/* * Copyright (c) 1990,1991 Regents of The University of Michigan. * All Rights Reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #undef s_net #include #include #include #include #include #include static int aa_dorangeroute(struct ifaddr *ifa, u_int first, u_int last, int cmd); static int aa_addsingleroute(struct ifaddr *ifa, struct at_addr *addr, struct at_addr *mask); static int aa_delsingleroute(struct ifaddr *ifa, struct at_addr *addr, struct at_addr *mask); static int aa_dosingleroute(struct ifaddr *ifa, struct at_addr *addr, struct at_addr *mask, int cmd, int flags); static int at_scrub( struct ifnet *ifp, struct at_ifaddr *aa ); static int at_ifinit( struct ifnet *ifp, struct at_ifaddr *aa, struct sockaddr_at *sat ); # define sateqaddr(a,b) ((a)->sat_len == (b)->sat_len && \ (a)->sat_family == (b)->sat_family && \ (a)->sat_addr.s_net == (b)->sat_addr.s_net && \ (a)->sat_addr.s_node == (b)->sat_addr.s_node ) int at_control( int cmd, caddr_t data, struct ifnet *ifp, struct proc *p ) { struct ifreq *ifr = (struct ifreq *)data; struct sockaddr_at *sat; struct netrange *nr; struct at_aliasreq *ifra = (struct at_aliasreq *)data; struct at_ifaddr *aa0; struct at_ifaddr *aa = 0; struct mbuf *m; struct ifaddr *ifa; /* * If we have an ifp, then find the matching at_ifaddr if it exists */ if ( ifp ) { for ( aa = at_ifaddr; aa; aa = aa->aa_next ) { if ( aa->aa_ifp == ifp ) break; } } /* * In this first switch table we are basically getting ready for * the second one, by getting the atalk-specific things set up * so that they start to look more similar to other protocols etc. */ switch ( cmd ) { case SIOCAIFADDR: case SIOCDIFADDR: /* * If we have an appletalk sockaddr, scan forward of where * we are now on the at_ifaddr list to find one with a matching * address on this interface. * This may leave aa pointing to the first address on the * NEXT interface! */ if ( ifra->ifra_addr.sat_family == AF_APPLETALK ) { for ( ; aa; aa = aa->aa_next ) { if ( aa->aa_ifp == ifp && sateqaddr( &aa->aa_addr, &ifra->ifra_addr )) { break; } } } /* * If we a retrying to delete an addres but didn't find such, * then rewurn with an error */ if ( cmd == SIOCDIFADDR && aa == 0 ) { return( EADDRNOTAVAIL ); } /*FALLTHROUGH*/ case SIOCSIFADDR: /* * If we are not superuser, then we don't get to do these ops. */ if ( suser(p->p_ucred, &p->p_acflag) ) { return( EPERM ); } sat = satosat( &ifr->ifr_addr ); nr = (struct netrange *)sat->sat_zero; if ( nr->nr_phase == 1 ) { /* * Look for a phase 1 address on this interface. * This may leave aa pointing to the first address on the * NEXT interface! */ for ( ; aa; aa = aa->aa_next ) { if ( aa->aa_ifp == ifp && ( aa->aa_flags & AFA_PHASE2 ) == 0 ) { break; } } } else { /* default to phase 2 */ /* * Look for a phase 2 address on this interface. * This may leave aa pointing to the first address on the * NEXT interface! */ for ( ; aa; aa = aa->aa_next ) { if ( aa->aa_ifp == ifp && ( aa->aa_flags & AFA_PHASE2 )) { break; } } } if ( ifp == 0 ) panic( "at_control" ); /* * If we failed to find an existing at_ifaddr entry, then we * allocate a fresh one. * XXX change this to use malloc */ if ( aa == (struct at_ifaddr *) 0 ) { m = m_getclr( M_WAIT, MT_IFADDR ); if ( m == (struct mbuf *)NULL ) { return( ENOBUFS ); } if (( aa = at_ifaddr ) != NULL ) { /* * Don't let the loopback be first, since the first * address is the machine's default address for * binding. * If it is, stick ourself in front, otherwise * go to the back of the list. */ if ( at_ifaddr->aa_ifp->if_flags & IFF_LOOPBACK ) { aa = mtod( m, struct at_ifaddr *); aa->aa_next = at_ifaddr; at_ifaddr = aa; } else { for ( ; aa->aa_next; aa = aa->aa_next ) ; aa->aa_next = mtod( m, struct at_ifaddr *); } } else { at_ifaddr = mtod( m, struct at_ifaddr *); } aa = mtod( m, struct at_ifaddr *); /* * Find the end of the interface's addresses * and link our new one on the end */ if (( ifa = ifp->if_addrlist ) != NULL ) { for ( ; ifa->ifa_next; ifa = ifa->ifa_next ) ; ifa->ifa_next = (struct ifaddr *)aa; } else { ifp->if_addrlist = (struct ifaddr *)aa; } /* * As the at_ifaddr contains the actual sockaddrs, * and the ifaddr itself, link them al together correctly. */ aa->aa_ifa.ifa_addr = (struct sockaddr *)&aa->aa_addr; aa->aa_ifa.ifa_dstaddr = (struct sockaddr *)&aa->aa_addr; aa->aa_ifa.ifa_netmask = (struct sockaddr *)&aa->aa_netmask; /* * Set/clear the phase 2 bit. */ if ( nr->nr_phase == 1 ) { aa->aa_flags &= ~AFA_PHASE2; } else { aa->aa_flags |= AFA_PHASE2; } /* * and link it all together */ aa->aa_ifp = ifp; } else { /* * If we DID find one then we clobber any routes dependent on it.. */ at_scrub( ifp, aa ); } break; case SIOCGIFADDR : sat = satosat( &ifr->ifr_addr ); nr = (struct netrange *)sat->sat_zero; if ( nr->nr_phase == 1 ) { /* * If the request is specifying phase 1, then * only look at a phase one address */ for ( ; aa; aa = aa->aa_next ) { if ( aa->aa_ifp == ifp && ( aa->aa_flags & AFA_PHASE2 ) == 0 ) { break; } } } else { /* * default to phase 2 */ for ( ; aa; aa = aa->aa_next ) { if ( aa->aa_ifp == ifp && ( aa->aa_flags & AFA_PHASE2 )) { break; } } } if ( aa == (struct at_ifaddr *) 0 ) return( EADDRNOTAVAIL ); break; } /* * By the time this switch is run we should be able to assume that * the "aa" pointer is valid when needed. */ switch ( cmd ) { case SIOCGIFADDR: /* * copy the contents of the sockaddr blindly. */ sat = (struct sockaddr_at *)&ifr->ifr_addr; *sat = aa->aa_addr; /* * and do some cleanups */ ((struct netrange *)&sat->sat_zero)->nr_phase = (aa->aa_flags & AFA_PHASE2) ? 2 : 1; ((struct netrange *)&sat->sat_zero)->nr_firstnet = aa->aa_firstnet; ((struct netrange *)&sat->sat_zero)->nr_lastnet = aa->aa_lastnet; break; case SIOCSIFADDR: return( at_ifinit( ifp, aa, (struct sockaddr_at *)&ifr->ifr_addr )); case SIOCAIFADDR: if ( sateqaddr( &ifra->ifra_addr, &aa->aa_addr )) { return( 0 ); } return( at_ifinit( ifp, aa, (struct sockaddr_at *)&ifr->ifr_addr )); case SIOCDIFADDR: /* * scrub all routes.. didn't we just DO this? XXX yes, del it */ at_scrub( ifp, aa ); /* * remove the ifaddr from the interface */ if (( ifa = ifp->if_addrlist ) == (struct ifaddr *)aa ) { ifp->if_addrlist = ifa->ifa_next; } else { while ( ifa->ifa_next && ( ifa->ifa_next != (struct ifaddr *)aa )) { ifa = ifa->ifa_next; } /* * if we found it, remove it, otherwise we screwed up. */ if ( ifa->ifa_next ) { ifa->ifa_next = ((struct ifaddr *)aa)->ifa_next; } else { panic( "at_control" ); } } /* * Now remove the at_ifaddr from the parallel structure * as well, or we'd be in deep trouble */ aa0 = aa; if ( aa0 == ( aa = at_ifaddr )) { at_ifaddr = aa->aa_next; } else { while ( aa->aa_next && ( aa->aa_next != aa0 )) { aa = aa->aa_next; } /* * if we found it, remove it, otherwise we screwed up. */ if ( aa->aa_next ) { aa->aa_next = aa0->aa_next; } else { panic( "at_control" ); } } /* * Now dump the memory we were using */ m_free( dtom( aa0 )); break; default: if ( ifp == 0 || ifp->if_ioctl == 0 ) return( EOPNOTSUPP ); return( (*ifp->if_ioctl)( ifp, cmd, data )); } return( 0 ); } /* * Given an interface and an at_ifaddr (supposedly on that interface) * remove any routes that depend on this. * Why ifp is needed I'm not sure, * as aa->at_ifaddr.ifa_ifp should be the same. */ static int at_scrub( ifp, aa ) struct ifnet *ifp; struct at_ifaddr *aa; { int error; struct at_addr addr; struct at_addr mask; if ( aa->aa_flags & AFA_ROUTE ) { if (ifp->if_flags & IFF_LOOPBACK) { if (error = aa_delsingleroute(&aa->aa_ifa, &aa->aa_addr.sat_addr, &aa->aa_netmask.sat_addr)) { return( error ); } } else if (ifp->if_flags & IFF_POINTOPOINT) { if ((error = rtinit( &aa->aa_ifa, RTM_DELETE, RTF_HOST)) != 0) return( error ); } else if (ifp->if_flags & IFF_BROADCAST) { error = aa_dorangeroute(&aa->aa_ifa, ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), RTM_DELETE ); } aa->aa_ifa.ifa_flags &= ~IFA_ROUTE; aa->aa_flags &= ~AFA_ROUTE; } return( 0 ); } /* * given an at_ifaddr,a sockaddr_at and an ifp, * bang them all together at high speed and see what happens */ static int at_ifinit( ifp, aa, sat ) struct ifnet *ifp; struct at_ifaddr *aa; struct sockaddr_at *sat; { struct netrange nr, onr; struct sockaddr_at oldaddr; int s = splimp(), error = 0, i, j; int netinc, nodeinc, nnets; u_short net; /* * save the old addresses in the at_ifaddr just in case we need them. */ oldaddr = aa->aa_addr; onr.nr_firstnet = aa->aa_firstnet; onr.nr_lastnet = aa->aa_lastnet; /* * take the address supplied as an argument, and add it to the * at_ifnet (also given). Remember ing to update * those parts of the at_ifaddr that need special processing */ bzero( AA_SAT( aa ), sizeof( struct sockaddr_at )); bcopy( sat->sat_zero, &nr, sizeof( struct netrange )); bcopy( sat->sat_zero, AA_SAT( aa )->sat_zero, sizeof( struct netrange )); nnets = ntohs( nr.nr_lastnet ) - ntohs( nr.nr_firstnet ) + 1; aa->aa_firstnet = nr.nr_firstnet; aa->aa_lastnet = nr.nr_lastnet; /* XXX ALC */ #if 0 printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n", ifp->if_name, ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node, ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), (aa->aa_flags & AFA_PHASE2) ? 2 : 1); #endif /* * We could eliminate the need for a second phase 1 probe (post * autoconf) if we check whether we're resetting the node. Note * that phase 1 probes use only nodes, not net.node pairs. Under * phase 2, both the net and node must be the same. */ if ( ifp->if_flags & IFF_LOOPBACK ) { AA_SAT( aa )->sat_len = sat->sat_len; AA_SAT( aa )->sat_family = AF_APPLETALK; AA_SAT( aa )->sat_addr.s_net = sat->sat_addr.s_net; AA_SAT( aa )->sat_addr.s_node = sat->sat_addr.s_node; #if 0 } else if ( fp->if_flags & IFF_POINTOPOINT) { /* unimplemented */ /* * we'd have to copy the dstaddr field over from the sat * but it's not clear that it would contain the right info.. */ #endif } else { /* * We are a normal (probably ethernet) interface. * apply the new address to the interface structures etc. * We will probe this address on the net first, before * applying it to ensure that it is free.. If it is not, then * we will try a number of other randomly generated addresses * in this net and then increment the net. etc.etc. until * we find an unused address. */ aa->aa_flags |= AFA_PROBING; /* if not loopback we Must probe? */ AA_SAT( aa )->sat_len = sizeof(struct sockaddr_at); AA_SAT( aa )->sat_family = AF_APPLETALK; if ( aa->aa_flags & AFA_PHASE2 ) { if ( sat->sat_addr.s_net == ATADDR_ANYNET ) { /* * If we are phase 2, and the net was not specified * then we select a random net within the supplied netrange. * XXX use /dev/random? */ if ( nnets != 1 ) { net = ntohs( nr.nr_firstnet ) + time.tv_sec % ( nnets - 1 ); } else { net = ntohs( nr.nr_firstnet ); } } else { /* * if a net was supplied, then check that it is within * the netrange. If it is not then replace the old values * and return an error */ if ( ntohs( sat->sat_addr.s_net ) < ntohs( nr.nr_firstnet ) || ntohs( sat->sat_addr.s_net ) > ntohs( nr.nr_lastnet )) { aa->aa_addr = oldaddr; aa->aa_firstnet = onr.nr_firstnet; aa->aa_lastnet = onr.nr_lastnet; splx(s); return( EINVAL ); } /* * otherwise just use the new net number.. */ net = ntohs( sat->sat_addr.s_net ); } } else { /* * we must be phase one, so just use whatever we were given. * I guess it really isn't going to be used... RIGHT? */ net = ntohs( sat->sat_addr.s_net ); } /* * set the node part of the address into the ifaddr. * If it's not specified, be random about it... * XXX use /dev/random? */ if ( sat->sat_addr.s_node == ATADDR_ANYNODE ) { AA_SAT( aa )->sat_addr.s_node = time.tv_sec; } else { AA_SAT( aa )->sat_addr.s_node = sat->sat_addr.s_node; } /* * step through the nets in the range * starting at the (possibly random) start point. */ for ( i = nnets, netinc = 1; i > 0; net = ntohs( nr.nr_firstnet ) + (( net - ntohs( nr.nr_firstnet ) + netinc ) % nnets ), i-- ) { AA_SAT( aa )->sat_addr.s_net = htons( net ); /* * using a rather strange stepping method, * stagger through the possible node addresses * Once again, starting at the (possibly random) * initial node address. */ for ( j = 0, nodeinc = time.tv_sec | 1; j < 256; j++, AA_SAT( aa )->sat_addr.s_node += nodeinc ) { if ( AA_SAT( aa )->sat_addr.s_node > 253 || AA_SAT( aa )->sat_addr.s_node < 1 ) { continue; } aa->aa_probcnt = 10; /* * start off the probes as an asynchronous activity. * though why wait 200mSec? */ timeout( (timeout_func_t)aarpprobe, (caddr_t)ifp, hz / 5 ); if ( tsleep( aa, PPAUSE|PCATCH, "at_ifinit", 0 )) { /* * theoretically we shouldn't time out here * so if we returned with an error.. */ printf( "at_ifinit: why did this happen?!\n" ); aa->aa_addr = oldaddr; aa->aa_firstnet = onr.nr_firstnet; aa->aa_lastnet = onr.nr_lastnet; splx( s ); return( EINTR ); } /* * The async activity should have woken us up. * We need to see if it was successful in finding * a free spot, or if we need to iterate to the next * address to try. */ if (( aa->aa_flags & AFA_PROBING ) == 0 ) { break; } } /* * of course we need to break out through two loops... */ if (( aa->aa_flags & AFA_PROBING ) == 0 ) { break; } /* reset node for next network */ AA_SAT( aa )->sat_addr.s_node = time.tv_sec; } /* * if we are still trying to probe, then we have finished all * the possible addresses, so we need to give up */ if ( aa->aa_flags & AFA_PROBING ) { aa->aa_addr = oldaddr; aa->aa_firstnet = onr.nr_firstnet; aa->aa_lastnet = onr.nr_lastnet; splx( s ); return( EADDRINUSE ); } } /* * Now that we have selected an address, we need to tell the interface * about it, just in case it needs to adjust something. */ if ( ifp->if_ioctl && ( error = (*ifp->if_ioctl)( ifp, SIOCSIFADDR, (caddr_t)aa ))) { /* * of course this could mean that it objects violently * so if it does, we back out again.. */ aa->aa_addr = oldaddr; aa->aa_firstnet = onr.nr_firstnet; aa->aa_lastnet = onr.nr_lastnet; splx( s ); return( error ); } /* * set up the netmask part of the at_ifaddr * and point the appropriate pointer in the ifaddr to it. * probably pointless, but what the heck.. XXX */ bzero(&aa->aa_netmask, sizeof(aa->aa_netmask)); aa->aa_netmask.sat_len = sizeof(struct sockaddr_at); aa->aa_netmask.sat_family = AF_APPLETALK; aa->aa_netmask.sat_addr.s_net = 0xffff; aa->aa_netmask.sat_addr.s_node = 0; aa->aa_ifa.ifa_netmask =(struct sockaddr *) &(aa->aa_netmask); /* XXX */ /* * Initialize broadcast (or remote p2p) address */ bzero(&aa->aa_broadaddr, sizeof(aa->aa_broadaddr)); aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at); aa->aa_broadaddr.sat_family = AF_APPLETALK; aa->aa_ifa.ifa_metric = ifp->if_metric; if (ifp->if_flags & IFF_BROADCAST) { aa->aa_broadaddr.sat_addr.s_net = htons(0); aa->aa_broadaddr.sat_addr.s_node = 0xff; aa->aa_ifa.ifa_broadaddr = (struct sockaddr *) &aa->aa_broadaddr; /* add the range of routes needed */ error = aa_dorangeroute(&aa->aa_ifa, ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), RTM_ADD ); } else if (ifp->if_flags & IFF_POINTOPOINT) { struct at_addr rtaddr, rtmask; bzero(&rtaddr, sizeof(rtaddr)); bzero(&rtmask, sizeof(rtmask)); /* fill in the far end if we know it here XXX */ aa->aa_ifa.ifa_dstaddr = (struct sockaddr *) &aa->aa_dstaddr; error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask); } else if ( ifp->if_flags & IFF_LOOPBACK ) { struct at_addr rtaddr, rtmask; bzero(&rtaddr, sizeof(rtaddr)); bzero(&rtmask, sizeof(rtmask)); rtaddr.s_net = AA_SAT( aa )->sat_addr.s_net; rtaddr.s_node = AA_SAT( aa )->sat_addr.s_node; rtmask.s_net = 0xffff; rtmask.s_node = 0x0; /* XXX should not be so.. should be HOST route */ error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask); } /* * of course if we can't add these routes we back out, but it's getting * risky by now XXX */ if ( error ) { at_scrub( ifp, aa ); aa->aa_addr = oldaddr; aa->aa_firstnet = onr.nr_firstnet; aa->aa_lastnet = onr.nr_lastnet; splx( s ); return( error ); } /* * note that the address has a route associated with it.... */ aa->aa_ifa.ifa_flags |= IFA_ROUTE; aa->aa_flags |= AFA_ROUTE; splx( s ); return( 0 ); } /* * check whether a given address is a broadcast address for us.. */ int at_broadcast( sat ) struct sockaddr_at *sat; { struct at_ifaddr *aa; /* * If the node is not right, it can't be a broadcast */ if ( sat->sat_addr.s_node != ATADDR_BCAST ) { return( 0 ); } /* * If the node was right then if the net is right, it's a broadcast */ if ( sat->sat_addr.s_net == ATADDR_ANYNET ) { return( 1 ); } /* * failing that, if the net is one we have, it's a broadcast as well. */ for ( aa = at_ifaddr; aa; aa = aa->aa_next ) { if (( aa->aa_ifp->if_flags & IFF_BROADCAST ) && ( ntohs( sat->sat_addr.s_net ) >= ntohs( aa->aa_firstnet ) && ntohs( sat->sat_addr.s_net ) <= ntohs( aa->aa_lastnet ))) { return( 1 ); } } return( 0 ); } /* * aa_dorangeroute() * * Add a route for a range of networks from bot to top - 1. * Algorithm: * * Split the range into two subranges such that the middle * of the two ranges is the point where the highest bit of difference * between the two addresses, makes it's transition * Each of the upper and lower ranges might not exist, or might be * representable by 1 or more netmasks. In addition, if both * ranges can be represented by the same netmask, then teh can be merged * by using the next higher netmask.. */ static int aa_dorangeroute(struct ifaddr *ifa, u_int bot, u_int top, int cmd) { u_int mask1; struct at_addr addr; struct at_addr mask; int error; /* * slight sanity check */ if (bot > top) return (EINVAL); addr.s_node = 0; mask.s_node = 0; /* * just start out with the lowest boundary * and keep extending the mask till it's too big. */ while (bot <= top) { mask1 = 1; while ((( bot & ~mask1) >= bot) && (( bot | mask1) <= top)) { mask1 <<= 1; mask1 |= 1; } mask1 >>= 1; mask.s_net = htons(~mask1); addr.s_net = htons(bot); if(cmd == RTM_ADD) { error = aa_addsingleroute(ifa,&addr,&mask); if (error) { /* XXX clean up? */ return (error); } } else { error = aa_delsingleroute(ifa,&addr,&mask); } bot = (bot | mask1) + 1; } return 0; } static int aa_addsingleroute(struct ifaddr *ifa, struct at_addr *addr, struct at_addr *mask) { int error; #if 0 printf("aa_addsingleroute: %x.%x mask %x.%x ...\n", ntohs(addr->s_net), addr->s_node, ntohs(mask->s_net), mask->s_node); #endif error = aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP); if (error) printf("aa_addsingleroute: error %d\n", error); return(error); } static int aa_delsingleroute(struct ifaddr *ifa, struct at_addr *addr, struct at_addr *mask) { int error; error = aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0); if (error) printf("aa_delsingleroute: error %d\n", error); return(error); } static int aa_dosingleroute(struct ifaddr *ifa, struct at_addr *at_addr, struct at_addr *at_mask, int cmd, int flags) { struct sockaddr_at addr, mask; bzero(&addr, sizeof(addr)); bzero(&mask, sizeof(mask)); addr.sat_family = AF_APPLETALK; addr.sat_len = sizeof(struct sockaddr_at); addr.sat_addr.s_net = at_addr->s_net; addr.sat_addr.s_node = at_addr->s_node; mask.sat_family = AF_APPLETALK; mask.sat_len = sizeof(struct sockaddr_at); mask.sat_addr.s_net = at_mask->s_net; mask.sat_addr.s_node = at_mask->s_node; if (at_mask->s_node) flags |= RTF_HOST; return(rtrequest(cmd, (struct sockaddr *) &addr, (flags & RTF_HOST)?(ifa->ifa_dstaddr):(ifa->ifa_addr), (struct sockaddr *) &mask, flags, NULL)); } #if 0 static void aa_clean(void) { struct at_ifaddr *aa; struct ifaddr *ifa; struct ifnet *ifp; while ( aa = at_ifaddr ) { ifp = aa->aa_ifp; at_scrub( ifp, aa ); at_ifaddr = aa->aa_next; if (( ifa = ifp->if_addrlist ) == (struct ifaddr *)aa ) { ifp->if_addrlist = ifa->ifa_next; } else { while ( ifa->ifa_next && ( ifa->ifa_next != (struct ifaddr *)aa )) { ifa = ifa->ifa_next; } if ( ifa->ifa_next ) { ifa->ifa_next = ((struct ifaddr *)aa)->ifa_next; } else { panic( "at_entry" ); } } } } #endif