -276,6 +277,17 @@ struct timex {
|
||||
};
|
||||
#ifdef __FreeBSD__
|
||||
|
||||
/*
|
||||
* sysctl identifiers underneath kern.ntp_pll
|
||||
*/
|
||||
#define NTP_PLL_GETTIME 1 /* used by ntp_gettime() */
|
||||
#define NTP_PLL_MAXID 2 /* number of valid ids */
|
||||
|
||||
#define NTP_PLL_NAMES { \
|
||||
{ 0, 0 }, \
|
||||
{ "gettime", CTLTYPE_STRUCT }, \
|
||||
}
|
||||
|
||||
#ifndef KERNEL
|
||||
#include <sys/cdefs.h>
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user