freebsd-src/contrib/gcc/objc/objc-act.c
2007-05-19 01:19:51 +00:00

9519 lines
265 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Implement classes and message passing for Objective C.
Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
Contributed by Steve Naroff.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
/* Purpose: This module implements the Objective-C 4.0 language.
compatibility issues (with the Stepstone translator):
- does not recognize the following 3.3 constructs.
@requires, @classes, @messages, = (...)
- methods with variable arguments must conform to ANSI standard.
- tagged structure definitions that appear in BOTH the interface
and implementation are not allowed.
- public/private: all instance variables are public within the
context of the implementation...I consider this to be a bug in
the translator.
- statically allocated objects are not supported. the user will
receive an error if this service is requested.
code generation `options':
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "expr.h"
#ifdef OBJCPLUS
#include "cp-tree.h"
#else
#include "c-tree.h"
#endif
#include "c-common.h"
#include "c-pragma.h"
#include "flags.h"
#include "langhooks.h"
#include "objc-act.h"
#include "input.h"
#include "except.h"
#include "function.h"
#include "output.h"
#include "toplev.h"
#include "ggc.h"
#include "varray.h"
#include "debug.h"
#include "target.h"
#include "diagnostic.h"
#include "cgraph.h"
#include "tree-iterator.h"
#include "libfuncs.h"
#include "hashtab.h"
#include "langhooks-def.h"
#define OBJC_VOID_AT_END void_list_node
static unsigned int should_call_super_dealloc = 0;
/* When building Objective-C++, we are not linking against the C front-end
and so need to replicate the C tree-construction functions in some way. */
#ifdef OBJCPLUS
#define OBJCP_REMAP_FUNCTIONS
#include "objcp-decl.h"
#endif /* OBJCPLUS */
/* This is the default way of generating a method name. */
/* I am not sure it is really correct.
Perhaps there's a danger that it will make name conflicts
if method names contain underscores. -- rms. */
#ifndef OBJC_GEN_METHOD_LABEL
#define OBJC_GEN_METHOD_LABEL(BUF, IS_INST, CLASS_NAME, CAT_NAME, SEL_NAME, NUM) \
do { \
char *temp; \
sprintf ((BUF), "_%s_%s_%s_%s", \
((IS_INST) ? "i" : "c"), \
(CLASS_NAME), \
((CAT_NAME)? (CAT_NAME) : ""), \
(SEL_NAME)); \
for (temp = (BUF); *temp; temp++) \
if (*temp == ':') *temp = '_'; \
} while (0)
#endif
/* These need specifying. */
#ifndef OBJC_FORWARDING_STACK_OFFSET
#define OBJC_FORWARDING_STACK_OFFSET 0
#endif
#ifndef OBJC_FORWARDING_MIN_OFFSET
#define OBJC_FORWARDING_MIN_OFFSET 0
#endif
/* Set up for use of obstacks. */
#include "obstack.h"
/* This obstack is used to accumulate the encoding of a data type. */
static struct obstack util_obstack;
/* This points to the beginning of obstack contents, so we can free
the whole contents. */
char *util_firstobj;
/* The version identifies which language generation and runtime
the module (file) was compiled for, and is recorded in the
module descriptor. */
#define OBJC_VERSION (flag_next_runtime ? 6 : 8)
#define PROTOCOL_VERSION 2
/* (Decide if these can ever be validly changed.) */
#define OBJC_ENCODE_INLINE_DEFS 0
#define OBJC_ENCODE_DONT_INLINE_DEFS 1
/*** Private Interface (procedures) ***/
/* Used by compile_file. */
static void init_objc (void);
static void finish_objc (void);
/* Code generation. */
static tree objc_build_constructor (tree, tree);
static tree build_objc_method_call (int, tree, tree, tree, tree);
static tree get_proto_encoding (tree);
static tree lookup_interface (tree);
static tree objc_add_static_instance (tree, tree);
static tree start_class (enum tree_code, tree, tree, tree);
static tree continue_class (tree);
static void finish_class (tree);
static void start_method_def (tree);
#ifdef OBJCPLUS
static void objc_start_function (tree, tree, tree, tree);
#else
static void objc_start_function (tree, tree, tree, struct c_arg_info *);
#endif
static tree start_protocol (enum tree_code, tree, tree);
static tree build_method_decl (enum tree_code, tree, tree, tree, bool);
static tree objc_add_method (tree, tree, int);
static tree add_instance_variable (tree, int, tree);
static tree build_ivar_reference (tree);
static tree is_ivar (tree, tree);
static void build_objc_exception_stuff (void);
static void build_next_objc_exception_stuff (void);
/* We only need the following for ObjC; ObjC++ will use C++'s definition
of DERIVED_FROM_P. */
#ifndef OBJCPLUS
static bool objc_derived_from_p (tree, tree);
#define DERIVED_FROM_P(PARENT, CHILD) objc_derived_from_p (PARENT, CHILD)
#endif
static void objc_xref_basetypes (tree, tree);
static void build_class_template (void);
static void build_selector_template (void);
static void build_category_template (void);
static void build_super_template (void);
static tree build_protocol_initializer (tree, tree, tree, tree, tree);
static tree get_class_ivars (tree, bool);
static tree generate_protocol_list (tree);
static void build_protocol_reference (tree);
#ifdef OBJCPLUS
static void objc_generate_cxx_cdtors (void);
#endif
static const char *synth_id_with_class_suffix (const char *, tree);
/* Hash tables to manage the global pool of method prototypes. */
hash *nst_method_hash_list = 0;
hash *cls_method_hash_list = 0;
static hash hash_lookup (hash *, tree);
static tree lookup_method (tree, tree);
static tree lookup_method_static (tree, tree, int);
enum string_section
{
class_names, /* class, category, protocol, module names */
meth_var_names, /* method and variable names */
meth_var_types /* method and variable type descriptors */
};
static tree add_objc_string (tree, enum string_section);
static tree build_objc_string_decl (enum string_section);
static void build_selector_table_decl (void);
/* Protocol additions. */
static tree lookup_protocol (tree);
static tree lookup_and_install_protocols (tree);
/* Type encoding. */
static void encode_type_qualifiers (tree);
static void encode_type (tree, int, int);
static void encode_field_decl (tree, int, int);
#ifdef OBJCPLUS
static void really_start_method (tree, tree);
#else
static void really_start_method (tree, struct c_arg_info *);
#endif
static int comp_proto_with_proto (tree, tree, int);
static void objc_push_parm (tree);
#ifdef OBJCPLUS
static tree objc_get_parm_info (int);
#else
static struct c_arg_info *objc_get_parm_info (int);
#endif
/* Utilities for debugging and error diagnostics. */
static void warn_with_method (const char *, int, tree);
static char *gen_type_name (tree);
static char *gen_type_name_0 (tree);
static char *gen_method_decl (tree);
static char *gen_declaration (tree);
/* Everything else. */
static tree create_field_decl (tree, const char *);
static void add_class_reference (tree);
static void build_protocol_template (void);
static tree encode_method_prototype (tree);
static void generate_classref_translation_entry (tree);
static void handle_class_ref (tree);
static void generate_struct_by_value_array (void)
ATTRIBUTE_NORETURN;
static void mark_referenced_methods (void);
static void generate_objc_image_info (void);
/*** Private Interface (data) ***/
/* Reserved tag definitions. */
#define OBJECT_TYPEDEF_NAME "id"
#define CLASS_TYPEDEF_NAME "Class"
#define TAG_OBJECT "objc_object"
#define TAG_CLASS "objc_class"
#define TAG_SUPER "objc_super"
#define TAG_SELECTOR "objc_selector"
#define UTAG_CLASS "_objc_class"
#define UTAG_IVAR "_objc_ivar"
#define UTAG_IVAR_LIST "_objc_ivar_list"
#define UTAG_METHOD "_objc_method"
#define UTAG_METHOD_LIST "_objc_method_list"
#define UTAG_CATEGORY "_objc_category"
#define UTAG_MODULE "_objc_module"
#define UTAG_SYMTAB "_objc_symtab"
#define UTAG_SUPER "_objc_super"
#define UTAG_SELECTOR "_objc_selector"
#define UTAG_PROTOCOL "_objc_protocol"
#define UTAG_METHOD_PROTOTYPE "_objc_method_prototype"
#define UTAG_METHOD_PROTOTYPE_LIST "_objc__method_prototype_list"
/* Note that the string object global name is only needed for the
NeXT runtime. */
#define STRING_OBJECT_GLOBAL_FORMAT "_%sClassReference"
#define PROTOCOL_OBJECT_CLASS_NAME "Protocol"
static const char *TAG_GETCLASS;
static const char *TAG_GETMETACLASS;
static const char *TAG_MSGSEND;
static const char *TAG_MSGSENDSUPER;
/* The NeXT Objective-C messenger may have two extra entry points, for use
when returning a structure. */
static const char *TAG_MSGSEND_STRET;
static const char *TAG_MSGSENDSUPER_STRET;
static const char *default_constant_string_class_name;
/* Runtime metadata flags. */
#define CLS_FACTORY 0x0001L
#define CLS_META 0x0002L
#define CLS_HAS_CXX_STRUCTORS 0x2000L
#define OBJC_MODIFIER_STATIC 0x00000001
#define OBJC_MODIFIER_FINAL 0x00000002
#define OBJC_MODIFIER_PUBLIC 0x00000004
#define OBJC_MODIFIER_PRIVATE 0x00000008
#define OBJC_MODIFIER_PROTECTED 0x00000010
#define OBJC_MODIFIER_NATIVE 0x00000020
#define OBJC_MODIFIER_SYNCHRONIZED 0x00000040
#define OBJC_MODIFIER_ABSTRACT 0x00000080
#define OBJC_MODIFIER_VOLATILE 0x00000100
#define OBJC_MODIFIER_TRANSIENT 0x00000200
#define OBJC_MODIFIER_NONE_SPECIFIED 0x80000000
/* NeXT-specific tags. */
#define TAG_MSGSEND_NONNIL "objc_msgSendNonNil"
#define TAG_MSGSEND_NONNIL_STRET "objc_msgSendNonNil_stret"
#define TAG_EXCEPTIONEXTRACT "objc_exception_extract"
#define TAG_EXCEPTIONTRYENTER "objc_exception_try_enter"
#define TAG_EXCEPTIONTRYEXIT "objc_exception_try_exit"
#define TAG_EXCEPTIONMATCH "objc_exception_match"
#define TAG_EXCEPTIONTHROW "objc_exception_throw"
#define TAG_SYNCENTER "objc_sync_enter"
#define TAG_SYNCEXIT "objc_sync_exit"
#define TAG_SETJMP "_setjmp"
#define UTAG_EXCDATA "_objc_exception_data"
#define TAG_ASSIGNIVAR "objc_assign_ivar"
#define TAG_ASSIGNGLOBAL "objc_assign_global"
#define TAG_ASSIGNSTRONGCAST "objc_assign_strongCast"
/* Branch entry points. All that matters here are the addresses;
functions with these names do not really exist in libobjc. */
#define TAG_MSGSEND_FAST "objc_msgSend_Fast"
#define TAG_ASSIGNIVAR_FAST "objc_assign_ivar_Fast"
#define TAG_CXX_CONSTRUCT ".cxx_construct"
#define TAG_CXX_DESTRUCT ".cxx_destruct"
/* GNU-specific tags. */
#define TAG_EXECCLASS "__objc_exec_class"
#define TAG_GNUINIT "__objc_gnu_init"
/* Flags for lookup_method_static(). */
#define OBJC_LOOKUP_CLASS 1 /* Look for class methods. */
#define OBJC_LOOKUP_NO_SUPER 2 /* Do not examine superclasses. */
/* The OCTI_... enumeration itself is in objc/objc-act.h. */
tree objc_global_trees[OCTI_MAX];
static void handle_impent (struct imp_entry *);
struct imp_entry *imp_list = 0;
int imp_count = 0; /* `@implementation' */
int cat_count = 0; /* `@category' */
enum tree_code objc_inherit_code;
int objc_public_flag;
/* Use to generate method labels. */
static int method_slot = 0;
#define BUFSIZE 1024
static char *errbuf; /* Buffer for error diagnostics */
/* Data imported from tree.c. */
extern enum debug_info_type write_symbols;
/* Data imported from toplev.c. */
extern const char *dump_base_name;
static int flag_typed_selectors;
/* Store all constructed constant strings in a hash table so that
they get uniqued properly. */
struct string_descriptor GTY(())
{
/* The literal argument . */
tree literal;
/* The resulting constant string. */
tree constructor;
};
static GTY((param_is (struct string_descriptor))) htab_t string_htab;
/* Store the EH-volatilized types in a hash table, for easy retrieval. */
struct volatilized_type GTY(())
{
tree type;
};
static GTY((param_is (struct volatilized_type))) htab_t volatilized_htab;
FILE *gen_declaration_file;
/* Tells "encode_pointer/encode_aggregate" whether we are generating
type descriptors for instance variables (as opposed to methods).
Type descriptors for instance variables contain more information
than methods (for static typing and embedded structures). */
static int generating_instance_variables = 0;
/* Some platforms pass small structures through registers versus
through an invisible pointer. Determine at what size structure is
the transition point between the two possibilities. */
static void
generate_struct_by_value_array (void)
{
tree type;
tree field_decl, field_decl_chain;
int i, j;
int aggregate_in_mem[32];
int found = 0;
/* Presumably no platform passes 32 byte structures in a register. */
for (i = 1; i < 32; i++)
{
char buffer[5];
/* Create an unnamed struct that has `i' character components */
type = start_struct (RECORD_TYPE, NULL_TREE);
strcpy (buffer, "c1");
field_decl = create_field_decl (char_type_node,
buffer);
field_decl_chain = field_decl;
for (j = 1; j < i; j++)
{
sprintf (buffer, "c%d", j + 1);
field_decl = create_field_decl (char_type_node,
buffer);
chainon (field_decl_chain, field_decl);
}
finish_struct (type, field_decl_chain, NULL_TREE);
aggregate_in_mem[i] = aggregate_value_p (type, 0);
if (!aggregate_in_mem[i])
found = 1;
}
/* We found some structures that are returned in registers instead of memory
so output the necessary data. */
if (found)
{
for (i = 31; i >= 0; i--)
if (!aggregate_in_mem[i])
break;
printf ("#define OBJC_MAX_STRUCT_BY_VALUE %d\n\n", i);
/* The first member of the structure is always 0 because we don't handle
structures with 0 members */
printf ("static int struct_forward_array[] = {\n 0");
for (j = 1; j <= i; j++)
printf (", %d", aggregate_in_mem[j]);
printf ("\n};\n");
}
exit (0);
}
bool
objc_init (void)
{
#ifdef OBJCPLUS
if (cxx_init () == false)
#else
if (c_objc_common_init () == false)
#endif
return false;
#ifndef USE_MAPPED_LOCATION
/* Force the line number back to 0; check_newline will have
raised it to 1, which will make the builtin functions appear
not to be built in. */
input_line = 0;
#endif
/* If gen_declaration desired, open the output file. */
if (flag_gen_declaration)
{
register char * const dumpname = concat (dump_base_name, ".decl", NULL);
gen_declaration_file = fopen (dumpname, "w");
if (gen_declaration_file == 0)
fatal_error ("can't open %s: %m", dumpname);
free (dumpname);
}
if (flag_next_runtime)
{
TAG_GETCLASS = "objc_getClass";
TAG_GETMETACLASS = "objc_getMetaClass";
TAG_MSGSEND = "objc_msgSend";
TAG_MSGSENDSUPER = "objc_msgSendSuper";
TAG_MSGSEND_STRET = "objc_msgSend_stret";
TAG_MSGSENDSUPER_STRET = "objc_msgSendSuper_stret";
default_constant_string_class_name = "NSConstantString";
}
else
{
TAG_GETCLASS = "objc_get_class";
TAG_GETMETACLASS = "objc_get_meta_class";
TAG_MSGSEND = "objc_msg_lookup";
TAG_MSGSENDSUPER = "objc_msg_lookup_super";
/* GNU runtime does not provide special functions to support
structure-returning methods. */
default_constant_string_class_name = "NXConstantString";
flag_typed_selectors = 1;
}
init_objc ();
if (print_struct_values)
generate_struct_by_value_array ();
return true;
}
void
objc_finish_file (void)
{
mark_referenced_methods ();
#ifdef OBJCPLUS
/* We need to instantiate templates _before_ we emit ObjC metadata;
if we do not, some metadata (such as selectors) may go missing. */
at_eof = 1;
instantiate_pending_templates (0);
#endif
/* Finalize Objective-C runtime data. No need to generate tables
and code if only checking syntax, or if generating a PCH file. */
if (!flag_syntax_only && !pch_file)
finish_objc ();
if (gen_declaration_file)
fclose (gen_declaration_file);
#ifdef OBJCPLUS
cp_finish_file ();
#endif
}
/* Return the first occurrence of a method declaration corresponding
to sel_name in rproto_list. Search rproto_list recursively.
If is_class is 0, search for instance methods, otherwise for class
methods. */
static tree
lookup_method_in_protocol_list (tree rproto_list, tree sel_name,
int is_class)
{
tree rproto, p;
tree fnd = 0;
for (rproto = rproto_list; rproto; rproto = TREE_CHAIN (rproto))
{
p = TREE_VALUE (rproto);
if (TREE_CODE (p) == PROTOCOL_INTERFACE_TYPE)
{
if ((fnd = lookup_method (is_class
? PROTOCOL_CLS_METHODS (p)
: PROTOCOL_NST_METHODS (p), sel_name)))
;
else if (PROTOCOL_LIST (p))
fnd = lookup_method_in_protocol_list (PROTOCOL_LIST (p),
sel_name, is_class);
}
else
{
; /* An identifier...if we could not find a protocol. */
}
if (fnd)
return fnd;
}
return 0;
}
static tree
lookup_protocol_in_reflist (tree rproto_list, tree lproto)
{
tree rproto, p;
/* Make sure the protocol is supported by the object on the rhs. */
if (TREE_CODE (lproto) == PROTOCOL_INTERFACE_TYPE)
{
tree fnd = 0;
for (rproto = rproto_list; rproto; rproto = TREE_CHAIN (rproto))
{
p = TREE_VALUE (rproto);
if (TREE_CODE (p) == PROTOCOL_INTERFACE_TYPE)
{
if (lproto == p)
fnd = lproto;
else if (PROTOCOL_LIST (p))
fnd = lookup_protocol_in_reflist (PROTOCOL_LIST (p), lproto);
}
if (fnd)
return fnd;
}
}
else
{
; /* An identifier...if we could not find a protocol. */
}
return 0;
}
void
objc_start_class_interface (tree class, tree super_class, tree protos)
{
objc_interface_context
= objc_ivar_context
= start_class (CLASS_INTERFACE_TYPE, class, super_class, protos);
objc_public_flag = 0;
}
void
objc_start_category_interface (tree class, tree categ, tree protos)
{
objc_interface_context
= start_class (CATEGORY_INTERFACE_TYPE, class, categ, protos);
objc_ivar_chain
= continue_class (objc_interface_context);
}
void
objc_start_protocol (tree name, tree protos)
{
objc_interface_context
= start_protocol (PROTOCOL_INTERFACE_TYPE, name, protos);
}
void
objc_continue_interface (void)
{
objc_ivar_chain
= continue_class (objc_interface_context);
}
void
objc_finish_interface (void)
{
finish_class (objc_interface_context);
objc_interface_context = NULL_TREE;
}
void
objc_start_class_implementation (tree class, tree super_class)
{
objc_implementation_context
= objc_ivar_context
= start_class (CLASS_IMPLEMENTATION_TYPE, class, super_class, NULL_TREE);
objc_public_flag = 0;
}
void
objc_start_category_implementation (tree class, tree categ)
{
objc_implementation_context
= start_class (CATEGORY_IMPLEMENTATION_TYPE, class, categ, NULL_TREE);
objc_ivar_chain
= continue_class (objc_implementation_context);
}
void
objc_continue_implementation (void)
{
objc_ivar_chain
= continue_class (objc_implementation_context);
}
void
objc_finish_implementation (void)
{
#ifdef OBJCPLUS
if (flag_objc_call_cxx_cdtors)
objc_generate_cxx_cdtors ();
#endif
if (objc_implementation_context)
{
finish_class (objc_implementation_context);
objc_ivar_chain = NULL_TREE;
objc_implementation_context = NULL_TREE;
}
else
warning (0, "%<@end%> must appear in an @implementation context");
}
void
objc_set_visibility (int visibility)
{
objc_public_flag = visibility;
}
void
objc_set_method_type (enum tree_code type)
{
objc_inherit_code = (type == PLUS_EXPR
? CLASS_METHOD_DECL
: INSTANCE_METHOD_DECL);
}
tree
objc_build_method_signature (tree rettype, tree selector,
tree optparms, bool ellipsis)
{
return build_method_decl (objc_inherit_code, rettype, selector,
optparms, ellipsis);
}
void
objc_add_method_declaration (tree decl)
{
if (!objc_interface_context)
fatal_error ("method declaration not in @interface context");
objc_add_method (objc_interface_context,
decl,
objc_inherit_code == CLASS_METHOD_DECL);
}
void
objc_start_method_definition (tree decl)
{
if (!objc_implementation_context)
fatal_error ("method definition not in @implementation context");
objc_add_method (objc_implementation_context,
decl,
objc_inherit_code == CLASS_METHOD_DECL);
start_method_def (decl);
}
void
objc_add_instance_variable (tree decl)
{
(void) add_instance_variable (objc_ivar_context,
objc_public_flag,
decl);
}
/* Return 1 if IDENT is an ObjC/ObjC++ reserved keyword in the context of
an '@'. */
int
objc_is_reserved_word (tree ident)
{
unsigned char code = C_RID_CODE (ident);
return (OBJC_IS_AT_KEYWORD (code)
#ifdef OBJCPLUS
|| code == RID_CLASS || code == RID_PUBLIC
|| code == RID_PROTECTED || code == RID_PRIVATE
|| code == RID_TRY || code == RID_THROW || code == RID_CATCH
#endif
);
}
/* Return true if TYPE is 'id'. */
static bool
objc_is_object_id (tree type)
{
return OBJC_TYPE_NAME (type) == objc_object_id;
}
static bool
objc_is_class_id (tree type)
{
return OBJC_TYPE_NAME (type) == objc_class_id;
}
/* Construct a C struct with same name as CLASS, a base struct with tag
SUPER_NAME (if any), and FIELDS indicated. */
static tree
objc_build_struct (tree class, tree fields, tree super_name)
{
tree name = CLASS_NAME (class);
tree s = start_struct (RECORD_TYPE, name);
tree super = (super_name ? xref_tag (RECORD_TYPE, super_name) : NULL_TREE);
tree t, objc_info = NULL_TREE;
if (super)
{
/* Prepend a packed variant of the base class into the layout. This
is necessary to preserve ObjC ABI compatibility. */
tree base = build_decl (FIELD_DECL, NULL_TREE, super);
tree field = TYPE_FIELDS (super);
while (field && TREE_CHAIN (field)
&& TREE_CODE (TREE_CHAIN (field)) == FIELD_DECL)
field = TREE_CHAIN (field);
/* For ObjC ABI purposes, the "packed" size of a base class is the
the sum of the offset and the size (in bits) of the last field
in the class. */
DECL_SIZE (base)
= (field && TREE_CODE (field) == FIELD_DECL
? size_binop (PLUS_EXPR,
size_binop (PLUS_EXPR,
size_binop
(MULT_EXPR,
convert (bitsizetype,
DECL_FIELD_OFFSET (field)),
bitsize_int (BITS_PER_UNIT)),
DECL_FIELD_BIT_OFFSET (field)),
DECL_SIZE (field))
: bitsize_zero_node);
DECL_SIZE_UNIT (base)
= size_binop (FLOOR_DIV_EXPR, convert (sizetype, DECL_SIZE (base)),
size_int (BITS_PER_UNIT));
DECL_ARTIFICIAL (base) = 1;
DECL_ALIGN (base) = 1;
DECL_FIELD_CONTEXT (base) = s;
#ifdef OBJCPLUS
DECL_FIELD_IS_BASE (base) = 1;
if (fields)
TREE_NO_WARNING (fields) = 1; /* Suppress C++ ABI warnings -- we */
#endif /* are following the ObjC ABI here. */
TREE_CHAIN (base) = fields;
fields = base;
}
/* NB: Calling finish_struct() may cause type TYPE_LANG_SPECIFIC fields
in all variants of this RECORD_TYPE to be clobbered, but it is therein
that we store protocol conformance info (e.g., 'NSObject <MyProtocol>').
Hence, we must squirrel away the ObjC-specific information before calling
finish_struct(), and then reinstate it afterwards. */
for (t = TYPE_NEXT_VARIANT (s); t; t = TYPE_NEXT_VARIANT (t))
objc_info
= chainon (objc_info,
build_tree_list (NULL_TREE, TYPE_OBJC_INFO (t)));
/* Point the struct at its related Objective-C class. */
INIT_TYPE_OBJC_INFO (s);
TYPE_OBJC_INTERFACE (s) = class;
s = finish_struct (s, fields, NULL_TREE);
for (t = TYPE_NEXT_VARIANT (s); t;
t = TYPE_NEXT_VARIANT (t), objc_info = TREE_CHAIN (objc_info))
{
TYPE_OBJC_INFO (t) = TREE_VALUE (objc_info);
/* Replace the IDENTIFIER_NODE with an actual @interface. */
TYPE_OBJC_INTERFACE (t) = class;
}
/* Use TYPE_BINFO structures to point at the super class, if any. */
objc_xref_basetypes (s, super);
/* Mark this struct as a class template. */
CLASS_STATIC_TEMPLATE (class) = s;
return s;
}
/* Build a type differing from TYPE only in that TYPE_VOLATILE is set.
Unlike tree.c:build_qualified_type(), preserve TYPE_LANG_SPECIFIC in the
process. */
static tree
objc_build_volatilized_type (tree type)
{
tree t;
/* Check if we have not constructed the desired variant already. */
for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
{
/* The type qualifiers must (obviously) match up. */
if (!TYPE_VOLATILE (t)
|| (TYPE_READONLY (t) != TYPE_READONLY (type))
|| (TYPE_RESTRICT (t) != TYPE_RESTRICT (type)))
continue;
/* For pointer types, the pointees (and hence their TYPE_LANG_SPECIFIC
info, if any) must match up. */
if (POINTER_TYPE_P (t)
&& (TREE_TYPE (t) != TREE_TYPE (type)))
continue;
/* Everything matches up! */
return t;
}
/* Ok, we could not re-use any of the pre-existing variants. Create
a new one. */
t = build_variant_type_copy (type);
TYPE_VOLATILE (t) = 1;
return t;
}
/* Mark DECL as being 'volatile' for purposes of Darwin
_setjmp()/_longjmp() exception handling. Called from
objc_mark_locals_volatile(). */
void
objc_volatilize_decl (tree decl)
{
/* Do not mess with variables that are 'static' or (already)
'volatile'. */
if (!TREE_THIS_VOLATILE (decl) && !TREE_STATIC (decl)
&& (TREE_CODE (decl) == VAR_DECL
|| TREE_CODE (decl) == PARM_DECL))
{
tree t = TREE_TYPE (decl);
struct volatilized_type key;
void **loc;
t = objc_build_volatilized_type (t);
key.type = t;
loc = htab_find_slot (volatilized_htab, &key, INSERT);
if (!*loc)
{
*loc = ggc_alloc (sizeof (key));
((struct volatilized_type *) *loc)->type = t;
}
TREE_TYPE (decl) = t;
TREE_THIS_VOLATILE (decl) = 1;
TREE_SIDE_EFFECTS (decl) = 1;
DECL_REGISTER (decl) = 0;
#ifndef OBJCPLUS
C_DECL_REGISTER (decl) = 0;
#endif
}
}
/* Check if protocol PROTO is adopted (directly or indirectly) by class CLS
(including its categoreis and superclasses) or by object type TYP.
Issue a warning if PROTO is not adopted anywhere and WARN is set. */
static bool
objc_lookup_protocol (tree proto, tree cls, tree typ, bool warn)
{
bool class_type = (cls != NULL_TREE);
while (cls)
{
tree c;
/* Check protocols adopted by the class and its categories. */
for (c = cls; c; c = CLASS_CATEGORY_LIST (c))
{
if (lookup_protocol_in_reflist (CLASS_PROTOCOL_LIST (c), proto))
return true;
}
/* Repeat for superclasses. */
cls = lookup_interface (CLASS_SUPER_NAME (cls));
}
/* Check for any protocols attached directly to the object type. */
if (TYPE_HAS_OBJC_INFO (typ))
{
if (lookup_protocol_in_reflist (TYPE_OBJC_PROTOCOL_LIST (typ), proto))
return true;
}
if (warn)
{
strcpy (errbuf, class_type ? "class \'" : "type \'");
gen_type_name_0 (class_type ? typ : TYPE_POINTER_TO (typ));
strcat (errbuf, "\' does not ");
/* NB: Types 'id' and 'Class' cannot reasonably be described as
"implementing" a given protocol, since they do not have an
implementation. */
strcat (errbuf, class_type ? "implement" : "conform to");
strcat (errbuf, " the \'");
strcat (errbuf, IDENTIFIER_POINTER (PROTOCOL_NAME (proto)));
strcat (errbuf, "\' protocol");
warning (0, errbuf);
}
return false;
}
/* Check if class RCLS and instance struct type RTYP conform to at least the
same protocols that LCLS and LTYP conform to. */
static bool
objc_compare_protocols (tree lcls, tree ltyp, tree rcls, tree rtyp, bool warn)
{
tree p;
bool have_lproto = false;
while (lcls)
{
/* NB: We do _not_ look at categories defined for LCLS; these may or
may not get loaded in, and therefore it is unreasonable to require
that RCLS/RTYP must implement any of their protocols. */
for (p = CLASS_PROTOCOL_LIST (lcls); p; p = TREE_CHAIN (p))
{
have_lproto = true;
if (!objc_lookup_protocol (TREE_VALUE (p), rcls, rtyp, warn))
return warn;
}
/* Repeat for superclasses. */
lcls = lookup_interface (CLASS_SUPER_NAME (lcls));
}
/* Check for any protocols attached directly to the object type. */
if (TYPE_HAS_OBJC_INFO (ltyp))
{
for (p = TYPE_OBJC_PROTOCOL_LIST (ltyp); p; p = TREE_CHAIN (p))
{
have_lproto = true;
if (!objc_lookup_protocol (TREE_VALUE (p), rcls, rtyp, warn))
return warn;
}
}
/* NB: If LTYP and LCLS have no protocols to search for, return 'true'
vacuously, _unless_ RTYP is a protocol-qualified 'id'. We can get
away with simply checking for 'id' or 'Class' (!RCLS), since this
routine will not get called in other cases. */
return have_lproto || (rcls != NULL_TREE);
}
/* Determine if it is permissible to assign (if ARGNO is greater than -3)
an instance of RTYP to an instance of LTYP or to compare the two
(if ARGNO is equal to -3), per ObjC type system rules. Before
returning 'true', this routine may issue warnings related to, e.g.,
protocol conformance. When returning 'false', the routine must
produce absolutely no warnings; the C or C++ front-end will do so
instead, if needed. If either LTYP or RTYP is not an Objective-C type,
the routine must return 'false'.
The ARGNO parameter is encoded as follows:
>= 1 Parameter number (CALLEE contains function being called);
0 Return value;
-1 Assignment;
-2 Initialization;
-3 Comparison (LTYP and RTYP may match in either direction). */
bool
objc_compare_types (tree ltyp, tree rtyp, int argno, tree callee)
{
tree lcls, rcls, lproto, rproto;
bool pointers_compatible;
/* We must be dealing with pointer types */
if (!POINTER_TYPE_P (ltyp) || !POINTER_TYPE_P (rtyp))
return false;
do
{
ltyp = TREE_TYPE (ltyp); /* Remove indirections. */
rtyp = TREE_TYPE (rtyp);
}
while (POINTER_TYPE_P (ltyp) && POINTER_TYPE_P (rtyp));
/* Past this point, we are only interested in ObjC class instances,
or 'id' or 'Class'. */
if (TREE_CODE (ltyp) != RECORD_TYPE || TREE_CODE (rtyp) != RECORD_TYPE)
return false;
if (!objc_is_object_id (ltyp) && !objc_is_class_id (ltyp)
&& !TYPE_HAS_OBJC_INFO (ltyp))
return false;
if (!objc_is_object_id (rtyp) && !objc_is_class_id (rtyp)
&& !TYPE_HAS_OBJC_INFO (rtyp))
return false;
/* Past this point, we are committed to returning 'true' to the caller.
However, we can still warn about type and/or protocol mismatches. */
if (TYPE_HAS_OBJC_INFO (ltyp))
{
lcls = TYPE_OBJC_INTERFACE (ltyp);
lproto = TYPE_OBJC_PROTOCOL_LIST (ltyp);
}
else
lcls = lproto = NULL_TREE;
if (TYPE_HAS_OBJC_INFO (rtyp))
{
rcls = TYPE_OBJC_INTERFACE (rtyp);
rproto = TYPE_OBJC_PROTOCOL_LIST (rtyp);
}
else
rcls = rproto = NULL_TREE;
/* If we could not find an @interface declaration, we must have
only seen a @class declaration; for purposes of type comparison,
treat it as a stand-alone (root) class. */
if (lcls && TREE_CODE (lcls) == IDENTIFIER_NODE)
lcls = NULL_TREE;
if (rcls && TREE_CODE (rcls) == IDENTIFIER_NODE)
rcls = NULL_TREE;
/* If either type is an unqualified 'id', we're done. */
if ((!lproto && objc_is_object_id (ltyp))
|| (!rproto && objc_is_object_id (rtyp)))
return true;
pointers_compatible = (TYPE_MAIN_VARIANT (ltyp) == TYPE_MAIN_VARIANT (rtyp));
/* If the underlying types are the same, and at most one of them has
a protocol list, we do not need to issue any diagnostics. */
if (pointers_compatible && (!lproto || !rproto))
return true;
/* If exactly one of the types is 'Class', issue a diagnostic; any
exceptions of this rule have already been handled. */
if (objc_is_class_id (ltyp) ^ objc_is_class_id (rtyp))
pointers_compatible = false;
/* Otherwise, check for inheritance relations. */
else
{
if (!pointers_compatible)
pointers_compatible
= (objc_is_object_id (ltyp) || objc_is_object_id (rtyp));
if (!pointers_compatible)
pointers_compatible = DERIVED_FROM_P (ltyp, rtyp);
if (!pointers_compatible && argno == -3)
pointers_compatible = DERIVED_FROM_P (rtyp, ltyp);
}
/* If the pointers match modulo protocols, check for protocol conformance
mismatches. */
if (pointers_compatible)
{
pointers_compatible = objc_compare_protocols (lcls, ltyp, rcls, rtyp,
argno != -3);
if (!pointers_compatible && argno == -3)
pointers_compatible = objc_compare_protocols (rcls, rtyp, lcls, ltyp,
argno != -3);
}
if (!pointers_compatible)
{
/* NB: For the time being, we shall make our warnings look like their
C counterparts. In the future, we may wish to make them more
ObjC-specific. */
switch (argno)
{
case -3:
warning (0, "comparison of distinct Objective-C types lacks a cast");
break;
case -2:
warning (0, "initialization from distinct Objective-C type");
break;
case -1:
warning (0, "assignment from distinct Objective-C type");
break;
case 0:
warning (0, "distinct Objective-C type in return");
break;
default:
warning (0, "passing argument %d of %qE from distinct "
"Objective-C type", argno, callee);
break;
}
}
return true;
}
/* Check if LTYP and RTYP have the same type qualifiers. If either type
lives in the volatilized hash table, ignore the 'volatile' bit when
making the comparison. */
bool
objc_type_quals_match (tree ltyp, tree rtyp)
{
int lquals = TYPE_QUALS (ltyp), rquals = TYPE_QUALS (rtyp);
struct volatilized_type key;
key.type = ltyp;
if (htab_find_slot (volatilized_htab, &key, NO_INSERT))
lquals &= ~TYPE_QUAL_VOLATILE;
key.type = rtyp;
if (htab_find_slot (volatilized_htab, &key, NO_INSERT))
rquals &= ~TYPE_QUAL_VOLATILE;
return (lquals == rquals);
}
#ifndef OBJCPLUS
/* Determine if CHILD is derived from PARENT. The routine assumes that
both parameters are RECORD_TYPEs, and is non-reflexive. */
static bool
objc_derived_from_p (tree parent, tree child)
{
parent = TYPE_MAIN_VARIANT (parent);
for (child = TYPE_MAIN_VARIANT (child);
TYPE_BINFO (child) && BINFO_N_BASE_BINFOS (TYPE_BINFO (child));)
{
child = TYPE_MAIN_VARIANT (BINFO_TYPE (BINFO_BASE_BINFO
(TYPE_BINFO (child),
0)));
if (child == parent)
return true;
}
return false;
}
#endif
static tree
objc_build_component_ref (tree datum, tree component)
{
/* If COMPONENT is NULL, the caller is referring to the anonymous
base class field. */
if (!component)
{
tree base = TYPE_FIELDS (TREE_TYPE (datum));
return build3 (COMPONENT_REF, TREE_TYPE (base), datum, base, NULL_TREE);
}
/* The 'build_component_ref' routine has been removed from the C++
front-end, but 'finish_class_member_access_expr' seems to be
a worthy substitute. */
#ifdef OBJCPLUS
return finish_class_member_access_expr (datum, component, false);
#else
return build_component_ref (datum, component);
#endif
}
/* Recursively copy inheritance information rooted at BINFO. To do this,
we emulate the song and dance performed by cp/tree.c:copy_binfo(). */
static tree
objc_copy_binfo (tree binfo)
{
tree btype = BINFO_TYPE (binfo);
tree binfo2 = make_tree_binfo (BINFO_N_BASE_BINFOS (binfo));
tree base_binfo;
int ix;
BINFO_TYPE (binfo2) = btype;
BINFO_OFFSET (binfo2) = BINFO_OFFSET (binfo);
BINFO_BASE_ACCESSES (binfo2) = BINFO_BASE_ACCESSES (binfo);
/* Recursively copy base binfos of BINFO. */
for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
{
tree base_binfo2 = objc_copy_binfo (base_binfo);
BINFO_INHERITANCE_CHAIN (base_binfo2) = binfo2;
BINFO_BASE_APPEND (binfo2, base_binfo2);
}
return binfo2;
}
/* Record superclass information provided in BASETYPE for ObjC class REF.
This is loosely based on cp/decl.c:xref_basetypes(). */
static void
objc_xref_basetypes (tree ref, tree basetype)
{
tree binfo = make_tree_binfo (basetype ? 1 : 0);
TYPE_BINFO (ref) = binfo;
BINFO_OFFSET (binfo) = size_zero_node;
BINFO_TYPE (binfo) = ref;
if (basetype)
{
tree base_binfo = objc_copy_binfo (TYPE_BINFO (basetype));
BINFO_INHERITANCE_CHAIN (base_binfo) = binfo;
BINFO_BASE_ACCESSES (binfo) = VEC_alloc (tree, gc, 1);
BINFO_BASE_APPEND (binfo, base_binfo);
BINFO_BASE_ACCESS_APPEND (binfo, access_public_node);
}
}
static hashval_t
volatilized_hash (const void *ptr)
{
tree typ = ((struct volatilized_type *)ptr)->type;
return htab_hash_pointer(typ);
}
static int
volatilized_eq (const void *ptr1, const void *ptr2)
{
tree typ1 = ((struct volatilized_type *)ptr1)->type;
tree typ2 = ((struct volatilized_type *)ptr2)->type;
return typ1 == typ2;
}
/* Called from finish_decl. */
void
objc_check_decl (tree decl)
{
tree type = TREE_TYPE (decl);
if (TREE_CODE (type) != RECORD_TYPE)
return;
if (OBJC_TYPE_NAME (type) && (type = objc_is_class_name (OBJC_TYPE_NAME (type))))
error ("statically allocated instance of Objective-C class %qs",
IDENTIFIER_POINTER (type));
}
/* Construct a PROTOCOLS-qualified variant of INTERFACE, where INTERFACE may
either name an Objective-C class, or refer to the special 'id' or 'Class'
types. If INTERFACE is not a valid ObjC type, just return it unchanged. */
tree
objc_get_protocol_qualified_type (tree interface, tree protocols)
{
/* If INTERFACE is not provided, default to 'id'. */
tree type = (interface ? objc_is_id (interface) : objc_object_type);
bool is_ptr = (type != NULL_TREE);
if (!is_ptr)
{
type = objc_is_class_name (interface);
if (type)
type = xref_tag (RECORD_TYPE, type);
else
return interface;
}
if (protocols)
{
type = build_variant_type_copy (type);
/* For pointers (i.e., 'id' or 'Class'), attach the protocol(s)
to the pointee. */
if (is_ptr)
{
TREE_TYPE (type) = build_variant_type_copy (TREE_TYPE (type));
TYPE_POINTER_TO (TREE_TYPE (type)) = type;
type = TREE_TYPE (type);
}
/* Look up protocols and install in lang specific list. */
DUP_TYPE_OBJC_INFO (type, TYPE_MAIN_VARIANT (type));
TYPE_OBJC_PROTOCOL_LIST (type) = lookup_and_install_protocols (protocols);
/* For RECORD_TYPEs, point to the @interface; for 'id' and 'Class',
return the pointer to the new pointee variant. */
if (is_ptr)
type = TYPE_POINTER_TO (type);
else
TYPE_OBJC_INTERFACE (type)
= TYPE_OBJC_INTERFACE (TYPE_MAIN_VARIANT (type));
}
return type;
}
/* Check for circular dependencies in protocols. The arguments are
PROTO, the protocol to check, and LIST, a list of protocol it
conforms to. */
static void
check_protocol_recursively (tree proto, tree list)
{
tree p;
for (p = list; p; p = TREE_CHAIN (p))
{
tree pp = TREE_VALUE (p);
if (TREE_CODE (pp) == IDENTIFIER_NODE)
pp = lookup_protocol (pp);
if (pp == proto)
fatal_error ("protocol %qs has circular dependency",
IDENTIFIER_POINTER (PROTOCOL_NAME (pp)));
if (pp)
check_protocol_recursively (proto, PROTOCOL_LIST (pp));
}
}
/* Look up PROTOCOLS, and return a list of those that are found.
If none are found, return NULL. */
static tree
lookup_and_install_protocols (tree protocols)
{
tree proto;
tree return_value = NULL_TREE;
for (proto = protocols; proto; proto = TREE_CHAIN (proto))
{
tree ident = TREE_VALUE (proto);
tree p = lookup_protocol (ident);
if (p)
return_value = chainon (return_value,
build_tree_list (NULL_TREE, p));
else if (ident != error_mark_node)
error ("cannot find protocol declaration for %qs",
IDENTIFIER_POINTER (ident));
}
return return_value;
}
/* Create a declaration for field NAME of a given TYPE. */
static tree
create_field_decl (tree type, const char *name)
{
return build_decl (FIELD_DECL, get_identifier (name), type);
}
/* Create a global, static declaration for variable NAME of a given TYPE. The
finish_var_decl() routine will need to be called on it afterwards. */
static tree
start_var_decl (tree type, const char *name)
{
tree var = build_decl (VAR_DECL, get_identifier (name), type);
TREE_STATIC (var) = 1;
DECL_INITIAL (var) = error_mark_node; /* A real initializer is coming... */
DECL_IGNORED_P (var) = 1;
DECL_ARTIFICIAL (var) = 1;
DECL_CONTEXT (var) = NULL_TREE;
#ifdef OBJCPLUS
DECL_THIS_STATIC (var) = 1; /* squash redeclaration errors */
#endif
return var;
}
/* Finish off the variable declaration created by start_var_decl(). */
static void
finish_var_decl (tree var, tree initializer)
{
finish_decl (var, initializer, NULL_TREE);
/* Ensure that the variable actually gets output. */
mark_decl_referenced (var);
/* Mark the decl to avoid "defined but not used" warning. */
TREE_USED (var) = 1;
}
/* Find the decl for the constant string class reference. This is only
used for the NeXT runtime. */
static tree
setup_string_decl (void)
{
char *name;
size_t length;
/* %s in format will provide room for terminating null */
length = strlen (STRING_OBJECT_GLOBAL_FORMAT)
+ strlen (constant_string_class_name);
name = xmalloc (length);
sprintf (name, STRING_OBJECT_GLOBAL_FORMAT,
constant_string_class_name);
constant_string_global_id = get_identifier (name);
string_class_decl = lookup_name (constant_string_global_id);
return string_class_decl;
}
/* Purpose: "play" parser, creating/installing representations
of the declarations that are required by Objective-C.
Model:
type_spec--------->sc_spec
(tree_list) (tree_list)
| |
| |
identifier_node identifier_node */
static void
synth_module_prologue (void)
{
tree type;
enum debug_info_type save_write_symbols = write_symbols;
const struct gcc_debug_hooks *const save_hooks = debug_hooks;
/* Suppress outputting debug symbols, because
dbxout_init hasn'r been called yet. */
write_symbols = NO_DEBUG;
debug_hooks = &do_nothing_debug_hooks;
#ifdef OBJCPLUS
push_lang_context (lang_name_c); /* extern "C" */
#endif
/* The following are also defined in <objc/objc.h> and friends. */
objc_object_id = get_identifier (TAG_OBJECT);
objc_class_id = get_identifier (TAG_CLASS);
objc_object_reference = xref_tag (RECORD_TYPE, objc_object_id);
objc_class_reference = xref_tag (RECORD_TYPE, objc_class_id);
objc_object_type = build_pointer_type (objc_object_reference);
objc_class_type = build_pointer_type (objc_class_reference);
objc_object_name = get_identifier (OBJECT_TYPEDEF_NAME);
objc_class_name = get_identifier (CLASS_TYPEDEF_NAME);
/* Declare the 'id' and 'Class' typedefs. */
type = lang_hooks.decls.pushdecl (build_decl (TYPE_DECL,
objc_object_name,
objc_object_type));
DECL_IN_SYSTEM_HEADER (type) = 1;
type = lang_hooks.decls.pushdecl (build_decl (TYPE_DECL,
objc_class_name,
objc_class_type));
DECL_IN_SYSTEM_HEADER (type) = 1;
/* Forward-declare '@interface Protocol'. */
type = get_identifier (PROTOCOL_OBJECT_CLASS_NAME);
objc_declare_class (tree_cons (NULL_TREE, type, NULL_TREE));
objc_protocol_type = build_pointer_type (xref_tag (RECORD_TYPE,
type));
/* Declare type of selector-objects that represent an operation name. */
if (flag_next_runtime)
/* `struct objc_selector *' */
objc_selector_type
= build_pointer_type (xref_tag (RECORD_TYPE,
get_identifier (TAG_SELECTOR)));
else
/* `const struct objc_selector *' */
objc_selector_type
= build_pointer_type
(build_qualified_type (xref_tag (RECORD_TYPE,
get_identifier (TAG_SELECTOR)),
TYPE_QUAL_CONST));
/* Declare receiver type used for dispatching messages to 'super'. */
/* `struct objc_super *' */
objc_super_type = build_pointer_type (xref_tag (RECORD_TYPE,
get_identifier (TAG_SUPER)));
/* Declare pointers to method and ivar lists. */
objc_method_list_ptr = build_pointer_type
(xref_tag (RECORD_TYPE,
get_identifier (UTAG_METHOD_LIST)));
objc_method_proto_list_ptr
= build_pointer_type (xref_tag (RECORD_TYPE,
get_identifier (UTAG_METHOD_PROTOTYPE_LIST)));
objc_ivar_list_ptr = build_pointer_type
(xref_tag (RECORD_TYPE,
get_identifier (UTAG_IVAR_LIST)));
/* TREE_NOTHROW is cleared for the message-sending functions,
because the function that gets called can throw in Obj-C++, or
could itself call something that can throw even in Obj-C. */
if (flag_next_runtime)
{
/* NB: In order to call one of the ..._stret (struct-returning)
functions, the function *MUST* first be cast to a signature that
corresponds to the actual ObjC method being invoked. This is
what is done by the build_objc_method_call() routine below. */
/* id objc_msgSend (id, SEL, ...); */
/* id objc_msgSendNonNil (id, SEL, ...); */
/* id objc_msgSend_stret (id, SEL, ...); */
/* id objc_msgSendNonNil_stret (id, SEL, ...); */
type
= build_function_type (objc_object_type,
tree_cons (NULL_TREE, objc_object_type,
tree_cons (NULL_TREE, objc_selector_type,
NULL_TREE)));
umsg_decl = builtin_function (TAG_MSGSEND,
type, 0, NOT_BUILT_IN,
NULL, NULL_TREE);
umsg_nonnil_decl = builtin_function (TAG_MSGSEND_NONNIL,
type, 0, NOT_BUILT_IN,
NULL, NULL_TREE);
umsg_stret_decl = builtin_function (TAG_MSGSEND_STRET,
type, 0, NOT_BUILT_IN,
NULL, NULL_TREE);
umsg_nonnil_stret_decl = builtin_function (TAG_MSGSEND_NONNIL_STRET,
type, 0, NOT_BUILT_IN,
NULL, NULL_TREE);
/* These can throw, because the function that gets called can throw
in Obj-C++, or could itself call something that can throw even
in Obj-C. */
TREE_NOTHROW (umsg_decl) = 0;
TREE_NOTHROW (umsg_nonnil_decl) = 0;
TREE_NOTHROW (umsg_stret_decl) = 0;
TREE_NOTHROW (umsg_nonnil_stret_decl) = 0;
/* id objc_msgSend_Fast (id, SEL, ...)
__attribute__ ((hard_coded_address (OFFS_MSGSEND_FAST))); */
#ifdef OFFS_MSGSEND_FAST
umsg_fast_decl = builtin_function (TAG_MSGSEND_FAST,
type, 0, NOT_BUILT_IN,
NULL, NULL_TREE);
TREE_NOTHROW (umsg_fast_decl) = 0;
DECL_ATTRIBUTES (umsg_fast_decl)
= tree_cons (get_identifier ("hard_coded_address"),
build_int_cst (NULL_TREE, OFFS_MSGSEND_FAST),
NULL_TREE);
#else
/* No direct dispatch availible. */
umsg_fast_decl = umsg_decl;
#endif
/* id objc_msgSendSuper (struct objc_super *, SEL, ...); */
/* id objc_msgSendSuper_stret (struct objc_super *, SEL, ...); */
type
= build_function_type (objc_object_type,
tree_cons (NULL_TREE, objc_super_type,
tree_cons (NULL_TREE, objc_selector_type,
NULL_TREE)));
umsg_super_decl = builtin_function (TAG_MSGSENDSUPER,
type, 0, NOT_BUILT_IN,
NULL, NULL_TREE);
umsg_super_stret_decl = builtin_function (TAG_MSGSENDSUPER_STRET,
type, 0, NOT_BUILT_IN, 0,
NULL_TREE);
TREE_NOTHROW (umsg_super_decl) = 0;
TREE_NOTHROW (umsg_super_stret_decl) = 0;
}
else
{
/* GNU runtime messenger entry points. */
/* typedef id (*IMP)(id, SEL, ...); */
tree IMP_type
= build_pointer_type
(build_function_type (objc_object_type,
tree_cons (NULL_TREE, objc_object_type,
tree_cons (NULL_TREE, objc_selector_type,
NULL_TREE))));
/* IMP objc_msg_lookup (id, SEL); */
type
= build_function_type (IMP_type,
tree_cons (NULL_TREE, objc_object_type,
tree_cons (NULL_TREE, objc_selector_type,
OBJC_VOID_AT_END)));
umsg_decl = builtin_function (TAG_MSGSEND,
type, 0, NOT_BUILT_IN,
NULL, NULL_TREE);
TREE_NOTHROW (umsg_decl) = 0;
/* IMP objc_msg_lookup_super (struct objc_super *, SEL); */
type
= build_function_type (IMP_type,
tree_cons (NULL_TREE, objc_super_type,
tree_cons (NULL_TREE, objc_selector_type,
OBJC_VOID_AT_END)));
umsg_super_decl = builtin_function (TAG_MSGSENDSUPER,
type, 0, NOT_BUILT_IN,
NULL, NULL_TREE);
TREE_NOTHROW (umsg_super_decl) = 0;
/* The following GNU runtime entry point is called to initialize
each module:
__objc_exec_class (void *); */
type
= build_function_type (void_type_node,
tree_cons (NULL_TREE, ptr_type_node,
OBJC_VOID_AT_END));
execclass_decl = builtin_function (TAG_EXECCLASS,
type, 0, NOT_BUILT_IN,
NULL, NULL_TREE);
}
/* id objc_getClass (const char *); */
type = build_function_type (objc_object_type,
tree_cons (NULL_TREE,
const_string_type_node,
OBJC_VOID_AT_END));
objc_get_class_decl
= builtin_function (TAG_GETCLASS, type, 0, NOT_BUILT_IN,
NULL, NULL_TREE);
/* id objc_getMetaClass (const char *); */
objc_get_meta_class_decl
= builtin_function (TAG_GETMETACLASS, type, 0, NOT_BUILT_IN, NULL, NULL_TREE);
build_class_template ();
build_super_template ();
build_protocol_template ();
build_category_template ();
build_objc_exception_stuff ();
if (flag_next_runtime)
build_next_objc_exception_stuff ();
/* static SEL _OBJC_SELECTOR_TABLE[]; */
if (! flag_next_runtime)
build_selector_table_decl ();
/* Forward declare constant_string_id and constant_string_type. */
if (!constant_string_class_name)
constant_string_class_name = default_constant_string_class_name;
constant_string_id = get_identifier (constant_string_class_name);
objc_declare_class (tree_cons (NULL_TREE, constant_string_id, NULL_TREE));
/* Pre-build the following entities - for speed/convenience. */
self_id = get_identifier ("self");
ucmd_id = get_identifier ("_cmd");
#ifdef OBJCPLUS
pop_lang_context ();
#endif
write_symbols = save_write_symbols;
debug_hooks = save_hooks;
}
/* Ensure that the ivar list for NSConstantString/NXConstantString
(or whatever was specified via `-fconstant-string-class')
contains fields at least as large as the following three, so that
the runtime can stomp on them with confidence:
struct STRING_OBJECT_CLASS_NAME
{
Object isa;
char *cString;
unsigned int length;
}; */
static int
check_string_class_template (void)
{
tree field_decl = objc_get_class_ivars (constant_string_id);
#define AT_LEAST_AS_LARGE_AS(F, T) \
(F && TREE_CODE (F) == FIELD_DECL \
&& (TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (F))) \
>= TREE_INT_CST_LOW (TYPE_SIZE (T))))
if (!AT_LEAST_AS_LARGE_AS (field_decl, ptr_type_node))
return 0;
field_decl = TREE_CHAIN (field_decl);
if (!AT_LEAST_AS_LARGE_AS (field_decl, ptr_type_node))
return 0;
field_decl = TREE_CHAIN (field_decl);
return AT_LEAST_AS_LARGE_AS (field_decl, unsigned_type_node);
#undef AT_LEAST_AS_LARGE_AS
}
/* Avoid calling `check_string_class_template ()' more than once. */
static GTY(()) int string_layout_checked;
/* Construct an internal string layout to be used as a template for
creating NSConstantString/NXConstantString instances. */
static tree
objc_build_internal_const_str_type (void)
{
tree type = (*lang_hooks.types.make_type) (RECORD_TYPE);
tree fields = build_decl (FIELD_DECL, NULL_TREE, ptr_type_node);
tree field = build_decl (FIELD_DECL, NULL_TREE, ptr_type_node);
TREE_CHAIN (field) = fields; fields = field;
field = build_decl (FIELD_DECL, NULL_TREE, unsigned_type_node);
TREE_CHAIN (field) = fields; fields = field;
/* NB: The finish_builtin_struct() routine expects FIELD_DECLs in
reverse order! */
finish_builtin_struct (type, "__builtin_ObjCString",
fields, NULL_TREE);
return type;
}
/* Custom build_string which sets TREE_TYPE! */
static tree
my_build_string (int len, const char *str)
{
return fix_string_type (build_string (len, str));
}
/* Build a string with contents STR and length LEN and convert it to a
pointer. */
static tree
my_build_string_pointer (int len, const char *str)
{
tree string = my_build_string (len, str);
tree ptrtype = build_pointer_type (TREE_TYPE (TREE_TYPE (string)));
return build1 (ADDR_EXPR, ptrtype, string);
}
static hashval_t
string_hash (const void *ptr)
{
tree str = ((struct string_descriptor *)ptr)->literal;
const unsigned char *p = (const unsigned char *) TREE_STRING_POINTER (str);
int i, len = TREE_STRING_LENGTH (str);
hashval_t h = len;
for (i = 0; i < len; i++)
h = ((h * 613) + p[i]);
return h;
}
static int
string_eq (const void *ptr1, const void *ptr2)
{
tree str1 = ((struct string_descriptor *)ptr1)->literal;
tree str2 = ((struct string_descriptor *)ptr2)->literal;
int len1 = TREE_STRING_LENGTH (str1);
return (len1 == TREE_STRING_LENGTH (str2)
&& !memcmp (TREE_STRING_POINTER (str1), TREE_STRING_POINTER (str2),
len1));
}
/* Given a chain of STRING_CST's, build a static instance of
NXConstantString which points at the concatenation of those
strings. We place the string object in the __string_objects
section of the __OBJC segment. The Objective-C runtime will
initialize the isa pointers of the string objects to point at the
NXConstantString class object. */
tree
objc_build_string_object (tree string)
{
tree initlist, constructor, constant_string_class;
int length;
tree fields, addr;
struct string_descriptor *desc, key;
void **loc;
/* Prep the string argument. */
string = fix_string_type (string);
TREE_SET_CODE (string, STRING_CST);
length = TREE_STRING_LENGTH (string) - 1;
/* Check whether the string class being used actually exists and has the
correct ivar layout. */
if (!string_layout_checked)
{
string_layout_checked = -1;
constant_string_class = lookup_interface (constant_string_id);
internal_const_str_type = objc_build_internal_const_str_type ();
if (!constant_string_class
|| !(constant_string_type
= CLASS_STATIC_TEMPLATE (constant_string_class)))
error ("cannot find interface declaration for %qs",
IDENTIFIER_POINTER (constant_string_id));
/* The NSConstantString/NXConstantString ivar layout is now known. */
else if (!check_string_class_template ())
error ("interface %qs does not have valid constant string layout",
IDENTIFIER_POINTER (constant_string_id));
/* For the NeXT runtime, we can generate a literal reference
to the string class, don't need to run a constructor. */
else if (flag_next_runtime && !setup_string_decl ())
error ("cannot find reference tag for class %qs",
IDENTIFIER_POINTER (constant_string_id));
else
{
string_layout_checked = 1; /* Success! */
add_class_reference (constant_string_id);
}
}
if (string_layout_checked == -1)
return error_mark_node;
/* Perhaps we already constructed a constant string just like this one? */
key.literal = string;
loc = htab_find_slot (string_htab, &key, INSERT);
desc = *loc;
if (!desc)
{
tree var;
*loc = desc = ggc_alloc (sizeof (*desc));
desc->literal = string;
/* GNU: (NXConstantString *) & ((__builtin_ObjCString) { NULL, string, length }) */
/* NeXT: (NSConstantString *) & ((__builtin_ObjCString) { isa, string, length }) */
fields = TYPE_FIELDS (internal_const_str_type);
initlist
= build_tree_list (fields,
flag_next_runtime
? build_unary_op (ADDR_EXPR, string_class_decl, 0)
: build_int_cst (NULL_TREE, 0));
fields = TREE_CHAIN (fields);
initlist = tree_cons (fields, build_unary_op (ADDR_EXPR, string, 1),
initlist);
fields = TREE_CHAIN (fields);
initlist = tree_cons (fields, build_int_cst (NULL_TREE, length),
initlist);
constructor = objc_build_constructor (internal_const_str_type,
nreverse (initlist));
TREE_INVARIANT (constructor) = true;
if (!flag_next_runtime)
constructor
= objc_add_static_instance (constructor, constant_string_type);
else
{
var = build_decl (CONST_DECL, NULL, TREE_TYPE (constructor));
DECL_INITIAL (var) = constructor;
TREE_STATIC (var) = 1;
pushdecl_top_level (var);
constructor = var;
}
desc->constructor = constructor;
}
addr = convert (build_pointer_type (constant_string_type),
build_unary_op (ADDR_EXPR, desc->constructor, 1));
return addr;
}
/* Declare a static instance of CLASS_DECL initialized by CONSTRUCTOR. */
static GTY(()) int num_static_inst;
static tree
objc_add_static_instance (tree constructor, tree class_decl)
{
tree *chain, decl;
char buf[256];
/* Find the list of static instances for the CLASS_DECL. Create one if
not found. */
for (chain = &objc_static_instances;
*chain && TREE_VALUE (*chain) != class_decl;
chain = &TREE_CHAIN (*chain));
if (!*chain)
{
*chain = tree_cons (NULL_TREE, class_decl, NULL_TREE);
add_objc_string (OBJC_TYPE_NAME (class_decl), class_names);
}
sprintf (buf, "_OBJC_INSTANCE_%d", num_static_inst++);
decl = build_decl (VAR_DECL, get_identifier (buf), class_decl);
DECL_COMMON (decl) = 1;
TREE_STATIC (decl) = 1;
DECL_ARTIFICIAL (decl) = 1;
TREE_USED (decl) = 1;
DECL_INITIAL (decl) = constructor;
/* We may be writing something else just now.
Postpone till end of input. */
DECL_DEFER_OUTPUT (decl) = 1;
pushdecl_top_level (decl);
rest_of_decl_compilation (decl, 1, 0);
/* Add the DECL to the head of this CLASS' list. */
TREE_PURPOSE (*chain) = tree_cons (NULL_TREE, decl, TREE_PURPOSE (*chain));
return decl;
}
/* Build a static constant CONSTRUCTOR
with type TYPE and elements ELTS. */
static tree
objc_build_constructor (tree type, tree elts)
{
tree constructor = build_constructor_from_list (type, elts);
TREE_CONSTANT (constructor) = 1;
TREE_STATIC (constructor) = 1;
TREE_READONLY (constructor) = 1;
#ifdef OBJCPLUS
/* Adjust for impedance mismatch. We should figure out how to build
CONSTRUCTORs that consistently please both the C and C++ gods. */
if (!TREE_PURPOSE (elts))
TREE_TYPE (constructor) = NULL_TREE;
TREE_HAS_CONSTRUCTOR (constructor) = 1;
#endif
return constructor;
}
/* Take care of defining and initializing _OBJC_SYMBOLS. */
/* Predefine the following data type:
struct _objc_symtab
{
long sel_ref_cnt;
SEL *refs;
short cls_def_cnt;
short cat_def_cnt;
void *defs[cls_def_cnt + cat_def_cnt];
}; */
static void
build_objc_symtab_template (void)
{
tree field_decl, field_decl_chain;
objc_symtab_template
= start_struct (RECORD_TYPE, get_identifier (UTAG_SYMTAB));
/* long sel_ref_cnt; */
field_decl = create_field_decl (long_integer_type_node, "sel_ref_cnt");
field_decl_chain = field_decl;
/* SEL *refs; */
field_decl = create_field_decl (build_pointer_type (objc_selector_type),
"refs");
chainon (field_decl_chain, field_decl);
/* short cls_def_cnt; */
field_decl = create_field_decl (short_integer_type_node, "cls_def_cnt");
chainon (field_decl_chain, field_decl);
/* short cat_def_cnt; */
field_decl = create_field_decl (short_integer_type_node,
"cat_def_cnt");
chainon (field_decl_chain, field_decl);
if (imp_count || cat_count || !flag_next_runtime)
{
/* void *defs[imp_count + cat_count (+ 1)]; */
/* NB: The index is one less than the size of the array. */
int index = imp_count + cat_count
+ (flag_next_runtime? -1: 0);
field_decl = create_field_decl
(build_array_type
(ptr_type_node,
build_index_type (build_int_cst (NULL_TREE, index))),
"defs");
chainon (field_decl_chain, field_decl);
}
finish_struct (objc_symtab_template, field_decl_chain, NULL_TREE);
}
/* Create the initial value for the `defs' field of _objc_symtab.
This is a CONSTRUCTOR. */
static tree
init_def_list (tree type)
{
tree expr, initlist = NULL_TREE;
struct imp_entry *impent;
if (imp_count)
for (impent = imp_list; impent; impent = impent->next)
{
if (TREE_CODE (impent->imp_context) == CLASS_IMPLEMENTATION_TYPE)
{
expr = build_unary_op (ADDR_EXPR, impent->class_decl, 0);
initlist = tree_cons (NULL_TREE, expr, initlist);
}
}
if (cat_count)
for (impent = imp_list; impent; impent = impent->next)
{
if (TREE_CODE (impent->imp_context) == CATEGORY_IMPLEMENTATION_TYPE)
{
expr = build_unary_op (ADDR_EXPR, impent->class_decl, 0);
initlist = tree_cons (NULL_TREE, expr, initlist);
}
}
if (!flag_next_runtime)
{
/* statics = { ..., _OBJC_STATIC_INSTANCES, ... } */
tree expr;
if (static_instances_decl)
expr = build_unary_op (ADDR_EXPR, static_instances_decl, 0);
else
expr = build_int_cst (NULL_TREE, 0);
initlist = tree_cons (NULL_TREE, expr, initlist);
}
return objc_build_constructor (type, nreverse (initlist));
}
/* Construct the initial value for all of _objc_symtab. */
static tree
init_objc_symtab (tree type)
{
tree initlist;
/* sel_ref_cnt = { ..., 5, ... } */
initlist = build_tree_list (NULL_TREE,
build_int_cst (long_integer_type_node, 0));
/* refs = { ..., _OBJC_SELECTOR_TABLE, ... } */
if (flag_next_runtime || ! sel_ref_chain)
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, 0), initlist);
else
initlist
= tree_cons (NULL_TREE,
convert (build_pointer_type (objc_selector_type),
build_unary_op (ADDR_EXPR,
UOBJC_SELECTOR_TABLE_decl, 1)),
initlist);
/* cls_def_cnt = { ..., 5, ... } */
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, imp_count), initlist);
/* cat_def_cnt = { ..., 5, ... } */
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, cat_count), initlist);
/* cls_def = { ..., { &Foo, &Bar, ...}, ... } */
if (imp_count || cat_count || !flag_next_runtime)
{
tree field = TYPE_FIELDS (type);
field = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (field))));
initlist = tree_cons (NULL_TREE, init_def_list (TREE_TYPE (field)),
initlist);
}
return objc_build_constructor (type, nreverse (initlist));
}
/* Generate forward declarations for metadata such as
'OBJC_CLASS_...'. */
static tree
build_metadata_decl (const char *name, tree type)
{
tree decl;
/* struct TYPE NAME_<name>; */
decl = start_var_decl (type, synth_id_with_class_suffix
(name,
objc_implementation_context));
return decl;
}
/* Push forward-declarations of all the categories so that
init_def_list can use them in a CONSTRUCTOR. */
static void
forward_declare_categories (void)
{
struct imp_entry *impent;
tree sav = objc_implementation_context;
for (impent = imp_list; impent; impent = impent->next)
{
if (TREE_CODE (impent->imp_context) == CATEGORY_IMPLEMENTATION_TYPE)
{
/* Set an invisible arg to synth_id_with_class_suffix. */
objc_implementation_context = impent->imp_context;
/* extern struct objc_category _OBJC_CATEGORY_<name>; */
impent->class_decl = build_metadata_decl ("_OBJC_CATEGORY",
objc_category_template);
}
}
objc_implementation_context = sav;
}
/* Create the declaration of _OBJC_SYMBOLS, with type `struct _objc_symtab'
and initialized appropriately. */
static void
generate_objc_symtab_decl (void)
{
/* forward declare categories */
if (cat_count)
forward_declare_categories ();
build_objc_symtab_template ();
UOBJC_SYMBOLS_decl = start_var_decl (objc_symtab_template, "_OBJC_SYMBOLS");
finish_var_decl (UOBJC_SYMBOLS_decl,
init_objc_symtab (TREE_TYPE (UOBJC_SYMBOLS_decl)));
}
static tree
init_module_descriptor (tree type)
{
tree initlist, expr;
/* version = { 1, ... } */
expr = build_int_cst (long_integer_type_node, OBJC_VERSION);
initlist = build_tree_list (NULL_TREE, expr);
/* size = { ..., sizeof (struct _objc_module), ... } */
expr = convert (long_integer_type_node,
size_in_bytes (objc_module_template));
initlist = tree_cons (NULL_TREE, expr, initlist);
/* Don't provide any file name for security reasons. */
/* name = { ..., "", ... } */
expr = add_objc_string (get_identifier (""), class_names);
initlist = tree_cons (NULL_TREE, expr, initlist);
/* symtab = { ..., _OBJC_SYMBOLS, ... } */
if (UOBJC_SYMBOLS_decl)
expr = build_unary_op (ADDR_EXPR, UOBJC_SYMBOLS_decl, 0);
else
expr = build_int_cst (NULL_TREE, 0);
initlist = tree_cons (NULL_TREE, expr, initlist);
return objc_build_constructor (type, nreverse (initlist));
}
/* Write out the data structures to describe Objective C classes defined.
struct _objc_module { ... } _OBJC_MODULE = { ... }; */
static void
build_module_descriptor (void)
{
tree field_decl, field_decl_chain;
#ifdef OBJCPLUS
push_lang_context (lang_name_c); /* extern "C" */
#endif
objc_module_template
= start_struct (RECORD_TYPE, get_identifier (UTAG_MODULE));
/* long version; */
field_decl = create_field_decl (long_integer_type_node, "version");
field_decl_chain = field_decl;
/* long size; */
field_decl = create_field_decl (long_integer_type_node, "size");
chainon (field_decl_chain, field_decl);
/* char *name; */
field_decl = create_field_decl (string_type_node, "name");
chainon (field_decl_chain, field_decl);
/* struct _objc_symtab *symtab; */
field_decl
= create_field_decl (build_pointer_type
(xref_tag (RECORD_TYPE,
get_identifier (UTAG_SYMTAB))),
"symtab");
chainon (field_decl_chain, field_decl);
finish_struct (objc_module_template, field_decl_chain, NULL_TREE);
/* Create an instance of "_objc_module". */
UOBJC_MODULES_decl = start_var_decl (objc_module_template, "_OBJC_MODULES");
finish_var_decl (UOBJC_MODULES_decl,
init_module_descriptor (TREE_TYPE (UOBJC_MODULES_decl)));
#ifdef OBJCPLUS
pop_lang_context ();
#endif
}
/* The GNU runtime requires us to provide a static initializer function
for each module:
static void __objc_gnu_init (void) {
__objc_exec_class (&L_OBJC_MODULES);
} */
static void
build_module_initializer_routine (void)
{
tree body;
#ifdef OBJCPLUS
push_lang_context (lang_name_c); /* extern "C" */
#endif
objc_push_parm (build_decl (PARM_DECL, NULL_TREE, void_type_node));
objc_start_function (get_identifier (TAG_GNUINIT),
build_function_type (void_type_node,
OBJC_VOID_AT_END),
NULL_TREE, objc_get_parm_info (0));
body = c_begin_compound_stmt (true);
add_stmt (build_function_call
(execclass_decl,
build_tree_list
(NULL_TREE,
build_unary_op (ADDR_EXPR,
UOBJC_MODULES_decl, 0))));
add_stmt (c_end_compound_stmt (body, true));
TREE_PUBLIC (current_function_decl) = 0;
#ifndef OBJCPLUS
/* For Objective-C++, we will need to call __objc_gnu_init
from objc_generate_static_init_call() below. */
DECL_STATIC_CONSTRUCTOR (current_function_decl) = 1;
#endif
GNU_INIT_decl = current_function_decl;
finish_function ();
#ifdef OBJCPLUS
pop_lang_context ();
#endif
}
#ifdef OBJCPLUS
/* Return 1 if the __objc_gnu_init function has been synthesized and needs
to be called by the module initializer routine. */
int
objc_static_init_needed_p (void)
{
return (GNU_INIT_decl != NULL_TREE);
}
/* Generate a call to the __objc_gnu_init initializer function. */
tree
objc_generate_static_init_call (tree ctors ATTRIBUTE_UNUSED)
{
add_stmt (build_stmt (EXPR_STMT,
build_function_call (GNU_INIT_decl, NULL_TREE)));
return ctors;
}
#endif /* OBJCPLUS */
/* Return the DECL of the string IDENT in the SECTION. */
static tree
get_objc_string_decl (tree ident, enum string_section section)
{
tree chain;
if (section == class_names)
chain = class_names_chain;
else if (section == meth_var_names)
chain = meth_var_names_chain;
else if (section == meth_var_types)
chain = meth_var_types_chain;
else
abort ();
for (; chain != 0; chain = TREE_CHAIN (chain))
if (TREE_VALUE (chain) == ident)
return (TREE_PURPOSE (chain));
abort ();
return NULL_TREE;
}
/* Output references to all statically allocated objects. Return the DECL
for the array built. */
static void
generate_static_references (void)
{
tree decls = NULL_TREE, expr = NULL_TREE;
tree class_name, class, decl, initlist;
tree cl_chain, in_chain, type
= build_array_type (build_pointer_type (void_type_node), NULL_TREE);
int num_inst, num_class;
char buf[256];
if (flag_next_runtime)
abort ();
for (cl_chain = objc_static_instances, num_class = 0;
cl_chain; cl_chain = TREE_CHAIN (cl_chain), num_class++)
{
for (num_inst = 0, in_chain = TREE_PURPOSE (cl_chain);
in_chain; num_inst++, in_chain = TREE_CHAIN (in_chain));
sprintf (buf, "_OBJC_STATIC_INSTANCES_%d", num_class);
decl = start_var_decl (type, buf);
/* Output {class_name, ...}. */
class = TREE_VALUE (cl_chain);
class_name = get_objc_string_decl (OBJC_TYPE_NAME (class), class_names);
initlist = build_tree_list (NULL_TREE,
build_unary_op (ADDR_EXPR, class_name, 1));
/* Output {..., instance, ...}. */
for (in_chain = TREE_PURPOSE (cl_chain);
in_chain; in_chain = TREE_CHAIN (in_chain))
{
expr = build_unary_op (ADDR_EXPR, TREE_VALUE (in_chain), 1);
initlist = tree_cons (NULL_TREE, expr, initlist);
}
/* Output {..., NULL}. */
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, 0), initlist);
expr = objc_build_constructor (TREE_TYPE (decl), nreverse (initlist));
finish_var_decl (decl, expr);
decls
= tree_cons (NULL_TREE, build_unary_op (ADDR_EXPR, decl, 1), decls);
}
decls = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, 0), decls);
expr = objc_build_constructor (type, nreverse (decls));
static_instances_decl = start_var_decl (type, "_OBJC_STATIC_INSTANCES");
finish_var_decl (static_instances_decl, expr);
}
static GTY(()) int selector_reference_idx;
static tree
build_selector_reference_decl (void)
{
tree decl;
char buf[256];
sprintf (buf, "_OBJC_SELECTOR_REFERENCES_%d", selector_reference_idx++);
decl = start_var_decl (objc_selector_type, buf);
return decl;
}
static void
build_selector_table_decl (void)
{
tree temp;
if (flag_typed_selectors)
{
build_selector_template ();
temp = build_array_type (objc_selector_template, NULL_TREE);
}
else
temp = build_array_type (objc_selector_type, NULL_TREE);
UOBJC_SELECTOR_TABLE_decl = start_var_decl (temp, "_OBJC_SELECTOR_TABLE");
}
/* Just a handy wrapper for add_objc_string. */
static tree
build_selector (tree ident)
{
return convert (objc_selector_type,
add_objc_string (ident, meth_var_names));
}
static void
build_selector_translation_table (void)
{
tree chain, initlist = NULL_TREE;
int offset = 0;
tree decl = NULL_TREE;
for (chain = sel_ref_chain; chain; chain = TREE_CHAIN (chain))
{
tree expr;
if (warn_selector && objc_implementation_context)
{
tree method_chain;
bool found = false;
for (method_chain = meth_var_names_chain;
method_chain;
method_chain = TREE_CHAIN (method_chain))
{
if (TREE_VALUE (method_chain) == TREE_VALUE (chain))
{
found = true;
break;
}
}
if (!found)
{
location_t *loc;
if (flag_next_runtime && TREE_PURPOSE (chain))
loc = &DECL_SOURCE_LOCATION (TREE_PURPOSE (chain));
else
loc = &input_location;
warning (0, "%Hcreating selector for nonexistent method %qE",
loc, TREE_VALUE (chain));
}
}
expr = build_selector (TREE_VALUE (chain));
/* add one for the '\0' character */
offset += IDENTIFIER_LENGTH (TREE_VALUE (chain)) + 1;
if (flag_next_runtime)
{
decl = TREE_PURPOSE (chain);
finish_var_decl (decl, expr);
}
else
{
if (flag_typed_selectors)
{
tree eltlist = NULL_TREE;
tree encoding = get_proto_encoding (TREE_PURPOSE (chain));
eltlist = tree_cons (NULL_TREE, expr, NULL_TREE);
eltlist = tree_cons (NULL_TREE, encoding, eltlist);
expr = objc_build_constructor (objc_selector_template,
nreverse (eltlist));
}
initlist = tree_cons (NULL_TREE, expr, initlist);
}
}
if (! flag_next_runtime)
{
/* Cause the selector table (previously forward-declared)
to be actually output. */
initlist = tree_cons (NULL_TREE,
flag_typed_selectors
? objc_build_constructor
(objc_selector_template,
tree_cons (NULL_TREE,
build_int_cst (NULL_TREE, 0),
tree_cons (NULL_TREE,
build_int_cst (NULL_TREE, 0),
NULL_TREE)))
: build_int_cst (NULL_TREE, 0), initlist);
initlist = objc_build_constructor (TREE_TYPE (UOBJC_SELECTOR_TABLE_decl),
nreverse (initlist));
finish_var_decl (UOBJC_SELECTOR_TABLE_decl, initlist);
}
}
static tree
get_proto_encoding (tree proto)
{
tree encoding;
if (proto)
{
if (! METHOD_ENCODING (proto))
{
encoding = encode_method_prototype (proto);
METHOD_ENCODING (proto) = encoding;
}
else
encoding = METHOD_ENCODING (proto);
return add_objc_string (encoding, meth_var_types);
}
else
return build_int_cst (NULL_TREE, 0);
}
/* sel_ref_chain is a list whose "value" fields will be instances of
identifier_node that represent the selector. */
static tree
build_typed_selector_reference (tree ident, tree prototype)
{
tree *chain = &sel_ref_chain;
tree expr;
int index = 0;
while (*chain)
{
if (TREE_PURPOSE (*chain) == prototype && TREE_VALUE (*chain) == ident)
goto return_at_index;
index++;
chain = &TREE_CHAIN (*chain);
}
*chain = tree_cons (prototype, ident, NULL_TREE);
return_at_index:
expr = build_unary_op (ADDR_EXPR,
build_array_ref (UOBJC_SELECTOR_TABLE_decl,
build_int_cst (NULL_TREE, index)),
1);
return convert (objc_selector_type, expr);
}
static tree
build_selector_reference (tree ident)
{
tree *chain = &sel_ref_chain;
tree expr;
int index = 0;
while (*chain)
{
if (TREE_VALUE (*chain) == ident)
return (flag_next_runtime
? TREE_PURPOSE (*chain)
: build_array_ref (UOBJC_SELECTOR_TABLE_decl,
build_int_cst (NULL_TREE, index)));
index++;
chain = &TREE_CHAIN (*chain);
}
expr = (flag_next_runtime ? build_selector_reference_decl (): NULL_TREE);
*chain = tree_cons (expr, ident, NULL_TREE);
return (flag_next_runtime
? expr
: build_array_ref (UOBJC_SELECTOR_TABLE_decl,
build_int_cst (NULL_TREE, index)));
}
static GTY(()) int class_reference_idx;
static tree
build_class_reference_decl (void)
{
tree decl;
char buf[256];
sprintf (buf, "_OBJC_CLASS_REFERENCES_%d", class_reference_idx++);
decl = start_var_decl (objc_class_type, buf);
return decl;
}
/* Create a class reference, but don't create a variable to reference
it. */
static void
add_class_reference (tree ident)
{
tree chain;
if ((chain = cls_ref_chain))
{
tree tail;
do
{
if (ident == TREE_VALUE (chain))
return;
tail = chain;
chain = TREE_CHAIN (chain);
}
while (chain);
/* Append to the end of the list */
TREE_CHAIN (tail) = tree_cons (NULL_TREE, ident, NULL_TREE);
}
else
cls_ref_chain = tree_cons (NULL_TREE, ident, NULL_TREE);
}
/* Get a class reference, creating it if necessary. Also create the
reference variable. */
tree
objc_get_class_reference (tree ident)
{
tree orig_ident = (DECL_P (ident)
? DECL_NAME (ident)
: TYPE_P (ident)
? OBJC_TYPE_NAME (ident)
: ident);
bool local_scope = false;
#ifdef OBJCPLUS
if (processing_template_decl)
/* Must wait until template instantiation time. */
return build_min_nt (CLASS_REFERENCE_EXPR, ident);
#endif
if (TREE_CODE (ident) == TYPE_DECL)
ident = (DECL_ORIGINAL_TYPE (ident)
? DECL_ORIGINAL_TYPE (ident)
: TREE_TYPE (ident));
#ifdef OBJCPLUS
if (TYPE_P (ident) && TYPE_CONTEXT (ident)
&& TYPE_CONTEXT (ident) != global_namespace)
local_scope = true;
#endif
if (local_scope || !(ident = objc_is_class_name (ident)))
{
error ("%qs is not an Objective-C class name or alias",
IDENTIFIER_POINTER (orig_ident));
return error_mark_node;
}
if (flag_next_runtime && !flag_zero_link)
{
tree *chain;
tree decl;
for (chain = &cls_ref_chain; *chain; chain = &TREE_CHAIN (*chain))
if (TREE_VALUE (*chain) == ident)
{
if (! TREE_PURPOSE (*chain))
TREE_PURPOSE (*chain) = build_class_reference_decl ();
return TREE_PURPOSE (*chain);
}
decl = build_class_reference_decl ();
*chain = tree_cons (decl, ident, NULL_TREE);
return decl;
}
else
{
tree params;
add_class_reference (ident);
params = build_tree_list (NULL_TREE,
my_build_string_pointer
(IDENTIFIER_LENGTH (ident) + 1,
IDENTIFIER_POINTER (ident)));
assemble_external (objc_get_class_decl);
return build_function_call (objc_get_class_decl, params);
}
}
/* For each string section we have a chain which maps identifier nodes
to decls for the strings. */
static tree
add_objc_string (tree ident, enum string_section section)
{
tree *chain, decl, type, string_expr;
if (section == class_names)
chain = &class_names_chain;
else if (section == meth_var_names)
chain = &meth_var_names_chain;
else if (section == meth_var_types)
chain = &meth_var_types_chain;
else
abort ();
while (*chain)
{
if (TREE_VALUE (*chain) == ident)
return convert (string_type_node,
build_unary_op (ADDR_EXPR, TREE_PURPOSE (*chain), 1));
chain = &TREE_CHAIN (*chain);
}
decl = build_objc_string_decl (section);
type = build_array_type
(char_type_node,
build_index_type
(build_int_cst (NULL_TREE,
IDENTIFIER_LENGTH (ident))));
decl = start_var_decl (type, IDENTIFIER_POINTER (DECL_NAME (decl)));
string_expr = my_build_string (IDENTIFIER_LENGTH (ident) + 1,
IDENTIFIER_POINTER (ident));
finish_var_decl (decl, string_expr);
*chain = tree_cons (decl, ident, NULL_TREE);
return convert (string_type_node, build_unary_op (ADDR_EXPR, decl, 1));
}
static GTY(()) int class_names_idx;
static GTY(()) int meth_var_names_idx;
static GTY(()) int meth_var_types_idx;
static tree
build_objc_string_decl (enum string_section section)
{
tree decl, ident;
char buf[256];
if (section == class_names)
sprintf (buf, "_OBJC_CLASS_NAME_%d", class_names_idx++);
else if (section == meth_var_names)
sprintf (buf, "_OBJC_METH_VAR_NAME_%d", meth_var_names_idx++);
else if (section == meth_var_types)
sprintf (buf, "_OBJC_METH_VAR_TYPE_%d", meth_var_types_idx++);
ident = get_identifier (buf);
decl = build_decl (VAR_DECL, ident, build_array_type (char_type_node, 0));
DECL_EXTERNAL (decl) = 1;
TREE_PUBLIC (decl) = 0;
TREE_USED (decl) = 1;
TREE_CONSTANT (decl) = 1;
DECL_CONTEXT (decl) = 0;
DECL_ARTIFICIAL (decl) = 1;
#ifdef OBJCPLUS
DECL_THIS_STATIC (decl) = 1; /* squash redeclaration errors */
#endif
make_decl_rtl (decl);
pushdecl_top_level (decl);
return decl;
}
void
objc_declare_alias (tree alias_ident, tree class_ident)
{
tree underlying_class;
#ifdef OBJCPLUS
if (current_namespace != global_namespace) {
error ("Objective-C declarations may only appear in global scope");
}
#endif /* OBJCPLUS */
if (!(underlying_class = objc_is_class_name (class_ident)))
warning (0, "cannot find class %qs", IDENTIFIER_POINTER (class_ident));
else if (objc_is_class_name (alias_ident))
warning (0, "class %qs already exists", IDENTIFIER_POINTER (alias_ident));
else
{
/* Implement @compatibility_alias as a typedef. */
#ifdef OBJCPLUS
push_lang_context (lang_name_c); /* extern "C" */
#endif
lang_hooks.decls.pushdecl (build_decl
(TYPE_DECL,
alias_ident,
xref_tag (RECORD_TYPE, underlying_class)));
#ifdef OBJCPLUS
pop_lang_context ();
#endif
alias_chain = tree_cons (underlying_class, alias_ident, alias_chain);
}
}
void
objc_declare_class (tree ident_list)
{
tree list;
#ifdef OBJCPLUS
if (current_namespace != global_namespace) {
error ("Objective-C declarations may only appear in global scope");
}
#endif /* OBJCPLUS */
for (list = ident_list; list; list = TREE_CHAIN (list))
{
tree ident = TREE_VALUE (list);
if (! objc_is_class_name (ident))
{
tree record = lookup_name (ident), type = record;
if (record)
{
if (TREE_CODE (record) == TYPE_DECL)
type = DECL_ORIGINAL_TYPE (record);
if (!TYPE_HAS_OBJC_INFO (type)
|| !TYPE_OBJC_INTERFACE (type))
{
error ("%qs redeclared as different kind of symbol",
IDENTIFIER_POINTER (ident));
error ("previous declaration of %q+D",
record);
}
}
record = xref_tag (RECORD_TYPE, ident);
INIT_TYPE_OBJC_INFO (record);
TYPE_OBJC_INTERFACE (record) = ident;
class_chain = tree_cons (NULL_TREE, ident, class_chain);
}
}
}
tree
objc_is_class_name (tree ident)
{
tree chain;
if (ident && TREE_CODE (ident) == IDENTIFIER_NODE
&& identifier_global_value (ident))
ident = identifier_global_value (ident);
while (ident && TREE_CODE (ident) == TYPE_DECL && DECL_ORIGINAL_TYPE (ident))
ident = OBJC_TYPE_NAME (DECL_ORIGINAL_TYPE (ident));
if (ident && TREE_CODE (ident) == RECORD_TYPE)
ident = OBJC_TYPE_NAME (ident);
#ifdef OBJCPLUS
if (ident && TREE_CODE (ident) == TYPE_DECL)
ident = DECL_NAME (ident);
#endif
if (!ident || TREE_CODE (ident) != IDENTIFIER_NODE)
return NULL_TREE;
if (lookup_interface (ident))
return ident;
for (chain = class_chain; chain; chain = TREE_CHAIN (chain))
{
if (ident == TREE_VALUE (chain))
return ident;
}
for (chain = alias_chain; chain; chain = TREE_CHAIN (chain))
{
if (ident == TREE_VALUE (chain))
return TREE_PURPOSE (chain);
}
return 0;
}
/* Check whether TYPE is either 'id' or 'Class'. */
tree
objc_is_id (tree type)
{
if (type && TREE_CODE (type) == IDENTIFIER_NODE
&& identifier_global_value (type))
type = identifier_global_value (type);
if (type && TREE_CODE (type) == TYPE_DECL)
type = TREE_TYPE (type);
/* NB: This function may be called before the ObjC front-end has
been initialized, in which case OBJC_OBJECT_TYPE will (still) be NULL. */
return (objc_object_type && type
&& (IS_ID (type) || IS_CLASS (type) || IS_SUPER (type))
? type
: NULL_TREE);
}
/* Check whether TYPE is either 'id', 'Class', or a pointer to an ObjC
class instance. This is needed by other parts of the compiler to
handle ObjC types gracefully. */
tree
objc_is_object_ptr (tree type)
{
tree ret;
type = TYPE_MAIN_VARIANT (type);
if (!POINTER_TYPE_P (type))
return 0;
ret = objc_is_id (type);
if (!ret)
ret = objc_is_class_name (TREE_TYPE (type));
return ret;
}
static int
objc_is_gcable_type (tree type, int or_strong_p)
{
tree name;
if (!TYPE_P (type))
return 0;
if (objc_is_id (TYPE_MAIN_VARIANT (type)))
return 1;
if (or_strong_p && lookup_attribute ("objc_gc", TYPE_ATTRIBUTES (type)))
return 1;
if (TREE_CODE (type) != POINTER_TYPE && TREE_CODE (type) != INDIRECT_REF)
return 0;
type = TREE_TYPE (type);
if (TREE_CODE (type) != RECORD_TYPE)
return 0;
name = TYPE_NAME (type);
return (objc_is_class_name (name) != NULL_TREE);
}
static tree
objc_substitute_decl (tree expr, tree oldexpr, tree newexpr)
{
if (expr == oldexpr)
return newexpr;
switch (TREE_CODE (expr))
{
case COMPONENT_REF:
return objc_build_component_ref
(objc_substitute_decl (TREE_OPERAND (expr, 0),
oldexpr,
newexpr),
DECL_NAME (TREE_OPERAND (expr, 1)));
case ARRAY_REF:
return build_array_ref (objc_substitute_decl (TREE_OPERAND (expr, 0),
oldexpr,
newexpr),
TREE_OPERAND (expr, 1));
case INDIRECT_REF:
return build_indirect_ref (objc_substitute_decl (TREE_OPERAND (expr, 0),
oldexpr,
newexpr), "->");
default:
return expr;
}
}
static tree
objc_build_ivar_assignment (tree outervar, tree lhs, tree rhs)
{
tree func_params;
/* The LHS parameter contains the expression 'outervar->memberspec';
we need to transform it into '&((typeof(outervar) *) 0)->memberspec',
where memberspec may be arbitrarily complex (e.g., 'g->f.d[2].g[3]').
*/
tree offs
= objc_substitute_decl
(lhs, outervar, convert (TREE_TYPE (outervar), integer_zero_node));
tree func
= (flag_objc_direct_dispatch
? objc_assign_ivar_fast_decl
: objc_assign_ivar_decl);
offs = convert (integer_type_node, build_unary_op (ADDR_EXPR, offs, 0));
offs = fold (offs);
func_params = tree_cons (NULL_TREE,
convert (objc_object_type, rhs),
tree_cons (NULL_TREE, convert (objc_object_type, outervar),
tree_cons (NULL_TREE, offs,
NULL_TREE)));
assemble_external (func);
return build_function_call (func, func_params);
}
static tree
objc_build_global_assignment (tree lhs, tree rhs)
{
tree func_params = tree_cons (NULL_TREE,
convert (objc_object_type, rhs),
tree_cons (NULL_TREE, convert (build_pointer_type (objc_object_type),
build_unary_op (ADDR_EXPR, lhs, 0)),
NULL_TREE));
assemble_external (objc_assign_global_decl);
return build_function_call (objc_assign_global_decl, func_params);
}
static tree
objc_build_strong_cast_assignment (tree lhs, tree rhs)
{
tree func_params = tree_cons (NULL_TREE,
convert (objc_object_type, rhs),
tree_cons (NULL_TREE, convert (build_pointer_type (objc_object_type),
build_unary_op (ADDR_EXPR, lhs, 0)),
NULL_TREE));
assemble_external (objc_assign_strong_cast_decl);
return build_function_call (objc_assign_strong_cast_decl, func_params);
}
static int
objc_is_gcable_p (tree expr)
{
return (TREE_CODE (expr) == COMPONENT_REF
? objc_is_gcable_p (TREE_OPERAND (expr, 1))
: TREE_CODE (expr) == ARRAY_REF
? (objc_is_gcable_p (TREE_TYPE (expr))
|| objc_is_gcable_p (TREE_OPERAND (expr, 0)))
: TREE_CODE (expr) == ARRAY_TYPE
? objc_is_gcable_p (TREE_TYPE (expr))
: TYPE_P (expr)
? objc_is_gcable_type (expr, 1)
: (objc_is_gcable_p (TREE_TYPE (expr))
|| (DECL_P (expr)
&& lookup_attribute ("objc_gc", DECL_ATTRIBUTES (expr)))));
}
static int
objc_is_ivar_reference_p (tree expr)
{
return (TREE_CODE (expr) == ARRAY_REF
? objc_is_ivar_reference_p (TREE_OPERAND (expr, 0))
: TREE_CODE (expr) == COMPONENT_REF
? TREE_CODE (TREE_OPERAND (expr, 1)) == FIELD_DECL
: 0);
}
static int
objc_is_global_reference_p (tree expr)
{
return (TREE_CODE (expr) == INDIRECT_REF || TREE_CODE (expr) == PLUS_EXPR
? objc_is_global_reference_p (TREE_OPERAND (expr, 0))
: DECL_P (expr)
? (!DECL_CONTEXT (expr) || TREE_STATIC (expr))
: 0);
}
tree
objc_generate_write_barrier (tree lhs, enum tree_code modifycode, tree rhs)
{
tree result = NULL_TREE, outer;
int strong_cast_p = 0, outer_gc_p = 0, indirect_p = 0;
/* See if we have any lhs casts, and strip them out. NB: The lvalue casts
will have been transformed to the form '*(type *)&expr'. */
if (TREE_CODE (lhs) == INDIRECT_REF)
{
outer = TREE_OPERAND (lhs, 0);
while (!strong_cast_p
&& (TREE_CODE (outer) == CONVERT_EXPR
|| TREE_CODE (outer) == NOP_EXPR
|| TREE_CODE (outer) == NON_LVALUE_EXPR))
{
tree lhstype = TREE_TYPE (outer);
/* Descend down the cast chain, and record the first objc_gc
attribute found. */
if (POINTER_TYPE_P (lhstype))
{
tree attr
= lookup_attribute ("objc_gc",
TYPE_ATTRIBUTES (TREE_TYPE (lhstype)));
if (attr)
strong_cast_p = 1;
}
outer = TREE_OPERAND (outer, 0);
}
}
/* If we have a __strong cast, it trumps all else. */
if (strong_cast_p)
{
if (modifycode != NOP_EXPR)
goto invalid_pointer_arithmetic;
if (warn_assign_intercept)
warning (0, "strong-cast assignment has been intercepted");
result = objc_build_strong_cast_assignment (lhs, rhs);
goto exit_point;
}
/* the lhs must be of a suitable type, regardless of its underlying
structure. */
if (!objc_is_gcable_p (lhs))
goto exit_point;
outer = lhs;
while (outer
&& (TREE_CODE (outer) == COMPONENT_REF
|| TREE_CODE (outer) == ARRAY_REF))
outer = TREE_OPERAND (outer, 0);
if (TREE_CODE (outer) == INDIRECT_REF)
{
outer = TREE_OPERAND (outer, 0);
indirect_p = 1;
}
outer_gc_p = objc_is_gcable_p (outer);
/* Handle ivar assignments. */
if (objc_is_ivar_reference_p (lhs))
{
/* if the struct to the left of the ivar is not an Objective-C object (__strong
doesn't cut it here), the best we can do here is suggest a cast. */
if (!objc_is_gcable_type (TREE_TYPE (outer), 0))
{
/* We may still be able to use the global write barrier... */
if (!indirect_p && objc_is_global_reference_p (outer))
goto global_reference;
suggest_cast:
if (modifycode == NOP_EXPR)
{
if (warn_assign_intercept)
warning (0, "strong-cast may possibly be needed");
}
goto exit_point;
}
if (modifycode != NOP_EXPR)
goto invalid_pointer_arithmetic;
if (warn_assign_intercept)
warning (0, "instance variable assignment has been intercepted");
result = objc_build_ivar_assignment (outer, lhs, rhs);
goto exit_point;
}
/* Likewise, intercept assignment to global/static variables if their type is
GC-marked. */
if (objc_is_global_reference_p (outer))
{
if (indirect_p)
goto suggest_cast;
global_reference:
if (modifycode != NOP_EXPR)
{
invalid_pointer_arithmetic:
if (outer_gc_p)
warning (0, "pointer arithmetic for garbage-collected objects not allowed");
goto exit_point;
}
if (warn_assign_intercept)
warning (0, "global/static variable assignment has been intercepted");
result = objc_build_global_assignment (lhs, rhs);
}
/* In all other cases, fall back to the normal mechanism. */
exit_point:
return result;
}
struct interface_tuple GTY(())
{
tree id;
tree class_name;
};
static GTY ((param_is (struct interface_tuple))) htab_t interface_htab;
static hashval_t
hash_interface (const void *p)
{
const struct interface_tuple *d = p;
return IDENTIFIER_HASH_VALUE (d->id);
}
static int
eq_interface (const void *p1, const void *p2)
{
const struct interface_tuple *d = p1;
return d->id == p2;
}
static tree
lookup_interface (tree ident)
{
#ifdef OBJCPLUS
if (ident && TREE_CODE (ident) == TYPE_DECL)
ident = DECL_NAME (ident);
#endif
if (ident == NULL_TREE || TREE_CODE (ident) != IDENTIFIER_NODE)
return NULL_TREE;
{
struct interface_tuple **slot;
tree i = NULL_TREE;
if (interface_htab)
{
slot = (struct interface_tuple **)
htab_find_slot_with_hash (interface_htab, ident,
IDENTIFIER_HASH_VALUE (ident),
NO_INSERT);
if (slot && *slot)
i = (*slot)->class_name;
}
return i;
}
}
/* Implement @defs (<classname>) within struct bodies. */
tree
objc_get_class_ivars (tree class_name)
{
tree interface = lookup_interface (class_name);
if (interface)
return get_class_ivars (interface, true);
error ("cannot find interface declaration for %qs",
IDENTIFIER_POINTER (class_name));
return error_mark_node;
}
/* Used by: build_private_template, continue_class,
and for @defs constructs. */
static tree
get_class_ivars (tree interface, bool inherited)
{
tree ivar_chain = copy_list (CLASS_RAW_IVARS (interface));
/* Both CLASS_RAW_IVARS and CLASS_IVARS contain a list of ivars declared
by the current class (i.e., they do not include super-class ivars).
However, the CLASS_IVARS list will be side-effected by a call to
finish_struct(), which will fill in field offsets. */
if (!CLASS_IVARS (interface))
CLASS_IVARS (interface) = ivar_chain;
if (!inherited)
return ivar_chain;
while (CLASS_SUPER_NAME (interface))
{
/* Prepend super-class ivars. */
interface = lookup_interface (CLASS_SUPER_NAME (interface));
ivar_chain = chainon (copy_list (CLASS_RAW_IVARS (interface)),
ivar_chain);
}
return ivar_chain;
}
static tree
objc_create_temporary_var (tree type)
{
tree decl;
decl = build_decl (VAR_DECL, NULL_TREE, type);
TREE_USED (decl) = 1;
DECL_ARTIFICIAL (decl) = 1;
DECL_IGNORED_P (decl) = 1;
DECL_CONTEXT (decl) = current_function_decl;
return decl;
}
/* Exception handling constructs. We begin by having the parser do most
of the work and passing us blocks. What we do next depends on whether
we're doing "native" exception handling or legacy Darwin setjmp exceptions.
We abstract all of this in a handful of appropriately named routines. */
/* Stack of open try blocks. */
struct objc_try_context
{
struct objc_try_context *outer;
/* Statements (or statement lists) as processed by the parser. */
tree try_body;
tree finally_body;
/* Some file position locations. */
location_t try_locus;
location_t end_try_locus;
location_t end_catch_locus;
location_t finally_locus;
location_t end_finally_locus;
/* A STATEMENT_LIST of CATCH_EXPRs, appropriate for sticking into op1
of a TRY_CATCH_EXPR. Even when doing Darwin setjmp. */
tree catch_list;
/* The CATCH_EXPR of an open @catch clause. */
tree current_catch;
/* The VAR_DECL holding the Darwin equivalent of EXC_PTR_EXPR. */
tree caught_decl;
tree stack_decl;
tree rethrow_decl;
};
static struct objc_try_context *cur_try_context;
/* This hook, called via lang_eh_runtime_type, generates a runtime object
that represents TYPE. For Objective-C, this is just the class name. */
/* ??? Isn't there a class object or some such? Is it easy to get? */
#ifndef OBJCPLUS
static tree
objc_eh_runtime_type (tree type)
{
return add_objc_string (OBJC_TYPE_NAME (TREE_TYPE (type)), class_names);
}
#endif
/* Initialize exception handling. */
static void
objc_init_exceptions (void)
{
static bool done = false;
if (done)
return;
done = true;
if (flag_objc_sjlj_exceptions)
{
/* On Darwin, ObjC exceptions require a sufficiently recent
version of the runtime, so the user must ask for them explicitly. */
if (!flag_objc_exceptions)
warning (0, "use %<-fobjc-exceptions%> to enable Objective-C "
"exception syntax");
}
#ifndef OBJCPLUS
else
{
c_eh_initialized_p = true;
eh_personality_libfunc
= init_one_libfunc (USING_SJLJ_EXCEPTIONS
? "__gnu_objc_personality_sj0"
: "__gnu_objc_personality_v0");
default_init_unwind_resume_libfunc ();
using_eh_for_cleanups ();
lang_eh_runtime_type = objc_eh_runtime_type;
}
#endif
}
/* Build an EXC_PTR_EXPR, or the moral equivalent. In the case of Darwin,
we'll arrange for it to be initialized (and associated with a binding)
later. */
static tree
objc_build_exc_ptr (void)
{
if (flag_objc_sjlj_exceptions)
{
tree var = cur_try_context->caught_decl;
if (!var)
{
var = objc_create_temporary_var (objc_object_type);
cur_try_context->caught_decl = var;
}
return var;
}
else
return build0 (EXC_PTR_EXPR, objc_object_type);
}
/* Build "objc_exception_try_exit(&_stack)". */
static tree
next_sjlj_build_try_exit (void)
{
tree t;
t = build_fold_addr_expr (cur_try_context->stack_decl);
t = tree_cons (NULL, t, NULL);
t = build_function_call (objc_exception_try_exit_decl, t);
return t;
}
/* Build
objc_exception_try_enter (&_stack);
if (_setjmp(&_stack.buf))
;
else
;
Return the COND_EXPR. Note that the THEN and ELSE fields are left
empty, ready for the caller to fill them in. */
static tree
next_sjlj_build_enter_and_setjmp (void)
{
tree t, enter, sj, cond;
t = build_fold_addr_expr (cur_try_context->stack_decl);
t = tree_cons (NULL, t, NULL);
enter = build_function_call (objc_exception_try_enter_decl, t);
t = objc_build_component_ref (cur_try_context->stack_decl,
get_identifier ("buf"));
t = build_fold_addr_expr (t);
#ifdef OBJCPLUS
/* Convert _setjmp argument to type that is expected. */
if (TYPE_ARG_TYPES (TREE_TYPE (objc_setjmp_decl)))
t = convert (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (objc_setjmp_decl))), t);
else
t = convert (ptr_type_node, t);
#else
t = convert (ptr_type_node, t);
#endif
t = tree_cons (NULL, t, NULL);
sj = build_function_call (objc_setjmp_decl, t);
cond = build2 (COMPOUND_EXPR, TREE_TYPE (sj), enter, sj);
cond = c_common_truthvalue_conversion (cond);
return build3 (COND_EXPR, void_type_node, cond, NULL, NULL);
}
/* Build:
DECL = objc_exception_extract(&_stack); */
static tree
next_sjlj_build_exc_extract (tree decl)
{
tree t;
t = build_fold_addr_expr (cur_try_context->stack_decl);
t = tree_cons (NULL, t, NULL);
t = build_function_call (objc_exception_extract_decl, t);
t = convert (TREE_TYPE (decl), t);
t = build2 (MODIFY_EXPR, void_type_node, decl, t);
return t;
}
/* Build
if (objc_exception_match(obj_get_class(TYPE), _caught)
BODY
else if (...)
...
else
{
_rethrow = _caught;
objc_exception_try_exit(&_stack);
}
from the sequence of CATCH_EXPRs in the current try context. */
static tree
next_sjlj_build_catch_list (void)
{
tree_stmt_iterator i = tsi_start (cur_try_context->catch_list);
tree catch_seq, t;
tree *last = &catch_seq;
bool saw_id = false;
for (; !tsi_end_p (i); tsi_next (&i))
{
tree stmt = tsi_stmt (i);
tree type = CATCH_TYPES (stmt);
tree body = CATCH_BODY (stmt);
if (type == NULL)
{
*last = body;
saw_id = true;
break;
}
else
{
tree args, cond;
if (type == error_mark_node)
cond = error_mark_node;
else
{
args = tree_cons (NULL, cur_try_context->caught_decl, NULL);
t = objc_get_class_reference (OBJC_TYPE_NAME (TREE_TYPE (type)));
args = tree_cons (NULL, t, args);
t = build_function_call (objc_exception_match_decl, args);
cond = c_common_truthvalue_conversion (t);
}
t = build3 (COND_EXPR, void_type_node, cond, body, NULL);
SET_EXPR_LOCUS (t, EXPR_LOCUS (stmt));
*last = t;
last = &COND_EXPR_ELSE (t);
}
}
if (!saw_id)
{
t = build2 (MODIFY_EXPR, void_type_node, cur_try_context->rethrow_decl,
cur_try_context->caught_decl);
SET_EXPR_LOCATION (t, cur_try_context->end_catch_locus);
append_to_statement_list (t, last);
t = next_sjlj_build_try_exit ();
SET_EXPR_LOCATION (t, cur_try_context->end_catch_locus);
append_to_statement_list (t, last);
}
return catch_seq;
}
/* Build a complete @try-@catch-@finally block for legacy Darwin setjmp
exception handling. We aim to build:
{
struct _objc_exception_data _stack;
id _rethrow = 0;
try
{
objc_exception_try_enter (&_stack);
if (_setjmp(&_stack.buf))
{
id _caught = objc_exception_extract(&_stack);
objc_exception_try_enter (&_stack);
if (_setjmp(&_stack.buf))
_rethrow = objc_exception_extract(&_stack);
else
CATCH-LIST
}
else
TRY-BLOCK
}
finally
{
if (!_rethrow)
objc_exception_try_exit(&_stack);
FINALLY-BLOCK
if (_rethrow)
objc_exception_throw(_rethrow);
}
}
If CATCH-LIST is empty, we can omit all of the block containing
"_caught" except for the setting of _rethrow. Note the use of
a real TRY_FINALLY_EXPR here, which is not involved in EH per-se,
but handles goto and other exits from the block. */
static tree
next_sjlj_build_try_catch_finally (void)
{
tree rethrow_decl, stack_decl, t;
tree catch_seq, try_fin, bind;
/* Create the declarations involved. */
t = xref_tag (RECORD_TYPE, get_identifier (UTAG_EXCDATA));
stack_decl = objc_create_temporary_var (t);
cur_try_context->stack_decl = stack_decl;
rethrow_decl = objc_create_temporary_var (objc_object_type);
cur_try_context->rethrow_decl = rethrow_decl;
TREE_CHAIN (rethrow_decl) = stack_decl;
/* Build the outermost variable binding level. */
bind = build3 (BIND_EXPR, void_type_node, rethrow_decl, NULL, NULL);
SET_EXPR_LOCATION (bind, cur_try_context->try_locus);
TREE_SIDE_EFFECTS (bind) = 1;
/* Initialize rethrow_decl. */
t = build2 (MODIFY_EXPR, void_type_node, rethrow_decl,
convert (objc_object_type, null_pointer_node));
SET_EXPR_LOCATION (t, cur_try_context->try_locus);
append_to_statement_list (t, &BIND_EXPR_BODY (bind));
/* Build the outermost TRY_FINALLY_EXPR. */
try_fin = build2 (TRY_FINALLY_EXPR, void_type_node, NULL, NULL);
SET_EXPR_LOCATION (try_fin, cur_try_context->try_locus);
TREE_SIDE_EFFECTS (try_fin) = 1;
append_to_statement_list (try_fin, &BIND_EXPR_BODY (bind));
/* Create the complete catch sequence. */
if (cur_try_context->catch_list)
{
tree caught_decl = objc_build_exc_ptr ();
catch_seq = build_stmt (BIND_EXPR, caught_decl, NULL, NULL);
TREE_SIDE_EFFECTS (catch_seq) = 1;
t = next_sjlj_build_exc_extract (caught_decl);
append_to_statement_list (t, &BIND_EXPR_BODY (catch_seq));
t = next_sjlj_build_enter_and_setjmp ();
COND_EXPR_THEN (t) = next_sjlj_build_exc_extract (rethrow_decl);
COND_EXPR_ELSE (t) = next_sjlj_build_catch_list ();
append_to_statement_list (t, &BIND_EXPR_BODY (catch_seq));
}
else
catch_seq = next_sjlj_build_exc_extract (rethrow_decl);
SET_EXPR_LOCATION (catch_seq, cur_try_context->end_try_locus);
/* Build the main register-and-try if statement. */
t = next_sjlj_build_enter_and_setjmp ();
SET_EXPR_LOCATION (t, cur_try_context->try_locus);
COND_EXPR_THEN (t) = catch_seq;
COND_EXPR_ELSE (t) = cur_try_context->try_body;
TREE_OPERAND (try_fin, 0) = t;
/* Build the complete FINALLY statement list. */
t = next_sjlj_build_try_exit ();
t = build_stmt (COND_EXPR,
c_common_truthvalue_conversion (rethrow_decl),
NULL, t);
SET_EXPR_LOCATION (t, cur_try_context->finally_locus);
append_to_statement_list (t, &TREE_OPERAND (try_fin, 1));
append_to_statement_list (cur_try_context->finally_body,
&TREE_OPERAND (try_fin, 1));
t = tree_cons (NULL, rethrow_decl, NULL);
t = build_function_call (objc_exception_throw_decl, t);
t = build_stmt (COND_EXPR,
c_common_truthvalue_conversion (rethrow_decl),
t, NULL);
SET_EXPR_LOCATION (t, cur_try_context->end_finally_locus);
append_to_statement_list (t, &TREE_OPERAND (try_fin, 1));
return bind;
}
/* Called just after parsing the @try and its associated BODY. We now
must prepare for the tricky bits -- handling the catches and finally. */
void
objc_begin_try_stmt (location_t try_locus, tree body)
{
struct objc_try_context *c = xcalloc (1, sizeof (*c));
c->outer = cur_try_context;
c->try_body = body;
c->try_locus = try_locus;
c->end_try_locus = input_location;
cur_try_context = c;
objc_init_exceptions ();
if (flag_objc_sjlj_exceptions)
objc_mark_locals_volatile (NULL);
}
/* Called just after parsing "@catch (parm)". Open a binding level,
enter DECL into the binding level, and initialize it. Leave the
binding level open while the body of the compound statement is parsed. */
void
objc_begin_catch_clause (tree decl)
{
tree compound, type, t;
/* Begin a new scope that the entire catch clause will live in. */
compound = c_begin_compound_stmt (true);
/* The parser passed in a PARM_DECL, but what we really want is a VAR_DECL. */
decl = build_decl (VAR_DECL, DECL_NAME (decl), TREE_TYPE (decl));
lang_hooks.decls.pushdecl (decl);
/* Since a decl is required here by syntax, don't warn if its unused. */
/* ??? As opposed to __attribute__((unused))? Anyway, this appears to
be what the previous objc implementation did. */
TREE_USED (decl) = 1;
/* Verify that the type of the catch is valid. It must be a pointer
to an Objective-C class, or "id" (which is catch-all). */
type = TREE_TYPE (decl);
if (POINTER_TYPE_P (type) && objc_is_object_id (TREE_TYPE (type)))
type = NULL;
else if (!POINTER_TYPE_P (type) || !TYPED_OBJECT (TREE_TYPE (type)))
{
error ("@catch parameter is not a known Objective-C class type");
type = error_mark_node;
}
else if (cur_try_context->catch_list)
{
/* Examine previous @catch clauses and see if we've already
caught the type in question. */
tree_stmt_iterator i = tsi_start (cur_try_context->catch_list);
for (; !tsi_end_p (i); tsi_next (&i))
{
tree stmt = tsi_stmt (i);
t = CATCH_TYPES (stmt);
if (t == error_mark_node)
continue;
if (!t || DERIVED_FROM_P (TREE_TYPE (t), TREE_TYPE (type)))
{
warning (0, "exception of type %<%T%> will be caught",
TREE_TYPE (type));
warning (0, "%H by earlier handler for %<%T%>",
EXPR_LOCUS (stmt), TREE_TYPE (t ? t : objc_object_type));
break;
}
}
}
/* Record the data for the catch in the try context so that we can
finalize it later. */
t = build_stmt (CATCH_EXPR, type, compound);
cur_try_context->current_catch = t;
/* Initialize the decl from the EXC_PTR_EXPR we get from the runtime. */
t = objc_build_exc_ptr ();
t = convert (TREE_TYPE (decl), t);
t = build2 (MODIFY_EXPR, void_type_node, decl, t);
add_stmt (t);
}
/* Called just after parsing the closing brace of a @catch clause. Close
the open binding level, and record a CATCH_EXPR for it. */
void
objc_finish_catch_clause (void)
{
tree c = cur_try_context->current_catch;
cur_try_context->current_catch = NULL;
cur_try_context->end_catch_locus = input_location;
CATCH_BODY (c) = c_end_compound_stmt (CATCH_BODY (c), 1);
append_to_statement_list (c, &cur_try_context->catch_list);
}
/* Called after parsing a @finally clause and its associated BODY.
Record the body for later placement. */
void
objc_build_finally_clause (location_t finally_locus, tree body)
{
cur_try_context->finally_body = body;
cur_try_context->finally_locus = finally_locus;
cur_try_context->end_finally_locus = input_location;
}
/* Called to finalize a @try construct. */
tree
objc_finish_try_stmt (void)
{
struct objc_try_context *c = cur_try_context;
tree stmt;
if (c->catch_list == NULL && c->finally_body == NULL)
error ("%<@try%> without %<@catch%> or %<@finally%>");
/* If we're doing Darwin setjmp exceptions, build the big nasty. */
if (flag_objc_sjlj_exceptions)
{
if (!cur_try_context->finally_body)
{
cur_try_context->finally_locus = input_location;
cur_try_context->end_finally_locus = input_location;
}
stmt = next_sjlj_build_try_catch_finally ();
}
else
{
/* Otherwise, nest the CATCH inside a FINALLY. */
stmt = c->try_body;
if (c->catch_list)
{
stmt = build_stmt (TRY_CATCH_EXPR, stmt, c->catch_list);
SET_EXPR_LOCATION (stmt, cur_try_context->try_locus);
}
if (c->finally_body)
{
stmt = build_stmt (TRY_FINALLY_EXPR, stmt, c->finally_body);
SET_EXPR_LOCATION (stmt, cur_try_context->try_locus);
}
}
add_stmt (stmt);
cur_try_context = c->outer;
free (c);
return stmt;
}
tree
objc_build_throw_stmt (tree throw_expr)
{
tree args;
objc_init_exceptions ();
if (throw_expr == NULL)
{
/* If we're not inside a @catch block, there is no "current
exception" to be rethrown. */
if (cur_try_context == NULL
|| cur_try_context->current_catch == NULL)
{
error ("%<@throw%> (rethrow) used outside of a @catch block");
return NULL_TREE;
}
/* Otherwise the object is still sitting in the EXC_PTR_EXPR
value that we get from the runtime. */
throw_expr = objc_build_exc_ptr ();
}
/* A throw is just a call to the runtime throw function with the
object as a parameter. */
args = tree_cons (NULL, throw_expr, NULL);
return add_stmt (build_function_call (objc_exception_throw_decl, args));
}
tree
objc_build_synchronized (location_t start_locus, tree mutex, tree body)
{
tree args, call;
/* First lock the mutex. */
mutex = save_expr (mutex);
args = tree_cons (NULL, mutex, NULL);
call = build_function_call (objc_sync_enter_decl, args);
SET_EXPR_LOCATION (call, start_locus);
add_stmt (call);
/* Build the mutex unlock. */
args = tree_cons (NULL, mutex, NULL);
call = build_function_call (objc_sync_exit_decl, args);
SET_EXPR_LOCATION (call, input_location);
/* Put the that and the body in a TRY_FINALLY. */
objc_begin_try_stmt (start_locus, body);
objc_build_finally_clause (input_location, call);
return objc_finish_try_stmt ();
}
/* Predefine the following data type:
struct _objc_exception_data
{
int buf[OBJC_JBLEN];
void *pointers[4];
}; */
/* The following yuckiness should prevent users from having to #include
<setjmp.h> in their code... */
/* Define to a harmless positive value so the below code doesn't die. */
#ifndef OBJC_JBLEN
#define OBJC_JBLEN 18
#endif
static void
build_next_objc_exception_stuff (void)
{
tree field_decl, field_decl_chain, index, temp_type;
objc_exception_data_template
= start_struct (RECORD_TYPE, get_identifier (UTAG_EXCDATA));
/* int buf[OBJC_JBLEN]; */
index = build_index_type (build_int_cst (NULL_TREE, OBJC_JBLEN - 1));
field_decl = create_field_decl (build_array_type (integer_type_node, index),
"buf");
field_decl_chain = field_decl;
/* void *pointers[4]; */
index = build_index_type (build_int_cst (NULL_TREE, 4 - 1));
field_decl = create_field_decl (build_array_type (ptr_type_node, index),
"pointers");
chainon (field_decl_chain, field_decl);
finish_struct (objc_exception_data_template, field_decl_chain, NULL_TREE);
/* int _setjmp(...); */
/* If the user includes <setjmp.h>, this shall be superseded by
'int _setjmp(jmp_buf);' */
temp_type = build_function_type (integer_type_node, NULL_TREE);
objc_setjmp_decl
= builtin_function (TAG_SETJMP, temp_type, 0, NOT_BUILT_IN, NULL, NULL_TREE);
/* id objc_exception_extract(struct _objc_exception_data *); */
temp_type
= build_function_type (objc_object_type,
tree_cons (NULL_TREE,
build_pointer_type (objc_exception_data_template),
OBJC_VOID_AT_END));
objc_exception_extract_decl
= builtin_function (TAG_EXCEPTIONEXTRACT, temp_type, 0, NOT_BUILT_IN, NULL, NULL_TREE);
/* void objc_exception_try_enter(struct _objc_exception_data *); */
/* void objc_exception_try_exit(struct _objc_exception_data *); */
temp_type
= build_function_type (void_type_node,
tree_cons (NULL_TREE,
build_pointer_type (objc_exception_data_template),
OBJC_VOID_AT_END));
objc_exception_try_enter_decl
= builtin_function (TAG_EXCEPTIONTRYENTER, temp_type, 0, NOT_BUILT_IN, NULL, NULL_TREE);
objc_exception_try_exit_decl
= builtin_function (TAG_EXCEPTIONTRYEXIT, temp_type, 0, NOT_BUILT_IN, NULL, NULL_TREE);
/* int objc_exception_match(id, id); */
temp_type
= build_function_type (integer_type_node,
tree_cons (NULL_TREE, objc_object_type,
tree_cons (NULL_TREE, objc_object_type,
OBJC_VOID_AT_END)));
objc_exception_match_decl
= builtin_function (TAG_EXCEPTIONMATCH, temp_type, 0, NOT_BUILT_IN, NULL, NULL_TREE);
/* id objc_assign_ivar (id, id, unsigned int); */
/* id objc_assign_ivar_Fast (id, id, unsigned int)
__attribute__ ((hard_coded_address (OFFS_ASSIGNIVAR_FAST))); */
temp_type
= build_function_type (objc_object_type,
tree_cons
(NULL_TREE, objc_object_type,
tree_cons (NULL_TREE, objc_object_type,
tree_cons (NULL_TREE,
unsigned_type_node,
OBJC_VOID_AT_END))));
objc_assign_ivar_decl
= builtin_function (TAG_ASSIGNIVAR, temp_type, 0, NOT_BUILT_IN,
NULL, NULL_TREE);
#ifdef OFFS_ASSIGNIVAR_FAST
objc_assign_ivar_fast_decl
= builtin_function (TAG_ASSIGNIVAR_FAST, temp_type, 0,
NOT_BUILT_IN, NULL, NULL_TREE);
DECL_ATTRIBUTES (objc_assign_ivar_fast_decl)
= tree_cons (get_identifier ("hard_coded_address"),
build_int_cst (NULL_TREE, OFFS_ASSIGNIVAR_FAST),
NULL_TREE);
#else
/* Default to slower ivar method. */
objc_assign_ivar_fast_decl = objc_assign_ivar_decl;
#endif
/* id objc_assign_global (id, id *); */
/* id objc_assign_strongCast (id, id *); */
temp_type = build_function_type (objc_object_type,
tree_cons (NULL_TREE, objc_object_type,
tree_cons (NULL_TREE, build_pointer_type (objc_object_type),
OBJC_VOID_AT_END)));
objc_assign_global_decl
= builtin_function (TAG_ASSIGNGLOBAL, temp_type, 0, NOT_BUILT_IN, NULL, NULL_TREE);
objc_assign_strong_cast_decl
= builtin_function (TAG_ASSIGNSTRONGCAST, temp_type, 0, NOT_BUILT_IN, NULL, NULL_TREE);
}
static void
build_objc_exception_stuff (void)
{
tree noreturn_list, nothrow_list, temp_type;
noreturn_list = tree_cons (get_identifier ("noreturn"), NULL, NULL);
nothrow_list = tree_cons (get_identifier ("nothrow"), NULL, NULL);
/* void objc_exception_throw(id) __attribute__((noreturn)); */
/* void objc_sync_enter(id); */
/* void objc_sync_exit(id); */
temp_type = build_function_type (void_type_node,
tree_cons (NULL_TREE, objc_object_type,
OBJC_VOID_AT_END));
objc_exception_throw_decl
= builtin_function (TAG_EXCEPTIONTHROW, temp_type, 0, NOT_BUILT_IN, NULL,
noreturn_list);
objc_sync_enter_decl
= builtin_function (TAG_SYNCENTER, temp_type, 0, NOT_BUILT_IN,
NULL, nothrow_list);
objc_sync_exit_decl
= builtin_function (TAG_SYNCEXIT, temp_type, 0, NOT_BUILT_IN,
NULL, nothrow_list);
}
/* Construct a C struct corresponding to ObjC class CLASS, with the same
name as the class:
struct <classname> {
struct _objc_class *isa;
...
}; */
static void
build_private_template (tree class)
{
if (!CLASS_STATIC_TEMPLATE (class))
{
tree record = objc_build_struct (class,
get_class_ivars (class, false),
CLASS_SUPER_NAME (class));
/* Set the TREE_USED bit for this struct, so that stab generator
can emit stabs for this struct type. */
if (flag_debug_only_used_symbols && TYPE_STUB_DECL (record))
TREE_USED (TYPE_STUB_DECL (record)) = 1;
}
}
/* Begin code generation for protocols... */
/* struct _objc_protocol {
struct _objc_class *isa;
char *protocol_name;
struct _objc_protocol **protocol_list;
struct _objc__method_prototype_list *instance_methods;
struct _objc__method_prototype_list *class_methods;
}; */
static void
build_protocol_template (void)
{
tree field_decl, field_decl_chain;
objc_protocol_template = start_struct (RECORD_TYPE,
get_identifier (UTAG_PROTOCOL));
/* struct _objc_class *isa; */
field_decl = create_field_decl (build_pointer_type
(xref_tag (RECORD_TYPE,
get_identifier (UTAG_CLASS))),
"isa");
field_decl_chain = field_decl;
/* char *protocol_name; */
field_decl = create_field_decl (string_type_node, "protocol_name");
chainon (field_decl_chain, field_decl);
/* struct _objc_protocol **protocol_list; */
field_decl = create_field_decl (build_pointer_type
(build_pointer_type
(objc_protocol_template)),
"protocol_list");
chainon (field_decl_chain, field_decl);
/* struct _objc__method_prototype_list *instance_methods; */
field_decl = create_field_decl (objc_method_proto_list_ptr,
"instance_methods");
chainon (field_decl_chain, field_decl);
/* struct _objc__method_prototype_list *class_methods; */
field_decl = create_field_decl (objc_method_proto_list_ptr,
"class_methods");
chainon (field_decl_chain, field_decl);
finish_struct (objc_protocol_template, field_decl_chain, NULL_TREE);
}
static tree
build_descriptor_table_initializer (tree type, tree entries)
{
tree initlist = NULL_TREE;
do
{
tree eltlist = NULL_TREE;
eltlist
= tree_cons (NULL_TREE,
build_selector (METHOD_SEL_NAME (entries)), NULL_TREE);
eltlist
= tree_cons (NULL_TREE,
add_objc_string (METHOD_ENCODING (entries),
meth_var_types),
eltlist);
initlist
= tree_cons (NULL_TREE,
objc_build_constructor (type, nreverse (eltlist)),
initlist);
entries = TREE_CHAIN (entries);
}
while (entries);
return objc_build_constructor (build_array_type (type, 0),
nreverse (initlist));
}
/* struct objc_method_prototype_list {
int count;
struct objc_method_prototype {
SEL name;
char *types;
} list[1];
}; */
static tree
build_method_prototype_list_template (tree list_type, int size)
{
tree objc_ivar_list_record;
tree field_decl, field_decl_chain;
/* Generate an unnamed struct definition. */
objc_ivar_list_record = start_struct (RECORD_TYPE, NULL_TREE);
/* int method_count; */
field_decl = create_field_decl (integer_type_node, "method_count");
field_decl_chain = field_decl;
/* struct objc_method method_list[]; */
field_decl = create_field_decl (build_array_type
(list_type,
build_index_type
(build_int_cst (NULL_TREE, size - 1))),
"method_list");
chainon (field_decl_chain, field_decl);
finish_struct (objc_ivar_list_record, field_decl_chain, NULL_TREE);
return objc_ivar_list_record;
}
static tree
build_method_prototype_template (void)
{
tree proto_record;
tree field_decl, field_decl_chain;
proto_record
= start_struct (RECORD_TYPE, get_identifier (UTAG_METHOD_PROTOTYPE));
/* SEL _cmd; */
field_decl = create_field_decl (objc_selector_type, "_cmd");
field_decl_chain = field_decl;
/* char *method_types; */
field_decl = create_field_decl (string_type_node, "method_types");
chainon (field_decl_chain, field_decl);
finish_struct (proto_record, field_decl_chain, NULL_TREE);
return proto_record;
}
static tree
objc_method_parm_type (tree type)
{
type = TREE_VALUE (TREE_TYPE (type));
if (TREE_CODE (type) == TYPE_DECL)
type = TREE_TYPE (type);
return type;
}
static int
objc_encoded_type_size (tree type)
{
int sz = int_size_in_bytes (type);
/* Make all integer and enum types at least as large
as an int. */
if (sz > 0 && INTEGRAL_TYPE_P (type))
sz = MAX (sz, int_size_in_bytes (integer_type_node));
/* Treat arrays as pointers, since that's how they're
passed in. */
else if (TREE_CODE (type) == ARRAY_TYPE)
sz = int_size_in_bytes (ptr_type_node);
return sz;
}
static tree
encode_method_prototype (tree method_decl)
{
tree parms;
int parm_offset, i;
char buf[40];
tree result;
/* ONEWAY and BYCOPY, for remote object are the only method qualifiers. */
encode_type_qualifiers (TREE_PURPOSE (TREE_TYPE (method_decl)));
/* Encode return type. */
encode_type (objc_method_parm_type (method_decl),
obstack_object_size (&util_obstack),
OBJC_ENCODE_INLINE_DEFS);
/* Stack size. */
/* The first two arguments (self and _cmd) are pointers; account for
their size. */
i = int_size_in_bytes (ptr_type_node);
parm_offset = 2 * i;
for (parms = METHOD_SEL_ARGS (method_decl); parms;
parms = TREE_CHAIN (parms))
{
tree type = objc_method_parm_type (parms);
int sz = objc_encoded_type_size (type);
/* If a type size is not known, bail out. */
if (sz < 0)
{
error ("type %q+D does not have a known size",
type);
/* Pretend that the encoding succeeded; the compilation will
fail nevertheless. */
goto finish_encoding;
}
parm_offset += sz;
}
sprintf (buf, "%d@0:%d", parm_offset, i);
obstack_grow (&util_obstack, buf, strlen (buf));
/* Argument types. */
parm_offset = 2 * i;
for (parms = METHOD_SEL_ARGS (method_decl); parms;
parms = TREE_CHAIN (parms))
{
tree type = objc_method_parm_type (parms);
/* Process argument qualifiers for user supplied arguments. */
encode_type_qualifiers (TREE_PURPOSE (TREE_TYPE (parms)));
/* Type. */
encode_type (type, obstack_object_size (&util_obstack),
OBJC_ENCODE_INLINE_DEFS);
/* Compute offset. */
sprintf (buf, "%d", parm_offset);
parm_offset += objc_encoded_type_size (type);
obstack_grow (&util_obstack, buf, strlen (buf));
}
finish_encoding:
obstack_1grow (&util_obstack, '\0');
result = get_identifier (obstack_finish (&util_obstack));
obstack_free (&util_obstack, util_firstobj);
return result;
}
static tree
generate_descriptor_table (tree type, const char *name, int size, tree list,
tree proto)
{
tree decl, initlist;
decl = start_var_decl (type, synth_id_with_class_suffix (name, proto));
initlist = build_tree_list (NULL_TREE, build_int_cst (NULL_TREE, size));
initlist = tree_cons (NULL_TREE, list, initlist);
finish_var_decl (decl, objc_build_constructor (type, nreverse (initlist)));
return decl;
}
static void
generate_method_descriptors (tree protocol)
{
tree initlist, chain, method_list_template;
int size;
if (!objc_method_prototype_template)
objc_method_prototype_template = build_method_prototype_template ();
chain = PROTOCOL_CLS_METHODS (protocol);
if (chain)
{
size = list_length (chain);
method_list_template
= build_method_prototype_list_template (objc_method_prototype_template,
size);
initlist
= build_descriptor_table_initializer (objc_method_prototype_template,
chain);
UOBJC_CLASS_METHODS_decl
= generate_descriptor_table (method_list_template,
"_OBJC_PROTOCOL_CLASS_METHODS",
size, initlist, protocol);
}
else
UOBJC_CLASS_METHODS_decl = 0;
chain = PROTOCOL_NST_METHODS (protocol);
if (chain)
{
size = list_length (chain);
method_list_template
= build_method_prototype_list_template (objc_method_prototype_template,
size);
initlist
= build_descriptor_table_initializer (objc_method_prototype_template,
chain);
UOBJC_INSTANCE_METHODS_decl
= generate_descriptor_table (method_list_template,
"_OBJC_PROTOCOL_INSTANCE_METHODS",
size, initlist, protocol);
}
else
UOBJC_INSTANCE_METHODS_decl = 0;
}
static void
generate_protocol_references (tree plist)
{
tree lproto;
/* Forward declare protocols referenced. */
for (lproto = plist; lproto; lproto = TREE_CHAIN (lproto))
{
tree proto = TREE_VALUE (lproto);
if (TREE_CODE (proto) == PROTOCOL_INTERFACE_TYPE
&& PROTOCOL_NAME (proto))
{
if (! PROTOCOL_FORWARD_DECL (proto))
build_protocol_reference (proto);
if (PROTOCOL_LIST (proto))
generate_protocol_references (PROTOCOL_LIST (proto));
}
}
}
/* Generate either '- .cxx_construct' or '- .cxx_destruct' for the
current class. */
#ifdef OBJCPLUS
static void
objc_generate_cxx_ctor_or_dtor (bool dtor)
{
tree fn, body, compound_stmt, ivar;
/* - (id) .cxx_construct { ... return self; } */
/* - (void) .cxx_construct { ... } */
objc_set_method_type (MINUS_EXPR);
objc_start_method_definition
(objc_build_method_signature (build_tree_list (NULL_TREE,
dtor
? void_type_node
: objc_object_type),
get_identifier (dtor
? TAG_CXX_DESTRUCT
: TAG_CXX_CONSTRUCT),
make_node (TREE_LIST),
false));
body = begin_function_body ();
compound_stmt = begin_compound_stmt (0);
ivar = CLASS_IVARS (implementation_template);
/* Destroy ivars in reverse order. */
if (dtor)
ivar = nreverse (copy_list (ivar));
for (; ivar; ivar = TREE_CHAIN (ivar))
{
if (TREE_CODE (ivar) == FIELD_DECL)
{
tree type = TREE_TYPE (ivar);
/* Call the ivar's default constructor or destructor. Do not
call the destructor unless a corresponding constructor call
has also been made (or is not needed). */
if (IS_AGGR_TYPE (type)
&& (dtor
? (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
&& (!TYPE_NEEDS_CONSTRUCTING (type)
|| TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
: (TYPE_NEEDS_CONSTRUCTING (type)
&& TYPE_HAS_DEFAULT_CONSTRUCTOR (type))))
finish_expr_stmt
(build_special_member_call
(build_ivar_reference (DECL_NAME (ivar)),
dtor ? complete_dtor_identifier : complete_ctor_identifier,
NULL_TREE, type, LOOKUP_NORMAL));
}
}
/* The constructor returns 'self'. */
if (!dtor)
finish_return_stmt (self_decl);
finish_compound_stmt (compound_stmt);
finish_function_body (body);
fn = current_function_decl;
finish_function ();
objc_finish_method_definition (fn);
}
/* The following routine will examine the current @interface for any
non-POD C++ ivars requiring non-trivial construction and/or
destruction, and then synthesize special '- .cxx_construct' and/or
'- .cxx_destruct' methods which will run the appropriate
construction or destruction code. Note that ivars inherited from
super-classes are _not_ considered. */
static void
objc_generate_cxx_cdtors (void)
{
bool need_ctor = false, need_dtor = false;
tree ivar;
/* We do not want to do this for categories, since they do not have
their own ivars. */
if (TREE_CODE (objc_implementation_context) != CLASS_IMPLEMENTATION_TYPE)
return;
/* First, determine if we even need a constructor and/or destructor. */
for (ivar = CLASS_IVARS (implementation_template); ivar;
ivar = TREE_CHAIN (ivar))
{
if (TREE_CODE (ivar) == FIELD_DECL)
{
tree type = TREE_TYPE (ivar);
if (IS_AGGR_TYPE (type))
{
if (TYPE_NEEDS_CONSTRUCTING (type)
&& TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
/* NB: If a default constructor is not available, we will not
be able to initialize this ivar; the add_instance_variable()
routine will already have warned about this. */
need_ctor = true;
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
&& (!TYPE_NEEDS_CONSTRUCTING (type)
|| TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
/* NB: If a default constructor is not available, we will not
call the destructor either, for symmetry. */
need_dtor = true;
}
}
}
/* Generate '- .cxx_construct' if needed. */
if (need_ctor)
objc_generate_cxx_ctor_or_dtor (false);
/* Generate '- .cxx_destruct' if needed. */
if (need_dtor)
objc_generate_cxx_ctor_or_dtor (true);
/* The 'imp_list' variable points at an imp_entry record for the current
@implementation. Record the existence of '- .cxx_construct' and/or
'- .cxx_destruct' methods therein; it will be included in the
metadata for the class. */
if (flag_next_runtime)
imp_list->has_cxx_cdtors = (need_ctor || need_dtor);
}
#endif
/* For each protocol which was referenced either from a @protocol()
expression, or because a class/category implements it (then a
pointer to the protocol is stored in the struct describing the
class/category), we create a statically allocated instance of the
Protocol class. The code is written in such a way as to generate
as few Protocol objects as possible; we generate a unique Protocol
instance for each protocol, and we don't generate a Protocol
instance if the protocol is never referenced (either from a
@protocol() or from a class/category implementation). These
statically allocated objects can be referred to via the static
(that is, private to this module) symbols _OBJC_PROTOCOL_n.
The statically allocated Protocol objects that we generate here
need to be fixed up at runtime in order to be used: the 'isa'
pointer of the objects need to be set up to point to the 'Protocol'
class, as known at runtime.
The NeXT runtime fixes up all protocols at program startup time,
before main() is entered. It uses a low-level trick to look up all
those symbols, then loops on them and fixes them up.
The GNU runtime as well fixes up all protocols before user code
from the module is executed; it requires pointers to those symbols
to be put in the objc_symtab (which is then passed as argument to
the function __objc_exec_class() which the compiler sets up to be
executed automatically when the module is loaded); setup of those
Protocol objects happen in two ways in the GNU runtime: all
Protocol objects referred to by a class or category implementation
are fixed up when the class/category is loaded; all Protocol
objects referred to by a @protocol() expression are added by the
compiler to the list of statically allocated instances to fixup
(the same list holding the statically allocated constant string
objects). Because, as explained above, the compiler generates as
few Protocol objects as possible, some Protocol object might end up
being referenced multiple times when compiled with the GNU runtime,
and end up being fixed up multiple times at runtime initialization.
But that doesn't hurt, it's just a little inefficient. */
static void
generate_protocols (void)
{
tree p, encoding;
tree decl;
tree initlist, protocol_name_expr, refs_decl, refs_expr;
/* If a protocol was directly referenced, pull in indirect references. */
for (p = protocol_chain; p; p = TREE_CHAIN (p))
if (PROTOCOL_FORWARD_DECL (p) && PROTOCOL_LIST (p))
generate_protocol_references (PROTOCOL_LIST (p));
for (p = protocol_chain; p; p = TREE_CHAIN (p))
{
tree nst_methods = PROTOCOL_NST_METHODS (p);
tree cls_methods = PROTOCOL_CLS_METHODS (p);
/* If protocol wasn't referenced, don't generate any code. */
decl = PROTOCOL_FORWARD_DECL (p);
if (!decl)
continue;
/* Make sure we link in the Protocol class. */
add_class_reference (get_identifier (PROTOCOL_OBJECT_CLASS_NAME));
while (nst_methods)
{
if (! METHOD_ENCODING (nst_methods))
{
encoding = encode_method_prototype (nst_methods);
METHOD_ENCODING (nst_methods) = encoding;
}
nst_methods = TREE_CHAIN (nst_methods);
}
while (cls_methods)
{
if (! METHOD_ENCODING (cls_methods))
{
encoding = encode_method_prototype (cls_methods);
METHOD_ENCODING (cls_methods) = encoding;
}
cls_methods = TREE_CHAIN (cls_methods);
}
generate_method_descriptors (p);
if (PROTOCOL_LIST (p))
refs_decl = generate_protocol_list (p);
else
refs_decl = 0;
/* static struct objc_protocol _OBJC_PROTOCOL_<mumble>; */
protocol_name_expr = add_objc_string (PROTOCOL_NAME (p), class_names);
if (refs_decl)
refs_expr = convert (build_pointer_type (build_pointer_type
(objc_protocol_template)),
build_unary_op (ADDR_EXPR, refs_decl, 0));
else
refs_expr = build_int_cst (NULL_TREE, 0);
/* UOBJC_INSTANCE_METHODS_decl/UOBJC_CLASS_METHODS_decl are set
by generate_method_descriptors, which is called above. */
initlist = build_protocol_initializer (TREE_TYPE (decl),
protocol_name_expr, refs_expr,
UOBJC_INSTANCE_METHODS_decl,
UOBJC_CLASS_METHODS_decl);
finish_var_decl (decl, initlist);
}
}
static tree
build_protocol_initializer (tree type, tree protocol_name,
tree protocol_list, tree instance_methods,
tree class_methods)
{
tree initlist = NULL_TREE, expr;
tree cast_type = build_pointer_type
(xref_tag (RECORD_TYPE,
get_identifier (UTAG_CLASS)));
/* Filling the "isa" in with one allows the runtime system to
detect that the version change...should remove before final release. */
expr = build_int_cst (cast_type, PROTOCOL_VERSION);
initlist = tree_cons (NULL_TREE, expr, initlist);
initlist = tree_cons (NULL_TREE, protocol_name, initlist);
initlist = tree_cons (NULL_TREE, protocol_list, initlist);
if (!instance_methods)
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, 0), initlist);
else
{
expr = convert (objc_method_proto_list_ptr,
build_unary_op (ADDR_EXPR, instance_methods, 0));
initlist = tree_cons (NULL_TREE, expr, initlist);
}
if (!class_methods)
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, 0), initlist);
else
{
expr = convert (objc_method_proto_list_ptr,
build_unary_op (ADDR_EXPR, class_methods, 0));
initlist = tree_cons (NULL_TREE, expr, initlist);
}
return objc_build_constructor (type, nreverse (initlist));
}
/* struct _objc_category {
char *category_name;
char *class_name;
struct _objc_method_list *instance_methods;
struct _objc_method_list *class_methods;
struct _objc_protocol_list *protocols;
}; */
static void
build_category_template (void)
{
tree field_decl, field_decl_chain;
objc_category_template = start_struct (RECORD_TYPE,
get_identifier (UTAG_CATEGORY));
/* char *category_name; */
field_decl = create_field_decl (string_type_node, "category_name");
field_decl_chain = field_decl;
/* char *class_name; */
field_decl = create_field_decl (string_type_node, "class_name");
chainon (field_decl_chain, field_decl);
/* struct _objc_method_list *instance_methods; */
field_decl = create_field_decl (objc_method_list_ptr,
"instance_methods");
chainon (field_decl_chain, field_decl);
/* struct _objc_method_list *class_methods; */
field_decl = create_field_decl (objc_method_list_ptr,
"class_methods");
chainon (field_decl_chain, field_decl);
/* struct _objc_protocol **protocol_list; */
field_decl = create_field_decl (build_pointer_type
(build_pointer_type
(objc_protocol_template)),
"protocol_list");
chainon (field_decl_chain, field_decl);
finish_struct (objc_category_template, field_decl_chain, NULL_TREE);
}
/* struct _objc_selector {
SEL sel_id;
char *sel_type;
}; */
static void
build_selector_template (void)
{
tree field_decl, field_decl_chain;
objc_selector_template
= start_struct (RECORD_TYPE, get_identifier (UTAG_SELECTOR));
/* SEL sel_id; */
field_decl = create_field_decl (objc_selector_type, "sel_id");
field_decl_chain = field_decl;
/* char *sel_type; */
field_decl = create_field_decl (string_type_node, "sel_type");
chainon (field_decl_chain, field_decl);
finish_struct (objc_selector_template, field_decl_chain, NULL_TREE);
}
/* struct _objc_class {
struct _objc_class *isa;
struct _objc_class *super_class;
char *name;
long version;
long info;
long instance_size;
struct _objc_ivar_list *ivars;
struct _objc_method_list *methods;
#ifdef __NEXT_RUNTIME__
struct objc_cache *cache;
#else
struct sarray *dtable;
struct _objc_class *subclass_list;
struct _objc_class *sibling_class;
#endif
struct _objc_protocol_list *protocols;
#ifdef __NEXT_RUNTIME__
void *sel_id;
#endif
void *gc_object_type;
}; */
/* NB: The 'sel_id' and 'gc_object_type' fields are not being used by
the NeXT/Apple runtime; still, the compiler must generate them to
maintain backward binary compatibility (and to allow for future
expansion). */
static void
build_class_template (void)
{
tree field_decl, field_decl_chain;
objc_class_template
= start_struct (RECORD_TYPE, get_identifier (UTAG_CLASS));
/* struct _objc_class *isa; */
field_decl = create_field_decl (build_pointer_type (objc_class_template),
"isa");
field_decl_chain = field_decl;
/* struct _objc_class *super_class; */
field_decl = create_field_decl (build_pointer_type (objc_class_template),
"super_class");
chainon (field_decl_chain, field_decl);
/* char *name; */
field_decl = create_field_decl (string_type_node, "name");
chainon (field_decl_chain, field_decl);
/* long version; */
field_decl = create_field_decl (long_integer_type_node, "version");
chainon (field_decl_chain, field_decl);
/* long info; */
field_decl = create_field_decl (long_integer_type_node, "info");
chainon (field_decl_chain, field_decl);
/* long instance_size; */
field_decl = create_field_decl (long_integer_type_node, "instance_size");
chainon (field_decl_chain, field_decl);
/* struct _objc_ivar_list *ivars; */
field_decl = create_field_decl (objc_ivar_list_ptr,
"ivars");
chainon (field_decl_chain, field_decl);
/* struct _objc_method_list *methods; */
field_decl = create_field_decl (objc_method_list_ptr,
"methods");
chainon (field_decl_chain, field_decl);
if (flag_next_runtime)
{
/* struct objc_cache *cache; */
field_decl = create_field_decl (build_pointer_type
(xref_tag (RECORD_TYPE,
get_identifier
("objc_cache"))),
"cache");
chainon (field_decl_chain, field_decl);
}
else
{
/* struct sarray *dtable; */
field_decl = create_field_decl (build_pointer_type
(xref_tag (RECORD_TYPE,
get_identifier
("sarray"))),
"dtable");
chainon (field_decl_chain, field_decl);
/* struct objc_class *subclass_list; */
field_decl = create_field_decl (build_pointer_type
(objc_class_template),
"subclass_list");
chainon (field_decl_chain, field_decl);
/* struct objc_class *sibling_class; */
field_decl = create_field_decl (build_pointer_type
(objc_class_template),
"sibling_class");
chainon (field_decl_chain, field_decl);
}
/* struct _objc_protocol **protocol_list; */
field_decl = create_field_decl (build_pointer_type
(build_pointer_type
(xref_tag (RECORD_TYPE,
get_identifier
(UTAG_PROTOCOL)))),
"protocol_list");
chainon (field_decl_chain, field_decl);
if (flag_next_runtime)
{
/* void *sel_id; */
field_decl = create_field_decl (build_pointer_type (void_type_node),
"sel_id");
chainon (field_decl_chain, field_decl);
}
/* void *gc_object_type; */
field_decl = create_field_decl (build_pointer_type (void_type_node),
"gc_object_type");
chainon (field_decl_chain, field_decl);
finish_struct (objc_class_template, field_decl_chain, NULL_TREE);
}
/* Generate appropriate forward declarations for an implementation. */
static void
synth_forward_declarations (void)
{
tree an_id;
/* static struct objc_class _OBJC_CLASS_<my_name>; */
UOBJC_CLASS_decl = build_metadata_decl ("_OBJC_CLASS",
objc_class_template);
/* static struct objc_class _OBJC_METACLASS_<my_name>; */
UOBJC_METACLASS_decl = build_metadata_decl ("_OBJC_METACLASS",
objc_class_template);
/* Pre-build the following entities - for speed/convenience. */
an_id = get_identifier ("super_class");
ucls_super_ref = objc_build_component_ref (UOBJC_CLASS_decl, an_id);
uucls_super_ref = objc_build_component_ref (UOBJC_METACLASS_decl, an_id);
}
static void
error_with_ivar (const char *message, tree decl)
{
error ("%J%s %qs", decl,
message, gen_declaration (decl));
}
static void
check_ivars (tree inter, tree imp)
{
tree intdecls = CLASS_RAW_IVARS (inter);
tree impdecls = CLASS_RAW_IVARS (imp);
while (1)
{
tree t1, t2;
#ifdef OBJCPLUS
if (intdecls && TREE_CODE (intdecls) == TYPE_DECL)
intdecls = TREE_CHAIN (intdecls);
#endif
if (intdecls == 0 && impdecls == 0)
break;
if (intdecls == 0 || impdecls == 0)
{
error ("inconsistent instance variable specification");
break;
}
t1 = TREE_TYPE (intdecls); t2 = TREE_TYPE (impdecls);
if (!comptypes (t1, t2)
|| !tree_int_cst_equal (DECL_INITIAL (intdecls),
DECL_INITIAL (impdecls)))
{
if (DECL_NAME (intdecls) == DECL_NAME (impdecls))
{
error_with_ivar ("conflicting instance variable type",
impdecls);
error_with_ivar ("previous declaration of",
intdecls);
}
else /* both the type and the name don't match */
{
error ("inconsistent instance variable specification");
break;
}
}
else if (DECL_NAME (intdecls) != DECL_NAME (impdecls))
{
error_with_ivar ("conflicting instance variable name",
impdecls);
error_with_ivar ("previous declaration of",
intdecls);
}
intdecls = TREE_CHAIN (intdecls);
impdecls = TREE_CHAIN (impdecls);
}
}
/* Set 'objc_super_template' to the data type node for 'struct _objc_super'.
This needs to be done just once per compilation. */
/* struct _objc_super {
struct _objc_object *self;
struct _objc_class *super_class;
}; */
static void
build_super_template (void)
{
tree field_decl, field_decl_chain;
objc_super_template = start_struct (RECORD_TYPE, get_identifier (UTAG_SUPER));
/* struct _objc_object *self; */
field_decl = create_field_decl (objc_object_type, "self");
field_decl_chain = field_decl;
/* struct _objc_class *super_class; */
field_decl = create_field_decl (build_pointer_type (objc_class_template),
"super_class");
chainon (field_decl_chain, field_decl);
finish_struct (objc_super_template, field_decl_chain, NULL_TREE);
}
/* struct _objc_ivar {
char *ivar_name;
char *ivar_type;
int ivar_offset;
}; */
static tree
build_ivar_template (void)
{
tree objc_ivar_id, objc_ivar_record;
tree field_decl, field_decl_chain;
objc_ivar_id = get_identifier (UTAG_IVAR);
objc_ivar_record = start_struct (RECORD_TYPE, objc_ivar_id);
/* char *ivar_name; */
field_decl = create_field_decl (string_type_node, "ivar_name");
field_decl_chain = field_decl;
/* char *ivar_type; */
field_decl = create_field_decl (string_type_node, "ivar_type");
chainon (field_decl_chain, field_decl);
/* int ivar_offset; */
field_decl = create_field_decl (integer_type_node, "ivar_offset");
chainon (field_decl_chain, field_decl);
finish_struct (objc_ivar_record, field_decl_chain, NULL_TREE);
return objc_ivar_record;
}
/* struct {
int ivar_count;
struct objc_ivar ivar_list[ivar_count];
}; */
static tree
build_ivar_list_template (tree list_type, int size)
{
tree objc_ivar_list_record;
tree field_decl, field_decl_chain;
objc_ivar_list_record = start_struct (RECORD_TYPE, NULL_TREE);
/* int ivar_count; */
field_decl = create_field_decl (integer_type_node, "ivar_count");
field_decl_chain = field_decl;
/* struct objc_ivar ivar_list[]; */
field_decl = create_field_decl (build_array_type
(list_type,
build_index_type
(build_int_cst (NULL_TREE, size - 1))),
"ivar_list");
chainon (field_decl_chain, field_decl);
finish_struct (objc_ivar_list_record, field_decl_chain, NULL_TREE);
return objc_ivar_list_record;
}
/* struct {
struct _objc__method_prototype_list *method_next;
int method_count;
struct objc_method method_list[method_count];
}; */
static tree
build_method_list_template (tree list_type, int size)
{
tree objc_ivar_list_record;
tree field_decl, field_decl_chain;
objc_ivar_list_record = start_struct (RECORD_TYPE, NULL_TREE);
/* struct _objc__method_prototype_list *method_next; */
field_decl = create_field_decl (objc_method_proto_list_ptr,
"method_next");
field_decl_chain = field_decl;
/* int method_count; */
field_decl = create_field_decl (integer_type_node, "method_count");
chainon (field_decl_chain, field_decl);
/* struct objc_method method_list[]; */
field_decl = create_field_decl (build_array_type
(list_type,
build_index_type
(build_int_cst (NULL_TREE, size - 1))),
"method_list");
chainon (field_decl_chain, field_decl);
finish_struct (objc_ivar_list_record, field_decl_chain, NULL_TREE);
return objc_ivar_list_record;
}
static tree
build_ivar_list_initializer (tree type, tree field_decl)
{
tree initlist = NULL_TREE;
do
{
tree ivar = NULL_TREE;
/* Set name. */
if (DECL_NAME (field_decl))
ivar = tree_cons (NULL_TREE,
add_objc_string (DECL_NAME (field_decl),
meth_var_names),
ivar);
else
/* Unnamed bit-field ivar (yuck). */
ivar = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, 0), ivar);
/* Set type. */
encode_field_decl (field_decl,
obstack_object_size (&util_obstack),
OBJC_ENCODE_DONT_INLINE_DEFS);
/* Null terminate string. */
obstack_1grow (&util_obstack, 0);
ivar
= tree_cons
(NULL_TREE,
add_objc_string (get_identifier (obstack_finish (&util_obstack)),
meth_var_types),
ivar);
obstack_free (&util_obstack, util_firstobj);
/* Set offset. */
ivar = tree_cons (NULL_TREE, byte_position (field_decl), ivar);
initlist = tree_cons (NULL_TREE,
objc_build_constructor (type, nreverse (ivar)),
initlist);
do
field_decl = TREE_CHAIN (field_decl);
while (field_decl && TREE_CODE (field_decl) != FIELD_DECL);
}
while (field_decl);
return objc_build_constructor (build_array_type (type, 0),
nreverse (initlist));
}
static tree
generate_ivars_list (tree type, const char *name, int size, tree list)
{
tree decl, initlist;
decl = start_var_decl (type, synth_id_with_class_suffix
(name, objc_implementation_context));
initlist = build_tree_list (NULL_TREE, build_int_cst (NULL_TREE, size));
initlist = tree_cons (NULL_TREE, list, initlist);
finish_var_decl (decl,
objc_build_constructor (TREE_TYPE (decl),
nreverse (initlist)));
return decl;
}
/* Count only the fields occurring in T. */
static int
ivar_list_length (tree t)
{
int count = 0;
for (; t; t = TREE_CHAIN (t))
if (TREE_CODE (t) == FIELD_DECL)
++count;
return count;
}
static void
generate_ivar_lists (void)
{
tree initlist, ivar_list_template, chain;
int size;
generating_instance_variables = 1;
if (!objc_ivar_template)
objc_ivar_template = build_ivar_template ();
/* Only generate class variables for the root of the inheritance
hierarchy since these will be the same for every class. */
if (CLASS_SUPER_NAME (implementation_template) == NULL_TREE
&& (chain = TYPE_FIELDS (objc_class_template)))
{
size = ivar_list_length (chain);
ivar_list_template = build_ivar_list_template (objc_ivar_template, size);
initlist = build_ivar_list_initializer (objc_ivar_template, chain);
UOBJC_CLASS_VARIABLES_decl
= generate_ivars_list (ivar_list_template, "_OBJC_CLASS_VARIABLES",
size, initlist);
}
else
UOBJC_CLASS_VARIABLES_decl = 0;
chain = CLASS_IVARS (implementation_template);
if (chain)
{
size = ivar_list_length (chain);
ivar_list_template = build_ivar_list_template (objc_ivar_template, size);
initlist = build_ivar_list_initializer (objc_ivar_template, chain);
UOBJC_INSTANCE_VARIABLES_decl
= generate_ivars_list (ivar_list_template, "_OBJC_INSTANCE_VARIABLES",
size, initlist);
}
else
UOBJC_INSTANCE_VARIABLES_decl = 0;
generating_instance_variables = 0;
}
static tree
build_dispatch_table_initializer (tree type, tree entries)
{
tree initlist = NULL_TREE;
do
{
tree elemlist = NULL_TREE;
elemlist = tree_cons (NULL_TREE,
build_selector (METHOD_SEL_NAME (entries)),
NULL_TREE);
/* Generate the method encoding if we don't have one already. */
if (! METHOD_ENCODING (entries))
METHOD_ENCODING (entries) =
encode_method_prototype (entries);
elemlist = tree_cons (NULL_TREE,
add_objc_string (METHOD_ENCODING (entries),
meth_var_types),
elemlist);
elemlist
= tree_cons (NULL_TREE,
convert (ptr_type_node,
build_unary_op (ADDR_EXPR,
METHOD_DEFINITION (entries), 1)),
elemlist);
initlist = tree_cons (NULL_TREE,
objc_build_constructor (type, nreverse (elemlist)),
initlist);
entries = TREE_CHAIN (entries);
}
while (entries);
return objc_build_constructor (build_array_type (type, 0),
nreverse (initlist));
}
/* To accomplish method prototyping without generating all kinds of
inane warnings, the definition of the dispatch table entries were
changed from:
struct objc_method { SEL _cmd; ...; id (*_imp)(); };
to:
struct objc_method { SEL _cmd; ...; void *_imp; }; */
static tree
build_method_template (void)
{
tree _SLT_record;
tree field_decl, field_decl_chain;
_SLT_record = start_struct (RECORD_TYPE, get_identifier (UTAG_METHOD));
/* SEL _cmd; */
field_decl = create_field_decl (objc_selector_type, "_cmd");
field_decl_chain = field_decl;
/* char *method_types; */
field_decl = create_field_decl (string_type_node, "method_types");
chainon (field_decl_chain, field_decl);
/* void *_imp; */
field_decl = create_field_decl (build_pointer_type (void_type_node),
"_imp");
chainon (field_decl_chain, field_decl);
finish_struct (_SLT_record, field_decl_chain, NULL_TREE);
return _SLT_record;
}
static tree
generate_dispatch_table (tree type, const char *name, int size, tree list)
{
tree decl, initlist;
decl = start_var_decl (type, synth_id_with_class_suffix
(name, objc_implementation_context));
initlist = build_tree_list (NULL_TREE, build_int_cst (NULL_TREE, 0));
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, size), initlist);
initlist = tree_cons (NULL_TREE, list, initlist);
finish_var_decl (decl,
objc_build_constructor (TREE_TYPE (decl),
nreverse (initlist)));
return decl;
}
static void
mark_referenced_methods (void)
{
struct imp_entry *impent;
tree chain;
for (impent = imp_list; impent; impent = impent->next)
{
chain = CLASS_CLS_METHODS (impent->imp_context);
while (chain)
{
cgraph_mark_needed_node (cgraph_node (METHOD_DEFINITION (chain)));
chain = TREE_CHAIN (chain);
}
chain = CLASS_NST_METHODS (impent->imp_context);
while (chain)
{
cgraph_mark_needed_node (cgraph_node (METHOD_DEFINITION (chain)));
chain = TREE_CHAIN (chain);
}
}
}
static void
generate_dispatch_tables (void)
{
tree initlist, chain, method_list_template;
int size;
if (!objc_method_template)
objc_method_template = build_method_template ();
chain = CLASS_CLS_METHODS (objc_implementation_context);
if (chain)
{
size = list_length (chain);
method_list_template
= build_method_list_template (objc_method_template, size);
initlist
= build_dispatch_table_initializer (objc_method_template, chain);
UOBJC_CLASS_METHODS_decl
= generate_dispatch_table (method_list_template,
((TREE_CODE (objc_implementation_context)
== CLASS_IMPLEMENTATION_TYPE)
? "_OBJC_CLASS_METHODS"
: "_OBJC_CATEGORY_CLASS_METHODS"),
size, initlist);
}
else
UOBJC_CLASS_METHODS_decl = 0;
chain = CLASS_NST_METHODS (objc_implementation_context);
if (chain)
{
size = list_length (chain);
method_list_template
= build_method_list_template (objc_method_template, size);
initlist
= build_dispatch_table_initializer (objc_method_template, chain);
if (TREE_CODE (objc_implementation_context) == CLASS_IMPLEMENTATION_TYPE)
UOBJC_INSTANCE_METHODS_decl
= generate_dispatch_table (method_list_template,
"_OBJC_INSTANCE_METHODS",
size, initlist);
else
/* We have a category. */
UOBJC_INSTANCE_METHODS_decl
= generate_dispatch_table (method_list_template,
"_OBJC_CATEGORY_INSTANCE_METHODS",
size, initlist);
}
else
UOBJC_INSTANCE_METHODS_decl = 0;
}
static tree
generate_protocol_list (tree i_or_p)
{
tree initlist;
tree refs_decl, lproto, e, plist;
int size = 0;
const char *ref_name;
if (TREE_CODE (i_or_p) == CLASS_INTERFACE_TYPE
|| TREE_CODE (i_or_p) == CATEGORY_INTERFACE_TYPE)
plist = CLASS_PROTOCOL_LIST (i_or_p);
else if (TREE_CODE (i_or_p) == PROTOCOL_INTERFACE_TYPE)
plist = PROTOCOL_LIST (i_or_p);
else
abort ();
/* Compute size. */
for (lproto = plist; lproto; lproto = TREE_CHAIN (lproto))
if (TREE_CODE (TREE_VALUE (lproto)) == PROTOCOL_INTERFACE_TYPE
&& PROTOCOL_FORWARD_DECL (TREE_VALUE (lproto)))
size++;
/* Build initializer. */
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, 0), NULL_TREE);
e = build_int_cst (build_pointer_type (objc_protocol_template), size);
initlist = tree_cons (NULL_TREE, e, initlist);
for (lproto = plist; lproto; lproto = TREE_CHAIN (lproto))
{
tree pval = TREE_VALUE (lproto);
if (TREE_CODE (pval) == PROTOCOL_INTERFACE_TYPE
&& PROTOCOL_FORWARD_DECL (pval))
{
e = build_unary_op (ADDR_EXPR, PROTOCOL_FORWARD_DECL (pval), 0);
initlist = tree_cons (NULL_TREE, e, initlist);
}
}
/* static struct objc_protocol *refs[n]; */
if (TREE_CODE (i_or_p) == PROTOCOL_INTERFACE_TYPE)
ref_name = synth_id_with_class_suffix ("_OBJC_PROTOCOL_REFS", i_or_p);
else if (TREE_CODE (i_or_p) == CLASS_INTERFACE_TYPE)
ref_name = synth_id_with_class_suffix ("_OBJC_CLASS_PROTOCOLS", i_or_p);
else if (TREE_CODE (i_or_p) == CATEGORY_INTERFACE_TYPE)
ref_name = synth_id_with_class_suffix ("_OBJC_CATEGORY_PROTOCOLS", i_or_p);
else
abort ();
refs_decl = start_var_decl
(build_array_type
(build_pointer_type (objc_protocol_template),
build_index_type (build_int_cst (NULL_TREE, size + 2))),
ref_name);
finish_var_decl (refs_decl, objc_build_constructor (TREE_TYPE (refs_decl),
nreverse (initlist)));
return refs_decl;
}
static tree
build_category_initializer (tree type, tree cat_name, tree class_name,
tree instance_methods, tree class_methods,
tree protocol_list)
{
tree initlist = NULL_TREE, expr;
initlist = tree_cons (NULL_TREE, cat_name, initlist);
initlist = tree_cons (NULL_TREE, class_name, initlist);
if (!instance_methods)
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, 0), initlist);
else
{
expr = convert (objc_method_list_ptr,
build_unary_op (ADDR_EXPR, instance_methods, 0));
initlist = tree_cons (NULL_TREE, expr, initlist);
}
if (!class_methods)
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, 0), initlist);
else
{
expr = convert (objc_method_list_ptr,
build_unary_op (ADDR_EXPR, class_methods, 0));
initlist = tree_cons (NULL_TREE, expr, initlist);
}
/* protocol_list = */
if (!protocol_list)
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, 0), initlist);
else
{
expr = convert (build_pointer_type
(build_pointer_type
(objc_protocol_template)),
build_unary_op (ADDR_EXPR, protocol_list, 0));
initlist = tree_cons (NULL_TREE, expr, initlist);
}
return objc_build_constructor (type, nreverse (initlist));
}
/* struct _objc_class {
struct objc_class *isa;
struct objc_class *super_class;
char *name;
long version;
long info;
long instance_size;
struct objc_ivar_list *ivars;
struct objc_method_list *methods;
if (flag_next_runtime)
struct objc_cache *cache;
else {
struct sarray *dtable;
struct objc_class *subclass_list;
struct objc_class *sibling_class;
}
struct objc_protocol_list *protocols;
if (flag_next_runtime)
void *sel_id;
void *gc_object_type;
}; */
static tree
build_shared_structure_initializer (tree type, tree isa, tree super,
tree name, tree size, int status,
tree dispatch_table, tree ivar_list,
tree protocol_list)
{
tree initlist = NULL_TREE, expr;
/* isa = */
initlist = tree_cons (NULL_TREE, isa, initlist);
/* super_class = */
initlist = tree_cons (NULL_TREE, super, initlist);
/* name = */
initlist = tree_cons (NULL_TREE, default_conversion (name), initlist);
/* version = */
initlist = tree_cons (NULL_TREE, build_int_cst (long_integer_type_node, 0),
initlist);
/* info = */
initlist = tree_cons (NULL_TREE,
build_int_cst (long_integer_type_node, status),
initlist);
/* instance_size = */
initlist = tree_cons (NULL_TREE, convert (long_integer_type_node, size),
initlist);
/* objc_ivar_list = */
if (!ivar_list)
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, 0), initlist);
else
{
expr = convert (objc_ivar_list_ptr,
build_unary_op (ADDR_EXPR, ivar_list, 0));
initlist = tree_cons (NULL_TREE, expr, initlist);
}
/* objc_method_list = */
if (!dispatch_table)
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, 0), initlist);
else
{
expr = convert (objc_method_list_ptr,
build_unary_op (ADDR_EXPR, dispatch_table, 0));
initlist = tree_cons (NULL_TREE, expr, initlist);
}
if (flag_next_runtime)
/* method_cache = */
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, 0), initlist);
else
{
/* dtable = */
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, 0), initlist);
/* subclass_list = */
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, 0), initlist);
/* sibling_class = */
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, 0), initlist);
}
/* protocol_list = */
if (! protocol_list)
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, 0), initlist);
else
{
expr = convert (build_pointer_type
(build_pointer_type
(objc_protocol_template)),
build_unary_op (ADDR_EXPR, protocol_list, 0));
initlist = tree_cons (NULL_TREE, expr, initlist);
}
if (flag_next_runtime)
/* sel_id = NULL */
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, 0), initlist);
/* gc_object_type = NULL */
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, 0), initlist);
return objc_build_constructor (type, nreverse (initlist));
}
/* Retrieve category interface CAT_NAME (if any) associated with CLASS. */
static inline tree
lookup_category (tree class, tree cat_name)
{
tree category = CLASS_CATEGORY_LIST (class);
while (category && CLASS_SUPER_NAME (category) != cat_name)
category = CLASS_CATEGORY_LIST (category);
return category;
}
/* static struct objc_category _OBJC_CATEGORY_<name> = { ... }; */
static void
generate_category (tree cat)
{
tree decl;
tree initlist, cat_name_expr, class_name_expr;
tree protocol_decl, category;
add_class_reference (CLASS_NAME (cat));
cat_name_expr = add_objc_string (CLASS_SUPER_NAME (cat), class_names);
class_name_expr = add_objc_string (CLASS_NAME (cat), class_names);
category = lookup_category (implementation_template,
CLASS_SUPER_NAME (cat));
if (category && CLASS_PROTOCOL_LIST (category))
{
generate_protocol_references (CLASS_PROTOCOL_LIST (category));
protocol_decl = generate_protocol_list (category);
}
else
protocol_decl = 0;
decl = start_var_decl (objc_category_template,
synth_id_with_class_suffix
("_OBJC_CATEGORY", objc_implementation_context));
initlist = build_category_initializer (TREE_TYPE (decl),
cat_name_expr, class_name_expr,
UOBJC_INSTANCE_METHODS_decl,
UOBJC_CLASS_METHODS_decl,
protocol_decl);
finish_var_decl (decl, initlist);
}
/* static struct objc_class _OBJC_METACLASS_Foo={ ... };
static struct objc_class _OBJC_CLASS_Foo={ ... }; */
static void
generate_shared_structures (int cls_flags)
{
tree sc_spec, decl_specs, decl;
tree name_expr, super_expr, root_expr;
tree my_root_id = NULL_TREE, my_super_id = NULL_TREE;
tree cast_type, initlist, protocol_decl;
my_super_id = CLASS_SUPER_NAME (implementation_template);
if (my_super_id)
{
add_class_reference (my_super_id);
/* Compute "my_root_id" - this is required for code generation.
the "isa" for all meta class structures points to the root of
the inheritance hierarchy (e.g. "__Object")... */
my_root_id = my_super_id;
do
{
tree my_root_int = lookup_interface (my_root_id);
if (my_root_int && CLASS_SUPER_NAME (my_root_int))
my_root_id = CLASS_SUPER_NAME (my_root_int);
else
break;
}
while (1);
}
else
/* No super class. */
my_root_id = CLASS_NAME (implementation_template);
cast_type = build_pointer_type (objc_class_template);
name_expr = add_objc_string (CLASS_NAME (implementation_template),
class_names);
/* Install class `isa' and `super' pointers at runtime. */
if (my_super_id)
{
super_expr = add_objc_string (my_super_id, class_names);
super_expr = build_c_cast (cast_type, super_expr); /* cast! */
}
else
super_expr = build_int_cst (NULL_TREE, 0);
root_expr = add_objc_string (my_root_id, class_names);
root_expr = build_c_cast (cast_type, root_expr); /* cast! */
if (CLASS_PROTOCOL_LIST (implementation_template))
{
generate_protocol_references
(CLASS_PROTOCOL_LIST (implementation_template));
protocol_decl = generate_protocol_list (implementation_template);
}
else
protocol_decl = 0;
/* static struct objc_class _OBJC_METACLASS_Foo = { ... }; */
sc_spec = build_tree_list (NULL_TREE, ridpointers[(int) RID_STATIC]);
decl_specs = tree_cons (NULL_TREE, objc_class_template, sc_spec);
decl = start_var_decl (objc_class_template,
IDENTIFIER_POINTER
(DECL_NAME (UOBJC_METACLASS_decl)));
initlist
= build_shared_structure_initializer
(TREE_TYPE (decl),
root_expr, super_expr, name_expr,
convert (integer_type_node, TYPE_SIZE_UNIT (objc_class_template)),
2 /*CLS_META*/,
UOBJC_CLASS_METHODS_decl,
UOBJC_CLASS_VARIABLES_decl,
protocol_decl);
finish_var_decl (decl, initlist);
/* static struct objc_class _OBJC_CLASS_Foo={ ... }; */
decl = start_var_decl (objc_class_template,
IDENTIFIER_POINTER
(DECL_NAME (UOBJC_CLASS_decl)));
initlist
= build_shared_structure_initializer
(TREE_TYPE (decl),
build_unary_op (ADDR_EXPR, UOBJC_METACLASS_decl, 0),
super_expr, name_expr,
convert (integer_type_node,
TYPE_SIZE_UNIT (CLASS_STATIC_TEMPLATE
(implementation_template))),
1 /*CLS_FACTORY*/ | cls_flags,
UOBJC_INSTANCE_METHODS_decl,
UOBJC_INSTANCE_VARIABLES_decl,
protocol_decl);
finish_var_decl (decl, initlist);
}
static const char *
synth_id_with_class_suffix (const char *preamble, tree ctxt)
{
static char string[BUFSIZE];
if (TREE_CODE (ctxt) == CLASS_IMPLEMENTATION_TYPE
|| TREE_CODE (ctxt) == CLASS_INTERFACE_TYPE)
{
sprintf (string, "%s_%s", preamble,
IDENTIFIER_POINTER (CLASS_NAME (ctxt)));
}
else if (TREE_CODE (ctxt) == CATEGORY_IMPLEMENTATION_TYPE
|| TREE_CODE (ctxt) == CATEGORY_INTERFACE_TYPE)
{
/* We have a category. */
const char *const class_name
= IDENTIFIER_POINTER (CLASS_NAME (objc_implementation_context));
const char *const class_super_name
= IDENTIFIER_POINTER (CLASS_SUPER_NAME (objc_implementation_context));
sprintf (string, "%s_%s_%s", preamble, class_name, class_super_name);
}
else if (TREE_CODE (ctxt) == PROTOCOL_INTERFACE_TYPE)
{
const char *protocol_name = IDENTIFIER_POINTER (PROTOCOL_NAME (ctxt));
sprintf (string, "%s_%s", preamble, protocol_name);
}
else
abort ();
return string;
}
/* If type is empty or only type qualifiers are present, add default
type of id (otherwise grokdeclarator will default to int). */
static tree
adjust_type_for_id_default (tree type)
{
if (!type)
type = make_node (TREE_LIST);
if (!TREE_VALUE (type))
TREE_VALUE (type) = objc_object_type;
else if (TREE_CODE (TREE_VALUE (type)) == RECORD_TYPE
&& TYPED_OBJECT (TREE_VALUE (type)))
error ("can not use an object as parameter to a method");
return type;
}
/* Usage:
keyworddecl:
selector ':' '(' typename ')' identifier
Purpose:
Transform an Objective-C keyword argument into
the C equivalent parameter declarator.
In: key_name, an "identifier_node" (optional).
arg_type, a "tree_list" (optional).
arg_name, an "identifier_node".
Note: It would be really nice to strongly type the preceding
arguments in the function prototype; however, then I
could not use the "accessor" macros defined in "tree.h".
Out: an instance of "keyword_decl". */
tree
objc_build_keyword_decl (tree key_name, tree arg_type, tree arg_name)
{
tree keyword_decl;
/* If no type is specified, default to "id". */
arg_type = adjust_type_for_id_default (arg_type);
keyword_decl = make_node (KEYWORD_DECL);
TREE_TYPE (keyword_decl) = arg_type;
KEYWORD_ARG_NAME (keyword_decl) = arg_name;
KEYWORD_KEY_NAME (keyword_decl) = key_name;
return keyword_decl;
}
/* Given a chain of keyword_decl's, synthesize the full keyword selector. */
static tree
build_keyword_selector (tree selector)
{
int len = 0;
tree key_chain, key_name;
char *buf;
/* Scan the selector to see how much space we'll need. */
for (key_chain = selector; key_chain; key_chain = TREE_CHAIN (key_chain))
{
if (TREE_CODE (selector) == KEYWORD_DECL)
key_name = KEYWORD_KEY_NAME (key_chain);
else if (TREE_CODE (selector) == TREE_LIST)
key_name = TREE_PURPOSE (key_chain);
else
abort ();
if (key_name)
len += IDENTIFIER_LENGTH (key_name) + 1;
else
/* Just a ':' arg. */
len++;
}
buf = (char *) alloca (len + 1);
/* Start the buffer out as an empty string. */
buf[0] = '\0';
for (key_chain = selector; key_chain; key_chain = TREE_CHAIN (key_chain))
{
if (TREE_CODE (selector) == KEYWORD_DECL)
key_name = KEYWORD_KEY_NAME (key_chain);
else if (TREE_CODE (selector) == TREE_LIST)
{
key_name = TREE_PURPOSE (key_chain);
/* The keyword decl chain will later be used as a function argument
chain. Unhook the selector itself so as to not confuse other
parts of the compiler. */
TREE_PURPOSE (key_chain) = NULL_TREE;
}
else
abort ();
if (key_name)
strcat (buf, IDENTIFIER_POINTER (key_name));
strcat (buf, ":");
}
return get_identifier (buf);
}
/* Used for declarations and definitions. */
static tree
build_method_decl (enum tree_code code, tree ret_type, tree selector,
tree add_args, bool ellipsis)
{
tree method_decl;
/* If no type is specified, default to "id". */
ret_type = adjust_type_for_id_default (ret_type);
method_decl = make_node (code);
TREE_TYPE (method_decl) = ret_type;
/* If we have a keyword selector, create an identifier_node that
represents the full selector name (`:' included)... */
if (TREE_CODE (selector) == KEYWORD_DECL)
{
METHOD_SEL_NAME (method_decl) = build_keyword_selector (selector);
METHOD_SEL_ARGS (method_decl) = selector;
METHOD_ADD_ARGS (method_decl) = add_args;
METHOD_ADD_ARGS_ELLIPSIS_P (method_decl) = ellipsis;
}
else
{
METHOD_SEL_NAME (method_decl) = selector;
METHOD_SEL_ARGS (method_decl) = NULL_TREE;
METHOD_ADD_ARGS (method_decl) = NULL_TREE;
}
return method_decl;
}
#define METHOD_DEF 0
#define METHOD_REF 1
/* Used by `build_objc_method_call' and `comp_proto_with_proto'. Return
an argument list for method METH. CONTEXT is either METHOD_DEF or
METHOD_REF, saying whether we are trying to define a method or call
one. SUPERFLAG says this is for a send to super; this makes a
difference for the NeXT calling sequence in which the lookup and
the method call are done together. If METH is null, user-defined
arguments (i.e., beyond self and _cmd) shall be represented by `...'. */
static tree
get_arg_type_list (tree meth, int context, int superflag)
{
tree arglist, akey;
/* Receiver type. */
if (flag_next_runtime && superflag)
arglist = build_tree_list (NULL_TREE, objc_super_type);
else if (context == METHOD_DEF && TREE_CODE (meth) == INSTANCE_METHOD_DECL)
arglist = build_tree_list (NULL_TREE, objc_instance_type);
else
arglist = build_tree_list (NULL_TREE, objc_object_type);
/* Selector type - will eventually change to `int'. */
chainon (arglist, build_tree_list (NULL_TREE, objc_selector_type));
/* No actual method prototype given -- assume that remaining arguments
are `...'. */
if (!meth)
return arglist;
/* Build a list of argument types. */
for (akey = METHOD_SEL_ARGS (meth); akey; akey = TREE_CHAIN (akey))
{
tree arg_type = TREE_VALUE (TREE_TYPE (akey));
/* Decay arrays and functions into pointers. */
if (TREE_CODE (arg_type) == ARRAY_TYPE)
arg_type = build_pointer_type (TREE_TYPE (arg_type));
else if (TREE_CODE (arg_type) == FUNCTION_TYPE)
arg_type = build_pointer_type (arg_type);
chainon (arglist, build_tree_list (NULL_TREE, arg_type));
}
if (METHOD_ADD_ARGS (meth))
{
for (akey = TREE_CHAIN (METHOD_ADD_ARGS (meth));
akey; akey = TREE_CHAIN (akey))
{
tree arg_type = TREE_TYPE (TREE_VALUE (akey));
chainon (arglist, build_tree_list (NULL_TREE, arg_type));
}
if (!METHOD_ADD_ARGS_ELLIPSIS_P (meth))
goto lack_of_ellipsis;
}
else
{
lack_of_ellipsis:
chainon (arglist, OBJC_VOID_AT_END);
}
return arglist;
}
static tree
check_duplicates (hash hsh, int methods, int is_class)
{
tree meth = NULL_TREE;
if (hsh)
{
meth = hsh->key;
if (hsh->list)
{
/* We have two or more methods with the same name but
different types. */
attr loop;
/* But just how different are those types? If
-Wno-strict-selector-match is specified, we shall not
complain if the differences are solely among types with
identical size and alignment. */
if (!warn_strict_selector_match)
{
for (loop = hsh->list; loop; loop = loop->next)
if (!comp_proto_with_proto (meth, loop->value, 0))
goto issue_warning;
return meth;
}
issue_warning:
warning (0, "multiple %s named %<%c%s%> found",
methods ? "methods" : "selectors",
(is_class ? '+' : '-'),
IDENTIFIER_POINTER (METHOD_SEL_NAME (meth)));
warn_with_method (methods ? "using" : "found",
((TREE_CODE (meth) == INSTANCE_METHOD_DECL)
? '-'
: '+'),
meth);
for (loop = hsh->list; loop; loop = loop->next)
warn_with_method ("also found",
((TREE_CODE (loop->value) == INSTANCE_METHOD_DECL)
? '-'
: '+'),
loop->value);
}
}
return meth;
}
/* If RECEIVER is a class reference, return the identifier node for
the referenced class. RECEIVER is created by objc_get_class_reference,
so we check the exact form created depending on which runtimes are
used. */
static tree
receiver_is_class_object (tree receiver, int self, int super)
{
tree chain, exp, arg;
/* The receiver is 'self' or 'super' in the context of a class method. */
if (objc_method_context
&& TREE_CODE (objc_method_context) == CLASS_METHOD_DECL
&& (self || super))
return (super
? CLASS_SUPER_NAME (implementation_template)
: CLASS_NAME (implementation_template));
if (flag_next_runtime)
{
/* The receiver is a variable created by
build_class_reference_decl. */
if (TREE_CODE (receiver) == VAR_DECL && IS_CLASS (TREE_TYPE (receiver)))
/* Look up the identifier. */
for (chain = cls_ref_chain; chain; chain = TREE_CHAIN (chain))
if (TREE_PURPOSE (chain) == receiver)
return TREE_VALUE (chain);
}
/* The receiver is a function call that returns an id. Check if
it is a call to objc_getClass, if so, pick up the class name. */
if (TREE_CODE (receiver) == CALL_EXPR
&& (exp = TREE_OPERAND (receiver, 0))
&& TREE_CODE (exp) == ADDR_EXPR
&& (exp = TREE_OPERAND (exp, 0))
&& TREE_CODE (exp) == FUNCTION_DECL
/* For some reason, we sometimes wind up with multiple FUNCTION_DECL
prototypes for objc_get_class(). Thankfully, they seem to share the
same function type. */
&& TREE_TYPE (exp) == TREE_TYPE (objc_get_class_decl)
&& !strcmp (IDENTIFIER_POINTER (DECL_NAME (exp)), TAG_GETCLASS)
/* We have a call to objc_get_class/objc_getClass! */
&& (arg = TREE_OPERAND (receiver, 1))
&& TREE_CODE (arg) == TREE_LIST
&& (arg = TREE_VALUE (arg)))
{
STRIP_NOPS (arg);
if (TREE_CODE (arg) == ADDR_EXPR
&& (arg = TREE_OPERAND (arg, 0))
&& TREE_CODE (arg) == STRING_CST)
/* Finally, we have the class name. */
return get_identifier (TREE_STRING_POINTER (arg));
}
return 0;
}
/* If we are currently building a message expr, this holds
the identifier of the selector of the message. This is
used when printing warnings about argument mismatches. */
static tree current_objc_message_selector = 0;
tree
objc_message_selector (void)
{
return current_objc_message_selector;
}
/* Construct an expression for sending a message.
MESS has the object to send to in TREE_PURPOSE
and the argument list (including selector) in TREE_VALUE.
(*(<abstract_decl>(*)())_msg)(receiver, selTransTbl[n], ...);
(*(<abstract_decl>(*)())_msgSuper)(receiver, selTransTbl[n], ...); */
tree
objc_build_message_expr (tree mess)
{
tree receiver = TREE_PURPOSE (mess);
tree sel_name;
#ifdef OBJCPLUS
tree args = TREE_PURPOSE (TREE_VALUE (mess));
#else
tree args = TREE_VALUE (mess);
#endif
tree method_params = NULL_TREE;
if (TREE_CODE (receiver) == ERROR_MARK)
return error_mark_node;
/* Obtain the full selector name. */
if (TREE_CODE (args) == IDENTIFIER_NODE)
/* A unary selector. */
sel_name = args;
else if (TREE_CODE (args) == TREE_LIST)
sel_name = build_keyword_selector (args);
else
abort ();
/* Build the parameter list to give to the method. */
if (TREE_CODE (args) == TREE_LIST)
#ifdef OBJCPLUS
method_params = chainon (args, TREE_VALUE (TREE_VALUE (mess)));
#else
{
tree chain = args, prev = NULL_TREE;
/* We have a keyword selector--check for comma expressions. */
while (chain)
{
tree element = TREE_VALUE (chain);
/* We have a comma expression, must collapse... */
if (TREE_CODE (element) == TREE_LIST)
{
if (prev)
TREE_CHAIN (prev) = element;
else
args = element;
}
prev = chain;
chain = TREE_CHAIN (chain);
}
method_params = args;
}
#endif
#ifdef OBJCPLUS
if (processing_template_decl)
/* Must wait until template instantiation time. */
return build_min_nt (MESSAGE_SEND_EXPR, receiver, sel_name,
method_params);
#endif
return objc_finish_message_expr (receiver, sel_name, method_params);
}
/* Look up method SEL_NAME that would be suitable for receiver
of type 'id' (if IS_CLASS is zero) or 'Class' (if IS_CLASS is
nonzero), and report on any duplicates. */
static tree
lookup_method_in_hash_lists (tree sel_name, int is_class)
{
hash method_prototype = NULL;
if (!is_class)
method_prototype = hash_lookup (nst_method_hash_list,
sel_name);
if (!method_prototype)
{
method_prototype = hash_lookup (cls_method_hash_list,
sel_name);
is_class = 1;
}
return check_duplicates (method_prototype, 1, is_class);
}
/* The 'objc_finish_message_expr' routine is called from within
'objc_build_message_expr' for non-template functions. In the case of
C++ template functions, it is called from 'build_expr_from_tree'
(in decl2.c) after RECEIVER and METHOD_PARAMS have been expanded. */
tree
objc_finish_message_expr (tree receiver, tree sel_name, tree method_params)
{
tree method_prototype = NULL_TREE, rprotos = NULL_TREE, rtype;
tree selector, retval, class_tree;
int self, super, have_cast;
/* Extract the receiver of the message, as well as its type
(where the latter may take the form of a cast or be inferred
from the implementation context). */
rtype = receiver;
while (TREE_CODE (rtype) == COMPOUND_EXPR
|| TREE_CODE (rtype) == MODIFY_EXPR
|| TREE_CODE (rtype) == NOP_EXPR
|| TREE_CODE (rtype) == CONVERT_EXPR
|| TREE_CODE (rtype) == COMPONENT_REF)
rtype = TREE_OPERAND (rtype, 0);
self = (rtype == self_decl);
super = (rtype == UOBJC_SUPER_decl);
rtype = TREE_TYPE (receiver);
have_cast = (TREE_CODE (receiver) == NOP_EXPR
|| (TREE_CODE (receiver) == COMPOUND_EXPR
&& !IS_SUPER (rtype)));
/* If we are calling [super dealloc], reset our warning flag. */
if (super && !strcmp ("dealloc", IDENTIFIER_POINTER (sel_name)))
should_call_super_dealloc = 0;
/* If the receiver is a class object, retrieve the corresponding
@interface, if one exists. */
class_tree = receiver_is_class_object (receiver, self, super);
/* Now determine the receiver type (if an explicit cast has not been
provided). */
if (!have_cast)
{
if (class_tree)
rtype = lookup_interface (class_tree);
/* Handle `self' and `super'. */
else if (super)
{
if (!CLASS_SUPER_NAME (implementation_template))
{
error ("no super class declared in @interface for %qs",
IDENTIFIER_POINTER (CLASS_NAME (implementation_template)));
return error_mark_node;
}
rtype = lookup_interface (CLASS_SUPER_NAME (implementation_template));
}
else if (self)
rtype = lookup_interface (CLASS_NAME (implementation_template));
}
/* If receiver is of type `id' or `Class' (or if the @interface for a
class is not visible), we shall be satisfied with the existence of
any instance or class method. */
if (objc_is_id (rtype))
{
class_tree = (IS_CLASS (rtype) ? objc_class_name : NULL_TREE);
rprotos = (TYPE_HAS_OBJC_INFO (TREE_TYPE (rtype))
? TYPE_OBJC_PROTOCOL_LIST (TREE_TYPE (rtype))
: NULL_TREE);
rtype = NULL_TREE;
if (rprotos)
{
/* If messaging 'id <Protos>' or 'Class <Proto>', first search
in protocols themselves for the method prototype. */
method_prototype
= lookup_method_in_protocol_list (rprotos, sel_name,
class_tree != NULL_TREE);
/* If messaging 'Class <Proto>' but did not find a class method
prototype, search for an instance method instead, and warn
about having done so. */
if (!method_prototype && !rtype && class_tree != NULL_TREE)
{
method_prototype
= lookup_method_in_protocol_list (rprotos, sel_name, 0);
if (method_prototype)
warning (0, "found %<-%s%> instead of %<+%s%> in protocol(s)",
IDENTIFIER_POINTER (sel_name),
IDENTIFIER_POINTER (sel_name));
}
}
}
else if (rtype)
{
tree orig_rtype = rtype, saved_rtype;
if (TREE_CODE (rtype) == POINTER_TYPE)
rtype = TREE_TYPE (rtype);
/* Traverse typedef aliases */
while (TREE_CODE (rtype) == RECORD_TYPE && OBJC_TYPE_NAME (rtype)
&& TREE_CODE (OBJC_TYPE_NAME (rtype)) == TYPE_DECL
&& DECL_ORIGINAL_TYPE (OBJC_TYPE_NAME (rtype)))
rtype = DECL_ORIGINAL_TYPE (OBJC_TYPE_NAME (rtype));
saved_rtype = rtype;
if (TYPED_OBJECT (rtype))
{
rprotos = TYPE_OBJC_PROTOCOL_LIST (rtype);
rtype = TYPE_OBJC_INTERFACE (rtype);
}
/* If we could not find an @interface declaration, we must have
only seen a @class declaration; so, we cannot say anything
more intelligent about which methods the receiver will
understand. */
if (!rtype || TREE_CODE (rtype) == IDENTIFIER_NODE)
rtype = NULL_TREE;
else if (TREE_CODE (rtype) == CLASS_INTERFACE_TYPE
|| TREE_CODE (rtype) == CLASS_IMPLEMENTATION_TYPE)
{
/* We have a valid ObjC class name. Look up the method name
in the published @interface for the class (and its
superclasses). */
method_prototype
= lookup_method_static (rtype, sel_name, class_tree != NULL_TREE);
/* If the method was not found in the @interface, it may still
exist locally as part of the @implementation. */
if (!method_prototype && objc_implementation_context
&& CLASS_NAME (objc_implementation_context)
== OBJC_TYPE_NAME (rtype))
method_prototype
= lookup_method
((class_tree
? CLASS_CLS_METHODS (objc_implementation_context)
: CLASS_NST_METHODS (objc_implementation_context)),
sel_name);
/* If we haven't found a candidate method by now, try looking for
it in the protocol list. */
if (!method_prototype && rprotos)
method_prototype
= lookup_method_in_protocol_list (rprotos, sel_name,
class_tree != NULL_TREE);
}
else
{
warning (0, "invalid receiver type %qs",
gen_type_name (orig_rtype));
/* After issuing the "invalid receiver" warning, perform method
lookup as if we were messaging 'id'. */
rtype = rprotos = NULL_TREE;
}
}
/* For 'id' or 'Class' receivers, search in the global hash table
as a last resort. For all receivers, warn if protocol searches
have failed. */
if (!method_prototype)
{
if (rprotos)
warning (0, "%<%c%s%> not found in protocol(s)",
(class_tree ? '+' : '-'),
IDENTIFIER_POINTER (sel_name));
if (!rtype)
method_prototype
= lookup_method_in_hash_lists (sel_name, class_tree != NULL_TREE);
}
if (!method_prototype)
{
static bool warn_missing_methods = false;
if (rtype)
warning (0, "%qs may not respond to %<%c%s%>",
IDENTIFIER_POINTER (OBJC_TYPE_NAME (rtype)),
(class_tree ? '+' : '-'),
IDENTIFIER_POINTER (sel_name));
/* If we are messaging an 'id' or 'Class' object and made it here,
then we have failed to find _any_ instance or class method,
respectively. */
else
warning (0, "no %<%c%s%> method found",
(class_tree ? '+' : '-'),
IDENTIFIER_POINTER (sel_name));
if (!warn_missing_methods)
{
warning (0, "(Messages without a matching method signature");
warning (0, "will be assumed to return %<id%> and accept");
warning (0, "%<...%> as arguments.)");
warn_missing_methods = true;
}
}
/* Save the selector name for printing error messages. */
current_objc_message_selector = sel_name;
/* Build the parameters list for looking up the method.
These are the object itself and the selector. */
if (flag_typed_selectors)
selector = build_typed_selector_reference (sel_name, method_prototype);
else
selector = build_selector_reference (sel_name);
retval = build_objc_method_call (super, method_prototype,
receiver,
selector, method_params);
current_objc_message_selector = 0;
return retval;
}
/* Build a tree expression to send OBJECT the operation SELECTOR,
looking up the method on object LOOKUP_OBJECT (often same as OBJECT),
assuming the method has prototype METHOD_PROTOTYPE.
(That is an INSTANCE_METHOD_DECL or CLASS_METHOD_DECL.)
Use METHOD_PARAMS as list of args to pass to the method.
If SUPER_FLAG is nonzero, we look up the superclass's method. */
static tree
build_objc_method_call (int super_flag, tree method_prototype,
tree lookup_object, tree selector,
tree method_params)
{
tree sender = (super_flag ? umsg_super_decl :
(!flag_next_runtime || flag_nil_receivers
? (flag_objc_direct_dispatch
? umsg_fast_decl
: umsg_decl)
: umsg_nonnil_decl));
tree rcv_p = (super_flag ? objc_super_type : objc_object_type);
/* If a prototype for the method to be called exists, then cast
the sender's return type and arguments to match that of the method.
Otherwise, leave sender as is. */
tree ret_type
= (method_prototype
? TREE_VALUE (TREE_TYPE (method_prototype))
: objc_object_type);
tree sender_cast
= build_pointer_type
(build_function_type
(ret_type,
get_arg_type_list
(method_prototype, METHOD_REF, super_flag)));
tree method, t;
lookup_object = build_c_cast (rcv_p, lookup_object);
/* Use SAVE_EXPR to avoid evaluating the receiver twice. */
lookup_object = save_expr (lookup_object);
if (flag_next_runtime)
{
/* If we are returning a struct in memory, and the address
of that memory location is passed as a hidden first
argument, then change which messenger entry point this
expr will call. NB: Note that sender_cast remains
unchanged (it already has a struct return type). */
if (!targetm.calls.struct_value_rtx (0, 0)
&& (TREE_CODE (ret_type) == RECORD_TYPE
|| TREE_CODE (ret_type) == UNION_TYPE)
&& targetm.calls.return_in_memory (ret_type, 0))
sender = (super_flag ? umsg_super_stret_decl :
flag_nil_receivers ? umsg_stret_decl : umsg_nonnil_stret_decl);
method_params = tree_cons (NULL_TREE, lookup_object,
tree_cons (NULL_TREE, selector,
method_params));
method = build_fold_addr_expr (sender);
}
else
{
/* This is the portable (GNU) way. */
tree object;
/* First, call the lookup function to get a pointer to the method,
then cast the pointer, then call it with the method arguments. */
object = (super_flag ? self_decl : lookup_object);
t = tree_cons (NULL_TREE, selector, NULL_TREE);
t = tree_cons (NULL_TREE, lookup_object, t);
method = build_function_call (sender, t);
/* Pass the object to the method. */
method_params = tree_cons (NULL_TREE, object,
tree_cons (NULL_TREE, selector,
method_params));
}
/* ??? Selector is not at this point something we can use inside
the compiler itself. Set it to garbage for the nonce. */
t = build3 (OBJ_TYPE_REF, sender_cast, method, lookup_object, size_zero_node);
return build_function_call (t, method_params);
}
static void
build_protocol_reference (tree p)
{
tree decl;
const char *proto_name;
/* static struct _objc_protocol _OBJC_PROTOCOL_<mumble>; */
proto_name = synth_id_with_class_suffix ("_OBJC_PROTOCOL", p);
decl = start_var_decl (objc_protocol_template, proto_name);
PROTOCOL_FORWARD_DECL (p) = decl;
}
/* This function is called by the parser when (and only when) a
@protocol() expression is found, in order to compile it. */
tree
objc_build_protocol_expr (tree protoname)
{
tree expr;
tree p = lookup_protocol (protoname);
if (!p)
{
error ("cannot find protocol declaration for %qs",
IDENTIFIER_POINTER (protoname));
return error_mark_node;
}
if (!PROTOCOL_FORWARD_DECL (p))
build_protocol_reference (p);
expr = build_unary_op (ADDR_EXPR, PROTOCOL_FORWARD_DECL (p), 0);
/* ??? Ideally we'd build the reference with objc_protocol_type directly,
if we have it, rather than converting it here. */
expr = convert (objc_protocol_type, expr);
/* The @protocol() expression is being compiled into a pointer to a
statically allocated instance of the Protocol class. To become
usable at runtime, the 'isa' pointer of the instance need to be
fixed up at runtime by the runtime library, to point to the
actual 'Protocol' class. */
/* For the GNU runtime, put the static Protocol instance in the list
of statically allocated instances, so that we make sure that its
'isa' pointer is fixed up at runtime by the GNU runtime library
to point to the Protocol class (at runtime, when loading the
module, the GNU runtime library loops on the statically allocated
instances (as found in the defs field in objc_symtab) and fixups
all the 'isa' pointers of those objects). */
if (! flag_next_runtime)
{
/* This type is a struct containing the fields of a Protocol
object. (Cfr. objc_protocol_type instead is the type of a pointer
to such a struct). */
tree protocol_struct_type = xref_tag
(RECORD_TYPE, get_identifier (PROTOCOL_OBJECT_CLASS_NAME));
tree *chain;
/* Look for the list of Protocol statically allocated instances
to fixup at runtime. Create a new list to hold Protocol
statically allocated instances, if the list is not found. At
present there is only another list, holding NSConstantString
static instances to be fixed up at runtime. */
for (chain = &objc_static_instances;
*chain && TREE_VALUE (*chain) != protocol_struct_type;
chain = &TREE_CHAIN (*chain));
if (!*chain)
{
*chain = tree_cons (NULL_TREE, protocol_struct_type, NULL_TREE);
add_objc_string (OBJC_TYPE_NAME (protocol_struct_type),
class_names);
}
/* Add this statically allocated instance to the Protocol list. */
TREE_PURPOSE (*chain) = tree_cons (NULL_TREE,
PROTOCOL_FORWARD_DECL (p),
TREE_PURPOSE (*chain));
}
return expr;
}
/* This function is called by the parser when a @selector() expression
is found, in order to compile it. It is only called by the parser
and only to compile a @selector(). */
tree
objc_build_selector_expr (tree selnamelist)
{
tree selname;
/* Obtain the full selector name. */
if (TREE_CODE (selnamelist) == IDENTIFIER_NODE)
/* A unary selector. */
selname = selnamelist;
else if (TREE_CODE (selnamelist) == TREE_LIST)
selname = build_keyword_selector (selnamelist);
else
abort ();
/* If we are required to check @selector() expressions as they
are found, check that the selector has been declared. */
if (warn_undeclared_selector)
{
/* Look the selector up in the list of all known class and
instance methods (up to this line) to check that the selector
exists. */
hash hsh;
/* First try with instance methods. */
hsh = hash_lookup (nst_method_hash_list, selname);
/* If not found, try with class methods. */
if (!hsh)
{
hsh = hash_lookup (cls_method_hash_list, selname);
}
/* If still not found, print out a warning. */
if (!hsh)
{
warning (0, "undeclared selector %qs", IDENTIFIER_POINTER (selname));
}
}
if (flag_typed_selectors)
return build_typed_selector_reference (selname, 0);
else
return build_selector_reference (selname);
}
tree
objc_build_encode_expr (tree type)
{
tree result;
const char *string;
encode_type (type, obstack_object_size (&util_obstack),
OBJC_ENCODE_INLINE_DEFS);
obstack_1grow (&util_obstack, 0); /* null terminate string */
string = obstack_finish (&util_obstack);
/* Synthesize a string that represents the encoded struct/union. */
result = my_build_string (strlen (string) + 1, string);
obstack_free (&util_obstack, util_firstobj);
return result;
}
static tree
build_ivar_reference (tree id)
{
if (TREE_CODE (objc_method_context) == CLASS_METHOD_DECL)
{
/* Historically, a class method that produced objects (factory
method) would assign `self' to the instance that it
allocated. This would effectively turn the class method into
an instance method. Following this assignment, the instance
variables could be accessed. That practice, while safe,
violates the simple rule that a class method should not refer
to an instance variable. It's better to catch the cases
where this is done unknowingly than to support the above
paradigm. */
warning (0, "instance variable %qs accessed in class method",
IDENTIFIER_POINTER (id));
self_decl = convert (objc_instance_type, self_decl); /* cast */
}
return objc_build_component_ref (build_indirect_ref (self_decl, "->"), id);
}
/* Compute a hash value for a given method SEL_NAME. */
static size_t
hash_func (tree sel_name)
{
const unsigned char *s
= (const unsigned char *)IDENTIFIER_POINTER (sel_name);
size_t h = 0;
while (*s)
h = h * 67 + *s++ - 113;
return h;
}
static void
hash_init (void)
{
nst_method_hash_list
= (hash *) ggc_alloc_cleared (SIZEHASHTABLE * sizeof (hash));
cls_method_hash_list
= (hash *) ggc_alloc_cleared (SIZEHASHTABLE * sizeof (hash));
/* Initialize the hash table used to hold the constant string objects. */
string_htab = htab_create_ggc (31, string_hash,
string_eq, NULL);
/* Initialize the hash table used to hold EH-volatilized types. */
volatilized_htab = htab_create_ggc (31, volatilized_hash,
volatilized_eq, NULL);
}
/* WARNING!!!! hash_enter is called with a method, and will peek
inside to find its selector! But hash_lookup is given a selector
directly, and looks for the selector that's inside the found
entry's key (method) for comparison. */
static void
hash_enter (hash *hashlist, tree method)
{
hash obj;
int slot = hash_func (METHOD_SEL_NAME (method)) % SIZEHASHTABLE;
obj = (hash) ggc_alloc (sizeof (struct hashed_entry));
obj->list = 0;
obj->next = hashlist[slot];
obj->key = method;
hashlist[slot] = obj; /* append to front */
}
static hash
hash_lookup (hash *hashlist, tree sel_name)
{
hash target;
target = hashlist[hash_func (sel_name) % SIZEHASHTABLE];
while (target)
{
if (sel_name == METHOD_SEL_NAME (target->key))
return target;
target = target->next;
}
return 0;
}
static void
hash_add_attr (hash entry, tree value)
{
attr obj;
obj = (attr) ggc_alloc (sizeof (struct hashed_attribute));
obj->next = entry->list;
obj->value = value;
entry->list = obj; /* append to front */
}
static tree
lookup_method (tree mchain, tree method)
{
tree key;
if (TREE_CODE (method) == IDENTIFIER_NODE)
key = method;
else
key = METHOD_SEL_NAME (method);
while (mchain)
{
if (METHOD_SEL_NAME (mchain) == key)
return mchain;
mchain = TREE_CHAIN (mchain);
}
return NULL_TREE;
}
/* Look up a class (if OBJC_LOOKUP_CLASS is set in FLAGS) or instance method
in INTERFACE, along with any categories and protocols attached thereto.
If method is not found, and the OBJC_LOOKUP_NO_SUPER is _not_ set in FLAGS,
recursively examine the INTERFACE's superclass. If OBJC_LOOKUP_CLASS is
set, OBJC_LOOKUP_NO_SUPER is cleared, and no suitable class method could
be found in INTERFACE or any of its superclasses, look for an _instance_
method of the same name in the root class as a last resort.
If a suitable method cannot be found, return NULL_TREE. */
static tree
lookup_method_static (tree interface, tree ident, int flags)
{
tree meth = NULL_TREE, root_inter = NULL_TREE;
tree inter = interface;
int is_class = (flags & OBJC_LOOKUP_CLASS);
int no_superclasses = (flags & OBJC_LOOKUP_NO_SUPER);
while (inter)
{
tree chain = is_class ? CLASS_CLS_METHODS (inter) : CLASS_NST_METHODS (inter);
tree category = inter;
/* First, look up the method in the class itself. */
if ((meth = lookup_method (chain, ident)))
return meth;
/* Failing that, look for the method in each category of the class. */
while ((category = CLASS_CATEGORY_LIST (category)))
{
chain = is_class ? CLASS_CLS_METHODS (category) : CLASS_NST_METHODS (category);
/* Check directly in each category. */
if ((meth = lookup_method (chain, ident)))
return meth;
/* Failing that, check in each category's protocols. */
if (CLASS_PROTOCOL_LIST (category))
{
if ((meth = (lookup_method_in_protocol_list
(CLASS_PROTOCOL_LIST (category), ident, is_class))))
return meth;
}
}
/* If not found in categories, check in protocols of the main class. */
if (CLASS_PROTOCOL_LIST (inter))
{
if ((meth = (lookup_method_in_protocol_list
(CLASS_PROTOCOL_LIST (inter), ident, is_class))))
return meth;
}
/* If we were instructed not to look in superclasses, don't. */
if (no_superclasses)
return NULL_TREE;
/* Failing that, climb up the inheritance hierarchy. */
root_inter = inter;
inter = lookup_interface (CLASS_SUPER_NAME (inter));
}
while (inter);
/* If no class (factory) method was found, check if an _instance_
method of the same name exists in the root class. This is what
the Objective-C runtime will do. If an instance method was not
found, return 0. */
return is_class ? lookup_method_static (root_inter, ident, 0): NULL_TREE;
}
/* Add the method to the hash list if it doesn't contain an identical
method already. */
static void
add_method_to_hash_list (hash *hash_list, tree method)
{
hash hsh;
if (!(hsh = hash_lookup (hash_list, METHOD_SEL_NAME (method))))
{
/* Install on a global chain. */
hash_enter (hash_list, method);
}
else
{
/* Check types against those; if different, add to a list. */
attr loop;
int already_there = comp_proto_with_proto (method, hsh->key, 1);
for (loop = hsh->list; !already_there && loop; loop = loop->next)
already_there |= comp_proto_with_proto (method, loop->value, 1);
if (!already_there)
hash_add_attr (hsh, method);
}
}
static tree
objc_add_method (tree class, tree method, int is_class)
{
tree mth;
if (!(mth = lookup_method (is_class
? CLASS_CLS_METHODS (class)
: CLASS_NST_METHODS (class), method)))
{
/* put method on list in reverse order */
if (is_class)
{
TREE_CHAIN (method) = CLASS_CLS_METHODS (class);
CLASS_CLS_METHODS (class) = method;
}
else
{
TREE_CHAIN (method) = CLASS_NST_METHODS (class);
CLASS_NST_METHODS (class) = method;
}
}
else
{
/* When processing an @interface for a class or category, give hard
errors on methods with identical selectors but differing argument
and/or return types. We do not do this for @implementations, because
C/C++ will do it for us (i.e., there will be duplicate function
definition errors). */
if ((TREE_CODE (class) == CLASS_INTERFACE_TYPE
|| TREE_CODE (class) == CATEGORY_INTERFACE_TYPE)
&& !comp_proto_with_proto (method, mth, 1))
error ("duplicate declaration of method %<%c%s%>",
is_class ? '+' : '-',
IDENTIFIER_POINTER (METHOD_SEL_NAME (mth)));
}
if (is_class)
add_method_to_hash_list (cls_method_hash_list, method);
else
{
add_method_to_hash_list (nst_method_hash_list, method);
/* Instance methods in root classes (and categories thereof)
may act as class methods as a last resort. We also add
instance methods listed in @protocol declarations to
the class hash table, on the assumption that @protocols
may be adopted by root classes or categories. */
if (TREE_CODE (class) == CATEGORY_INTERFACE_TYPE
|| TREE_CODE (class) == CATEGORY_IMPLEMENTATION_TYPE)
class = lookup_interface (CLASS_NAME (class));
if (TREE_CODE (class) == PROTOCOL_INTERFACE_TYPE
|| !CLASS_SUPER_NAME (class))
add_method_to_hash_list (cls_method_hash_list, method);
}
return method;
}
static tree
add_class (tree class_name, tree name)
{
struct interface_tuple **slot;
/* Put interfaces on list in reverse order. */
TREE_CHAIN (class_name) = interface_chain;
interface_chain = class_name;
if (interface_htab == NULL)
interface_htab = htab_create_ggc (31, hash_interface, eq_interface, NULL);
slot = (struct interface_tuple **)
htab_find_slot_with_hash (interface_htab, name,
IDENTIFIER_HASH_VALUE (name),
INSERT);
if (!*slot)
{
*slot = (struct interface_tuple *) ggc_alloc_cleared (sizeof (struct interface_tuple));
(*slot)->id = name;
}
(*slot)->class_name = class_name;
return interface_chain;
}
static void
add_category (tree class, tree category)
{
/* Put categories on list in reverse order. */
tree cat = lookup_category (class, CLASS_SUPER_NAME (category));
if (cat)
{
warning (0, "duplicate interface declaration for category %<%s(%s)%>",
IDENTIFIER_POINTER (CLASS_NAME (class)),
IDENTIFIER_POINTER (CLASS_SUPER_NAME (category)));
}
else
{
CLASS_CATEGORY_LIST (category) = CLASS_CATEGORY_LIST (class);
CLASS_CATEGORY_LIST (class) = category;
}
}
/* Called after parsing each instance variable declaration. Necessary to
preserve typedefs and implement public/private...
PUBLIC is 1 for public, 0 for protected, and 2 for private. */
static tree
add_instance_variable (tree class, int public, tree field_decl)
{
tree field_type = TREE_TYPE (field_decl);
const char *ivar_name = DECL_NAME (field_decl)
? IDENTIFIER_POINTER (DECL_NAME (field_decl))
: "<unnamed>";
#ifdef OBJCPLUS
if (TREE_CODE (field_type) == REFERENCE_TYPE)
{
error ("illegal reference type specified for instance variable %qs",
ivar_name);
/* Return class as is without adding this ivar. */
return class;
}
#endif
if (field_type == error_mark_node || !TYPE_SIZE (field_type)
|| TYPE_SIZE (field_type) == error_mark_node)
/* 'type[0]' is allowed, but 'type[]' is not! */
{
error ("instance variable %qs has unknown size", ivar_name);
/* Return class as is without adding this ivar. */
return class;
}
#ifdef OBJCPLUS
/* Check if the ivar being added has a non-POD C++ type. If so, we will
need to either (1) warn the user about it or (2) generate suitable
constructor/destructor call from '- .cxx_construct' or '- .cxx_destruct'
methods (if '-fobjc-call-cxx-cdtors' was specified). */
if (IS_AGGR_TYPE (field_type)
&& (TYPE_NEEDS_CONSTRUCTING (field_type)
|| TYPE_HAS_NONTRIVIAL_DESTRUCTOR (field_type)
|| TYPE_POLYMORPHIC_P (field_type)))
{
const char *type_name = IDENTIFIER_POINTER (OBJC_TYPE_NAME (field_type));
if (flag_objc_call_cxx_cdtors)
{
/* Since the ObjC runtime will be calling the constructors and
destructors for us, the only thing we can't handle is the lack
of a default constructor. */
if (TYPE_NEEDS_CONSTRUCTING (field_type)
&& !TYPE_HAS_DEFAULT_CONSTRUCTOR (field_type))
{
warning (0, "type %qs has no default constructor to call",
type_name);
/* If we cannot call a constructor, we should also avoid
calling the destructor, for symmetry. */
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (field_type))
warning (0, "destructor for %qs shall not be run either",
type_name);
}
}
else
{
static bool warn_cxx_ivars = false;
if (TYPE_POLYMORPHIC_P (field_type))
{
/* Vtable pointers are Real Bad(tm), since Obj-C cannot
initialize them. */
error ("type %qs has virtual member functions", type_name);
error ("illegal aggregate type %qs specified "
"for instance variable %qs",
type_name, ivar_name);
/* Return class as is without adding this ivar. */
return class;
}
/* User-defined constructors and destructors are not known to Obj-C
and hence will not be called. This may or may not be a problem. */
if (TYPE_NEEDS_CONSTRUCTING (field_type))
warning (0, "type %qs has a user-defined constructor", type_name);
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (field_type))
warning (0, "type %qs has a user-defined destructor", type_name);
if (!warn_cxx_ivars)
{
warning (0, "C++ constructors and destructors will not "
"be invoked for Objective-C fields");
warn_cxx_ivars = true;
}
}
}
#endif
/* Overload the public attribute, it is not used for FIELD_DECLs. */
switch (public)
{
case 0:
TREE_PUBLIC (field_decl) = 0;
TREE_PRIVATE (field_decl) = 0;
TREE_PROTECTED (field_decl) = 1;
break;
case 1:
TREE_PUBLIC (field_decl) = 1;
TREE_PRIVATE (field_decl) = 0;
TREE_PROTECTED (field_decl) = 0;
break;
case 2:
TREE_PUBLIC (field_decl) = 0;
TREE_PRIVATE (field_decl) = 1;
TREE_PROTECTED (field_decl) = 0;
break;
}
CLASS_RAW_IVARS (class) = chainon (CLASS_RAW_IVARS (class), field_decl);
return class;
}
static tree
is_ivar (tree decl_chain, tree ident)
{
for ( ; decl_chain; decl_chain = TREE_CHAIN (decl_chain))
if (DECL_NAME (decl_chain) == ident)
return decl_chain;
return NULL_TREE;
}
/* True if the ivar is private and we are not in its implementation. */
static int
is_private (tree decl)
{
return (TREE_PRIVATE (decl)
&& ! is_ivar (CLASS_IVARS (implementation_template),
DECL_NAME (decl)));
}
/* We have an instance variable reference;, check to see if it is public. */
int
objc_is_public (tree expr, tree identifier)
{
tree basetype, decl;
#ifdef OBJCPLUS
if (processing_template_decl)
return 1;
#endif
if (TREE_TYPE (expr) == error_mark_node)
return 1;
basetype = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
if (basetype && TREE_CODE (basetype) == RECORD_TYPE)
{
if (TYPE_HAS_OBJC_INFO (basetype) && TYPE_OBJC_INTERFACE (basetype))
{
tree class = lookup_interface (OBJC_TYPE_NAME (basetype));
if (!class)
{
error ("cannot find interface declaration for %qs",
IDENTIFIER_POINTER (OBJC_TYPE_NAME (basetype)));
return 0;
}
if ((decl = is_ivar (get_class_ivars (class, true), identifier)))
{
if (TREE_PUBLIC (decl))
return 1;
/* Important difference between the Stepstone translator:
all instance variables should be public within the context
of the implementation. */
if (objc_implementation_context
&& ((TREE_CODE (objc_implementation_context)
== CLASS_IMPLEMENTATION_TYPE)
|| (TREE_CODE (objc_implementation_context)
== CATEGORY_IMPLEMENTATION_TYPE)))
{
tree curtype = TYPE_MAIN_VARIANT
(CLASS_STATIC_TEMPLATE
(implementation_template));
if (basetype == curtype
|| DERIVED_FROM_P (basetype, curtype))
{
int private = is_private (decl);
if (private)
error ("instance variable %qs is declared private",
IDENTIFIER_POINTER (DECL_NAME (decl)));
return !private;
}
}
/* The 2.95.2 compiler sometimes allowed C functions to access
non-@public ivars. We will let this slide for now... */
if (!objc_method_context)
{
warning (0, "instance variable %qs is %s; "
"this will be a hard error in the future",
IDENTIFIER_POINTER (identifier),
TREE_PRIVATE (decl) ? "@private" : "@protected");
return 1;
}
error ("instance variable %qs is declared %s",
IDENTIFIER_POINTER (identifier),
TREE_PRIVATE (decl) ? "private" : "protected");
return 0;
}
}
}
return 1;
}
/* Make sure all entries in CHAIN are also in LIST. */
static int
check_methods (tree chain, tree list, int mtype)
{
int first = 1;
while (chain)
{
if (!lookup_method (list, chain))
{
if (first)
{
if (TREE_CODE (objc_implementation_context)
== CLASS_IMPLEMENTATION_TYPE)
warning (0, "incomplete implementation of class %qs",
IDENTIFIER_POINTER (CLASS_NAME (objc_implementation_context)));
else if (TREE_CODE (objc_implementation_context)
== CATEGORY_IMPLEMENTATION_TYPE)
warning (0, "incomplete implementation of category %qs",
IDENTIFIER_POINTER (CLASS_SUPER_NAME (objc_implementation_context)));
first = 0;
}
warning (0, "method definition for %<%c%s%> not found",
mtype, IDENTIFIER_POINTER (METHOD_SEL_NAME (chain)));
}
chain = TREE_CHAIN (chain);
}
return first;
}
/* Check if CLASS, or its superclasses, explicitly conforms to PROTOCOL. */
static int
conforms_to_protocol (tree class, tree protocol)
{
if (TREE_CODE (protocol) == PROTOCOL_INTERFACE_TYPE)
{
tree p = CLASS_PROTOCOL_LIST (class);
while (p && TREE_VALUE (p) != protocol)
p = TREE_CHAIN (p);
if (!p)
{
tree super = (CLASS_SUPER_NAME (class)
? lookup_interface (CLASS_SUPER_NAME (class))
: NULL_TREE);
int tmp = super ? conforms_to_protocol (super, protocol) : 0;
if (!tmp)
return 0;
}
}
return 1;
}
/* Make sure all methods in CHAIN are accessible as MTYPE methods in
CONTEXT. This is one of two mechanisms to check protocol integrity. */
static int
check_methods_accessible (tree chain, tree context, int mtype)
{
int first = 1;
tree list;
tree base_context = context;
while (chain)
{
context = base_context;
while (context)
{
if (mtype == '+')
list = CLASS_CLS_METHODS (context);
else
list = CLASS_NST_METHODS (context);
if (lookup_method (list, chain))
break;
else if (TREE_CODE (context) == CLASS_IMPLEMENTATION_TYPE
|| TREE_CODE (context) == CLASS_INTERFACE_TYPE)
context = (CLASS_SUPER_NAME (context)
? lookup_interface (CLASS_SUPER_NAME (context))
: NULL_TREE);
else if (TREE_CODE (context) == CATEGORY_IMPLEMENTATION_TYPE
|| TREE_CODE (context) == CATEGORY_INTERFACE_TYPE)
context = (CLASS_NAME (context)
? lookup_interface (CLASS_NAME (context))
: NULL_TREE);
else
abort ();
}
if (context == NULL_TREE)
{
if (first)
{
if (TREE_CODE (objc_implementation_context)
== CLASS_IMPLEMENTATION_TYPE)
warning (0, "incomplete implementation of class %qs",
IDENTIFIER_POINTER
(CLASS_NAME (objc_implementation_context)));
else if (TREE_CODE (objc_implementation_context)
== CATEGORY_IMPLEMENTATION_TYPE)
warning (0, "incomplete implementation of category %qs",
IDENTIFIER_POINTER
(CLASS_SUPER_NAME (objc_implementation_context)));
first = 0;
}
warning (0, "method definition for %<%c%s%> not found",
mtype, IDENTIFIER_POINTER (METHOD_SEL_NAME (chain)));
}
chain = TREE_CHAIN (chain); /* next method... */
}
return first;
}
/* Check whether the current interface (accessible via
'objc_implementation_context') actually implements protocol P, along
with any protocols that P inherits. */
static void
check_protocol (tree p, const char *type, const char *name)
{
if (TREE_CODE (p) == PROTOCOL_INTERFACE_TYPE)
{
int f1, f2;
/* Ensure that all protocols have bodies! */
if (warn_protocol)
{
f1 = check_methods (PROTOCOL_CLS_METHODS (p),
CLASS_CLS_METHODS (objc_implementation_context),
'+');
f2 = check_methods (PROTOCOL_NST_METHODS (p),
CLASS_NST_METHODS (objc_implementation_context),
'-');
}
else
{
f1 = check_methods_accessible (PROTOCOL_CLS_METHODS (p),
objc_implementation_context,
'+');
f2 = check_methods_accessible (PROTOCOL_NST_METHODS (p),
objc_implementation_context,
'-');
}
if (!f1 || !f2)
warning (0, "%s %qs does not fully implement the %qs protocol",
type, name, IDENTIFIER_POINTER (PROTOCOL_NAME (p)));
}
/* Check protocols recursively. */
if (PROTOCOL_LIST (p))
{
tree subs = PROTOCOL_LIST (p);
tree super_class =
lookup_interface (CLASS_SUPER_NAME (implementation_template));
while (subs)
{
tree sub = TREE_VALUE (subs);
/* If the superclass does not conform to the protocols
inherited by P, then we must! */
if (!super_class || !conforms_to_protocol (super_class, sub))
check_protocol (sub, type, name);
subs = TREE_CHAIN (subs);
}
}
}
/* Check whether the current interface (accessible via
'objc_implementation_context') actually implements the protocols listed
in PROTO_LIST. */
static void
check_protocols (tree proto_list, const char *type, const char *name)
{
for ( ; proto_list; proto_list = TREE_CHAIN (proto_list))
{
tree p = TREE_VALUE (proto_list);
check_protocol (p, type, name);
}
}
/* Make sure that the class CLASS_NAME is defined
CODE says which kind of thing CLASS_NAME ought to be.
It can be CLASS_INTERFACE_TYPE, CLASS_IMPLEMENTATION_TYPE,
CATEGORY_INTERFACE_TYPE, or CATEGORY_IMPLEMENTATION_TYPE. */
static tree
start_class (enum tree_code code, tree class_name, tree super_name,
tree protocol_list)
{
tree class, decl;
#ifdef OBJCPLUS
if (current_namespace != global_namespace) {
error ("Objective-C declarations may only appear in global scope");
}
#endif /* OBJCPLUS */
if (objc_implementation_context)
{
warning (0, "%<@end%> missing in implementation context");
finish_class (objc_implementation_context);
objc_ivar_chain = NULL_TREE;
objc_implementation_context = NULL_TREE;
}
class = make_node (code);
TYPE_LANG_SLOT_1 (class) = make_tree_vec (CLASS_LANG_SLOT_ELTS);
/* Check for existence of the super class, if one was specified. Note
that we must have seen an @interface, not just a @class. If we
are looking at a @compatibility_alias, traverse it first. */
if ((code == CLASS_INTERFACE_TYPE || code == CLASS_IMPLEMENTATION_TYPE)
&& super_name)
{
tree super = objc_is_class_name (super_name);
if (!super || !lookup_interface (super))
{
error ("cannot find interface declaration for %qs, superclass of %qs",
IDENTIFIER_POINTER (super ? super : super_name),
IDENTIFIER_POINTER (class_name));
super_name = NULL_TREE;
}
else
super_name = super;
}
CLASS_NAME (class) = class_name;
CLASS_SUPER_NAME (class) = super_name;
CLASS_CLS_METHODS (class) = NULL_TREE;
if (! objc_is_class_name (class_name)
&& (decl = lookup_name (class_name)))
{
error ("%qs redeclared as different kind of symbol",
IDENTIFIER_POINTER (class_name));
error ("previous declaration of %q+D",
decl);
}
if (code == CLASS_IMPLEMENTATION_TYPE)
{
{
tree chain;
for (chain = implemented_classes; chain; chain = TREE_CHAIN (chain))
if (TREE_VALUE (chain) == class_name)
{
error ("reimplementation of class %qs",
IDENTIFIER_POINTER (class_name));
return error_mark_node;
}
implemented_classes = tree_cons (NULL_TREE, class_name,
implemented_classes);
}
/* Reset for multiple classes per file. */
method_slot = 0;
objc_implementation_context = class;
/* Lookup the interface for this implementation. */
if (!(implementation_template = lookup_interface (class_name)))
{
warning (0, "cannot find interface declaration for %qs",
IDENTIFIER_POINTER (class_name));
add_class (implementation_template = objc_implementation_context,
class_name);
}
/* If a super class has been specified in the implementation,
insure it conforms to the one specified in the interface. */
if (super_name
&& (super_name != CLASS_SUPER_NAME (implementation_template)))
{
tree previous_name = CLASS_SUPER_NAME (implementation_template);
const char *const name =
previous_name ? IDENTIFIER_POINTER (previous_name) : "";
error ("conflicting super class name %qs",
IDENTIFIER_POINTER (super_name));
error ("previous declaration of %qs", name);
}
else if (! super_name)
{
CLASS_SUPER_NAME (objc_implementation_context)
= CLASS_SUPER_NAME (implementation_template);
}
}
else if (code == CLASS_INTERFACE_TYPE)
{
if (lookup_interface (class_name))
#ifdef OBJCPLUS
error ("duplicate interface declaration for class %qs",
#else
warning (0, "duplicate interface declaration for class %qs",
#endif
IDENTIFIER_POINTER (class_name));
else
add_class (class, class_name);
if (protocol_list)
CLASS_PROTOCOL_LIST (class)
= lookup_and_install_protocols (protocol_list);
}
else if (code == CATEGORY_INTERFACE_TYPE)
{
tree class_category_is_assoc_with;
/* For a category, class_name is really the name of the class that
the following set of methods will be associated with. We must
find the interface so that can derive the objects template. */
if (!(class_category_is_assoc_with = lookup_interface (class_name)))
{
error ("cannot find interface declaration for %qs",
IDENTIFIER_POINTER (class_name));
exit (FATAL_EXIT_CODE);
}
else
add_category (class_category_is_assoc_with, class);
if (protocol_list)
CLASS_PROTOCOL_LIST (class)
= lookup_and_install_protocols (protocol_list);
}
else if (code == CATEGORY_IMPLEMENTATION_TYPE)
{
/* Reset for multiple classes per file. */
method_slot = 0;
objc_implementation_context = class;
/* For a category, class_name is really the name of the class that
the following set of methods will be associated with. We must
find the interface so that can derive the objects template. */
if (!(implementation_template = lookup_interface (class_name)))
{
error ("cannot find interface declaration for %qs",
IDENTIFIER_POINTER (class_name));
exit (FATAL_EXIT_CODE);
}
}
return class;
}
static tree
continue_class (tree class)
{
if (TREE_CODE (class) == CLASS_IMPLEMENTATION_TYPE
|| TREE_CODE (class) == CATEGORY_IMPLEMENTATION_TYPE)
{
struct imp_entry *imp_entry;
/* Check consistency of the instance variables. */
if (CLASS_RAW_IVARS (class))
check_ivars (implementation_template, class);
/* code generation */
#ifdef OBJCPLUS
push_lang_context (lang_name_c);
#endif
build_private_template (implementation_template);
uprivate_record = CLASS_STATIC_TEMPLATE (implementation_template);
objc_instance_type = build_pointer_type (uprivate_record);
imp_entry = (struct imp_entry *) ggc_alloc (sizeof (struct imp_entry));
imp_entry->next = imp_list;
imp_entry->imp_context = class;
imp_entry->imp_template = implementation_template;
synth_forward_declarations ();
imp_entry->class_decl = UOBJC_CLASS_decl;
imp_entry->meta_decl = UOBJC_METACLASS_decl;
imp_entry->has_cxx_cdtors = 0;
/* Append to front and increment count. */
imp_list = imp_entry;
if (TREE_CODE (class) == CLASS_IMPLEMENTATION_TYPE)
imp_count++;
else
cat_count++;
#ifdef OBJCPLUS
pop_lang_context ();
#endif /* OBJCPLUS */
return get_class_ivars (implementation_template, true);
}
else if (TREE_CODE (class) == CLASS_INTERFACE_TYPE)
{
#ifdef OBJCPLUS
push_lang_context (lang_name_c);
#endif /* OBJCPLUS */
build_private_template (class);
#ifdef OBJCPLUS
pop_lang_context ();
#endif /* OBJCPLUS */
return NULL_TREE;
}
else
return error_mark_node;
}
/* This is called once we see the "@end" in an interface/implementation. */
static void
finish_class (tree class)
{
if (TREE_CODE (class) == CLASS_IMPLEMENTATION_TYPE)
{
/* All code generation is done in finish_objc. */
if (implementation_template != objc_implementation_context)
{
/* Ensure that all method listed in the interface contain bodies. */
check_methods (CLASS_CLS_METHODS (implementation_template),
CLASS_CLS_METHODS (objc_implementation_context), '+');
check_methods (CLASS_NST_METHODS (implementation_template),
CLASS_NST_METHODS (objc_implementation_context), '-');
if (CLASS_PROTOCOL_LIST (implementation_template))
check_protocols (CLASS_PROTOCOL_LIST (implementation_template),
"class",
IDENTIFIER_POINTER (CLASS_NAME (objc_implementation_context)));
}
}
else if (TREE_CODE (class) == CATEGORY_IMPLEMENTATION_TYPE)
{
tree category = lookup_category (implementation_template, CLASS_SUPER_NAME (class));
if (category)
{
/* Ensure all method listed in the interface contain bodies. */
check_methods (CLASS_CLS_METHODS (category),
CLASS_CLS_METHODS (objc_implementation_context), '+');
check_methods (CLASS_NST_METHODS (category),
CLASS_NST_METHODS (objc_implementation_context), '-');
if (CLASS_PROTOCOL_LIST (category))
check_protocols (CLASS_PROTOCOL_LIST (category),
"category",
IDENTIFIER_POINTER (CLASS_SUPER_NAME (objc_implementation_context)));
}
}
}
static tree
add_protocol (tree protocol)
{
/* Put protocol on list in reverse order. */
TREE_CHAIN (protocol) = protocol_chain;
protocol_chain = protocol;
return protocol_chain;
}
static tree
lookup_protocol (tree ident)
{
tree chain;
for (chain = protocol_chain; chain; chain = TREE_CHAIN (chain))
if (ident == PROTOCOL_NAME (chain))
return chain;
return NULL_TREE;
}
/* This function forward declares the protocols named by NAMES. If
they are already declared or defined, the function has no effect. */
void
objc_declare_protocols (tree names)
{
tree list;
#ifdef OBJCPLUS
if (current_namespace != global_namespace) {
error ("Objective-C declarations may only appear in global scope");
}
#endif /* OBJCPLUS */
for (list = names; list; list = TREE_CHAIN (list))
{
tree name = TREE_VALUE (list);
if (lookup_protocol (name) == NULL_TREE)
{
tree protocol = make_node (PROTOCOL_INTERFACE_TYPE);
TYPE_LANG_SLOT_1 (protocol)
= make_tree_vec (PROTOCOL_LANG_SLOT_ELTS);
PROTOCOL_NAME (protocol) = name;
PROTOCOL_LIST (protocol) = NULL_TREE;
add_protocol (protocol);
PROTOCOL_DEFINED (protocol) = 0;
PROTOCOL_FORWARD_DECL (protocol) = NULL_TREE;
}
}
}
static tree
start_protocol (enum tree_code code, tree name, tree list)
{
tree protocol;
#ifdef OBJCPLUS
if (current_namespace != global_namespace) {
error ("Objective-C declarations may only appear in global scope");
}
#endif /* OBJCPLUS */
protocol = lookup_protocol (name);
if (!protocol)
{
protocol = make_node (code);
TYPE_LANG_SLOT_1 (protocol) = make_tree_vec (PROTOCOL_LANG_SLOT_ELTS);
PROTOCOL_NAME (protocol) = name;
PROTOCOL_LIST (protocol) = lookup_and_install_protocols (list);
add_protocol (protocol);
PROTOCOL_DEFINED (protocol) = 1;
PROTOCOL_FORWARD_DECL (protocol) = NULL_TREE;
check_protocol_recursively (protocol, list);
}
else if (! PROTOCOL_DEFINED (protocol))
{
PROTOCOL_DEFINED (protocol) = 1;
PROTOCOL_LIST (protocol) = lookup_and_install_protocols (list);
check_protocol_recursively (protocol, list);
}
else
{
warning (0, "duplicate declaration for protocol %qs",
IDENTIFIER_POINTER (name));
}
return protocol;
}
/* "Encode" a data type into a string, which grows in util_obstack.
??? What is the FORMAT? Someone please document this! */
static void
encode_type_qualifiers (tree declspecs)
{
tree spec;
for (spec = declspecs; spec; spec = TREE_CHAIN (spec))
{
if (ridpointers[(int) RID_IN] == TREE_VALUE (spec))
obstack_1grow (&util_obstack, 'n');
else if (ridpointers[(int) RID_INOUT] == TREE_VALUE (spec))
obstack_1grow (&util_obstack, 'N');
else if (ridpointers[(int) RID_OUT] == TREE_VALUE (spec))
obstack_1grow (&util_obstack, 'o');
else if (ridpointers[(int) RID_BYCOPY] == TREE_VALUE (spec))
obstack_1grow (&util_obstack, 'O');
else if (ridpointers[(int) RID_BYREF] == TREE_VALUE (spec))
obstack_1grow (&util_obstack, 'R');
else if (ridpointers[(int) RID_ONEWAY] == TREE_VALUE (spec))
obstack_1grow (&util_obstack, 'V');
}
}
/* Encode a pointer type. */
static void
encode_pointer (tree type, int curtype, int format)
{
tree pointer_to = TREE_TYPE (type);
if (TREE_CODE (pointer_to) == RECORD_TYPE)
{
if (OBJC_TYPE_NAME (pointer_to)
&& TREE_CODE (OBJC_TYPE_NAME (pointer_to)) == IDENTIFIER_NODE)
{
const char *name = IDENTIFIER_POINTER (OBJC_TYPE_NAME (pointer_to));
if (strcmp (name, TAG_OBJECT) == 0) /* '@' */
{
obstack_1grow (&util_obstack, '@');
return;
}
else if (TYPE_HAS_OBJC_INFO (pointer_to)
&& TYPE_OBJC_INTERFACE (pointer_to))
{
if (generating_instance_variables)
{
obstack_1grow (&util_obstack, '@');
obstack_1grow (&util_obstack, '"');
obstack_grow (&util_obstack, name, strlen (name));
obstack_1grow (&util_obstack, '"');
return;
}
else
{
obstack_1grow (&util_obstack, '@');
return;
}
}
else if (strcmp (name, TAG_CLASS) == 0) /* '#' */
{
obstack_1grow (&util_obstack, '#');
return;
}
else if (strcmp (name, TAG_SELECTOR) == 0) /* ':' */
{
obstack_1grow (&util_obstack, ':');
return;
}
}
}
else if (TREE_CODE (pointer_to) == INTEGER_TYPE
&& TYPE_MODE (pointer_to) == QImode)
{
tree pname = TREE_CODE (OBJC_TYPE_NAME (pointer_to)) == IDENTIFIER_NODE
? OBJC_TYPE_NAME (pointer_to)
: DECL_NAME (OBJC_TYPE_NAME (pointer_to));
if (!flag_next_runtime || strcmp (IDENTIFIER_POINTER (pname), "BOOL"))
{
/* It appears that "r*" means "const char *" rather than
"char *const". */
if (TYPE_READONLY (pointer_to))
obstack_1grow (&util_obstack, 'r');
obstack_1grow (&util_obstack, '*');
return;
}
}
/* We have a type that does not get special treatment. */
/* NeXT extension */
obstack_1grow (&util_obstack, '^');
encode_type (pointer_to, curtype, format);
}
static void
encode_array (tree type, int curtype, int format)
{
tree an_int_cst = TYPE_SIZE (type);
tree array_of = TREE_TYPE (type);
char buffer[40];
/* An incomplete array is treated like a pointer. */
if (an_int_cst == NULL)
{
encode_pointer (type, curtype, format);
return;
}
if (TREE_INT_CST_LOW (TYPE_SIZE (array_of)) == 0)
sprintf (buffer, "[" HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)0);
else
sprintf (buffer, "[" HOST_WIDE_INT_PRINT_DEC,
TREE_INT_CST_LOW (an_int_cst)
/ TREE_INT_CST_LOW (TYPE_SIZE (array_of)));
obstack_grow (&util_obstack, buffer, strlen (buffer));
encode_type (array_of, curtype, format);
obstack_1grow (&util_obstack, ']');
return;
}
static void
encode_aggregate_fields (tree type, int pointed_to, int curtype, int format)
{
tree field = TYPE_FIELDS (type);
for (; field; field = TREE_CHAIN (field))
{
#ifdef OBJCPLUS
/* C++ static members, and things that are not field at all,
should not appear in the encoding. */
if (TREE_CODE (field) != FIELD_DECL || TREE_STATIC (field))
continue;
#endif
/* Recursively encode fields of embedded base classes. */
if (DECL_ARTIFICIAL (field) && !DECL_NAME (field)
&& TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE)
{
encode_aggregate_fields (TREE_TYPE (field),
pointed_to, curtype, format);
continue;
}
if (generating_instance_variables && !pointed_to)
{
tree fname = DECL_NAME (field);
obstack_1grow (&util_obstack, '"');
if (fname && TREE_CODE (fname) == IDENTIFIER_NODE)
obstack_grow (&util_obstack,
IDENTIFIER_POINTER (fname),
strlen (IDENTIFIER_POINTER (fname)));
obstack_1grow (&util_obstack, '"');
}
encode_field_decl (field, curtype, format);
}
}
static void
encode_aggregate_within (tree type, int curtype, int format, int left,
int right)
{
tree name;
/* NB: aggregates that are pointed to have slightly different encoding
rules in that you never encode the names of instance variables. */
int ob_size = obstack_object_size (&util_obstack);
char c1 = ob_size > 1 ? *(obstack_next_free (&util_obstack) - 2) : 0;
char c0 = ob_size > 0 ? *(obstack_next_free (&util_obstack) - 1) : 0;
int pointed_to = (c0 == '^' || (c1 == '^' && c0 == 'r'));
int inline_contents
= ((format == OBJC_ENCODE_INLINE_DEFS || generating_instance_variables)
&& (!pointed_to || ob_size - curtype == (c1 == 'r' ? 2 : 1)));
/* Traverse struct aliases; it is important to get the
original struct and its tag name (if any). */
type = TYPE_MAIN_VARIANT (type);
name = OBJC_TYPE_NAME (type);
/* Open parenth/bracket. */
obstack_1grow (&util_obstack, left);
/* Encode the struct/union tag name, or '?' if a tag was
not provided. Typedef aliases do not qualify. */
if (name && TREE_CODE (name) == IDENTIFIER_NODE
#ifdef OBJCPLUS
/* Did this struct have a tag? */
&& !TYPE_WAS_ANONYMOUS (type)
#endif
)
obstack_grow (&util_obstack,
IDENTIFIER_POINTER (name),
strlen (IDENTIFIER_POINTER (name)));
else
obstack_1grow (&util_obstack, '?');
/* Encode the types (and possibly names) of the inner fields,
if required. */
if (inline_contents)
{
obstack_1grow (&util_obstack, '=');
encode_aggregate_fields (type, pointed_to, curtype, format);
}
/* Close parenth/bracket. */
obstack_1grow (&util_obstack, right);
}
static void
encode_aggregate (tree type, int curtype, int format)
{
enum tree_code code = TREE_CODE (type);
switch (code)
{
case RECORD_TYPE:
{
encode_aggregate_within (type, curtype, format, '{', '}');
break;
}
case UNION_TYPE:
{
encode_aggregate_within (type, curtype, format, '(', ')');
break;
}
case ENUMERAL_TYPE:
obstack_1grow (&util_obstack, 'i');
break;
default:
break;
}
}
/* Encode a bitfield NeXT-style (i.e., without a bit offset or the underlying
field type. */
static void
encode_next_bitfield (int width)
{
char buffer[40];
sprintf (buffer, "b%d", width);
obstack_grow (&util_obstack, buffer, strlen (buffer));
}
/* FORMAT will be OBJC_ENCODE_INLINE_DEFS or OBJC_ENCODE_DONT_INLINE_DEFS. */
static void
encode_type (tree type, int curtype, int format)
{
enum tree_code code = TREE_CODE (type);
char c;
if (TYPE_READONLY (type))
obstack_1grow (&util_obstack, 'r');
if (code == INTEGER_TYPE)
{
switch (GET_MODE_BITSIZE (TYPE_MODE (type)))
{
case 8: c = TYPE_UNSIGNED (type) ? 'C' : 'c'; break;
case 16: c = TYPE_UNSIGNED (type) ? 'S' : 's'; break;
case 32:
if (type == long_unsigned_type_node
|| type == long_integer_type_node)
c = TYPE_UNSIGNED (type) ? 'L' : 'l';
else
c = TYPE_UNSIGNED (type) ? 'I' : 'i';
break;
case 64: c = TYPE_UNSIGNED (type) ? 'Q' : 'q'; break;
default: abort ();
}
obstack_1grow (&util_obstack, c);
}
else if (code == REAL_TYPE)
{
/* Floating point types. */
switch (GET_MODE_BITSIZE (TYPE_MODE (type)))
{
case 32: c = 'f'; break;
case 64:
case 96:
case 128: c = 'd'; break;
default: abort ();
}
obstack_1grow (&util_obstack, c);
}
else if (code == VOID_TYPE)
obstack_1grow (&util_obstack, 'v');
else if (code == BOOLEAN_TYPE)
obstack_1grow (&util_obstack, 'B');
else if (code == ARRAY_TYPE)
encode_array (type, curtype, format);
else if (code == POINTER_TYPE)
encode_pointer (type, curtype, format);
else if (code == RECORD_TYPE || code == UNION_TYPE || code == ENUMERAL_TYPE)
encode_aggregate (type, curtype, format);
else if (code == FUNCTION_TYPE) /* '?' */
obstack_1grow (&util_obstack, '?');
else if (code == COMPLEX_TYPE)
{
obstack_1grow (&util_obstack, 'j');
encode_type (TREE_TYPE (type), curtype, format);
}
}
static void
encode_gnu_bitfield (int position, tree type, int size)
{
enum tree_code code = TREE_CODE (type);
char buffer[40];
char charType = '?';
if (code == INTEGER_TYPE)
{
if (integer_zerop (TYPE_MIN_VALUE (type)))
{
/* Unsigned integer types. */
if (TYPE_MODE (type) == QImode)
charType = 'C';
else if (TYPE_MODE (type) == HImode)
charType = 'S';
else if (TYPE_MODE (type) == SImode)
{
if (type == long_unsigned_type_node)
charType = 'L';
else
charType = 'I';
}
else if (TYPE_MODE (type) == DImode)
charType = 'Q';
}
else
/* Signed integer types. */
{
if (TYPE_MODE (type) == QImode)
charType = 'c';
else if (TYPE_MODE (type) == HImode)
charType = 's';
else if (TYPE_MODE (type) == SImode)
{
if (type == long_integer_type_node)
charType = 'l';
else
charType = 'i';
}
else if (TYPE_MODE (type) == DImode)
charType = 'q';
}
}
else if (code == ENUMERAL_TYPE)
charType = 'i';
else
abort ();
sprintf (buffer, "b%d%c%d", position, charType, size);
obstack_grow (&util_obstack, buffer, strlen (buffer));
}
static void
encode_field_decl (tree field_decl, int curtype, int format)
{
tree type;
#ifdef OBJCPLUS
/* C++ static members, and things that are not fields at all,
should not appear in the encoding. */
if (TREE_CODE (field_decl) != FIELD_DECL || TREE_STATIC (field_decl))
return;
#endif
type = TREE_TYPE (field_decl);
/* Generate the bitfield typing information, if needed. Note the difference
between GNU and NeXT runtimes. */
if (DECL_BIT_FIELD_TYPE (field_decl))
{
int size = tree_low_cst (DECL_SIZE (field_decl), 1);
if (flag_next_runtime)
encode_next_bitfield (size);
else
encode_gnu_bitfield (int_bit_position (field_decl),
DECL_BIT_FIELD_TYPE (field_decl), size);
}
else
encode_type (TREE_TYPE (field_decl), curtype, format);
}
static GTY(()) tree objc_parmlist = NULL_TREE;
/* Append PARM to a list of formal parameters of a method, making a necessary
array-to-pointer adjustment along the way. */
static void
objc_push_parm (tree parm)
{
bool relayout_needed = false;
/* Decay arrays and functions into pointers. */
if (TREE_CODE (TREE_TYPE (parm)) == ARRAY_TYPE)
{
TREE_TYPE (parm) = build_pointer_type (TREE_TYPE (TREE_TYPE (parm)));
relayout_needed = true;
}
else if (TREE_CODE (TREE_TYPE (parm)) == FUNCTION_TYPE)
{
TREE_TYPE (parm) = build_pointer_type (TREE_TYPE (parm));
relayout_needed = true;
}
if (relayout_needed)
relayout_decl (parm);
DECL_ARG_TYPE (parm)
= lang_hooks.types.type_promotes_to (TREE_TYPE (parm));
/* Record constancy and volatility. */
c_apply_type_quals_to_decl
((TYPE_READONLY (TREE_TYPE (parm)) ? TYPE_QUAL_CONST : 0)
| (TYPE_RESTRICT (TREE_TYPE (parm)) ? TYPE_QUAL_RESTRICT : 0)
| (TYPE_VOLATILE (TREE_TYPE (parm)) ? TYPE_QUAL_VOLATILE : 0), parm);
objc_parmlist = chainon (objc_parmlist, parm);
}
/* Retrieve the formal parameter list constructed via preceding calls to
objc_push_parm(). */
#ifdef OBJCPLUS
static tree
objc_get_parm_info (int have_ellipsis ATTRIBUTE_UNUSED)
#else
static struct c_arg_info *
objc_get_parm_info (int have_ellipsis)
#endif
{
#ifdef OBJCPLUS
tree parm_info = objc_parmlist;
objc_parmlist = NULL_TREE;
return parm_info;
#else
tree parm_info = objc_parmlist;
struct c_arg_info *arg_info;
/* The C front-end requires an elaborate song and dance at
this point. */
push_scope ();
declare_parm_level ();
while (parm_info)
{
tree next = TREE_CHAIN (parm_info);
TREE_CHAIN (parm_info) = NULL_TREE;
parm_info = pushdecl (parm_info);
finish_decl (parm_info, NULL_TREE, NULL_TREE);
parm_info = next;
}
arg_info = get_parm_info (have_ellipsis);
pop_scope ();
objc_parmlist = NULL_TREE;
return arg_info;
#endif
}
/* Synthesize the formal parameters 'id self' and 'SEL _cmd' needed for ObjC
method definitions. In the case of instance methods, we can be more
specific as to the type of 'self'. */
static void
synth_self_and_ucmd_args (void)
{
tree self_type;
if (objc_method_context
&& TREE_CODE (objc_method_context) == INSTANCE_METHOD_DECL)
self_type = objc_instance_type;
else
/* Really a `struct objc_class *'. However, we allow people to
assign to self, which changes its type midstream. */
self_type = objc_object_type;
/* id self; */
objc_push_parm (build_decl (PARM_DECL, self_id, self_type));
/* SEL _cmd; */
objc_push_parm (build_decl (PARM_DECL, ucmd_id, objc_selector_type));
}
/* Transform an Objective-C method definition into a static C function
definition, synthesizing the first two arguments, "self" and "_cmd",
in the process. */
static void
start_method_def (tree method)
{
tree parmlist;
#ifdef OBJCPLUS
tree parm_info;
#else
struct c_arg_info *parm_info;
#endif
int have_ellipsis = 0;
/* If we are defining a "dealloc" method in a non-root class, we
will need to check if a [super dealloc] is missing, and warn if
it is. */
if(CLASS_SUPER_NAME (objc_implementation_context)
&& !strcmp ("dealloc", IDENTIFIER_POINTER (METHOD_SEL_NAME (method))))
should_call_super_dealloc = 1;
else
should_call_super_dealloc = 0;
/* Required to implement _msgSuper. */
objc_method_context = method;
UOBJC_SUPER_decl = NULL_TREE;
/* Generate prototype declarations for arguments..."new-style". */
synth_self_and_ucmd_args ();
/* Generate argument declarations if a keyword_decl. */
parmlist = METHOD_SEL_ARGS (method);
while (parmlist)
{
tree type = TREE_VALUE (TREE_TYPE (parmlist)), parm;
parm = build_decl (PARM_DECL, KEYWORD_ARG_NAME (parmlist), type);
objc_push_parm (parm);
parmlist = TREE_CHAIN (parmlist);
}
if (METHOD_ADD_ARGS (method))
{
tree akey;
for (akey = TREE_CHAIN (METHOD_ADD_ARGS (method));
akey; akey = TREE_CHAIN (akey))
{
objc_push_parm (TREE_VALUE (akey));
}
if (METHOD_ADD_ARGS_ELLIPSIS_P (method))
have_ellipsis = 1;
}
parm_info = objc_get_parm_info (have_ellipsis);
really_start_method (objc_method_context, parm_info);
}
static void
warn_with_method (const char *message, int mtype, tree method)
{
/* Add a readable method name to the warning. */
warning (0, "%J%s %<%c%s%>", method,
message, mtype, gen_method_decl (method));
}
/* Return 1 if TYPE1 is equivalent to TYPE2
for purposes of method overloading. */
static int
objc_types_are_equivalent (tree type1, tree type2)
{
if (type1 == type2)
return 1;
/* Strip away indirections. */
while ((TREE_CODE (type1) == ARRAY_TYPE || TREE_CODE (type1) == POINTER_TYPE)
&& (TREE_CODE (type1) == TREE_CODE (type2)))
type1 = TREE_TYPE (type1), type2 = TREE_TYPE (type2);
if (TYPE_MAIN_VARIANT (type1) != TYPE_MAIN_VARIANT (type2))
return 0;
type1 = (TYPE_HAS_OBJC_INFO (type1)
? TYPE_OBJC_PROTOCOL_LIST (type1)
: NULL_TREE);
type2 = (TYPE_HAS_OBJC_INFO (type2)
? TYPE_OBJC_PROTOCOL_LIST (type2)
: NULL_TREE);
if (list_length (type1) == list_length (type2))
{
for (; type2; type2 = TREE_CHAIN (type2))
if (!lookup_protocol_in_reflist (type1, TREE_VALUE (type2)))
return 0;
return 1;
}
return 0;
}
/* Return 1 if TYPE1 has the same size and alignment as TYPE2. */
static int
objc_types_share_size_and_alignment (tree type1, tree type2)
{
return (simple_cst_equal (TYPE_SIZE (type1), TYPE_SIZE (type2))
&& TYPE_ALIGN (type1) == TYPE_ALIGN (type2));
}
/* Return 1 if PROTO1 is equivalent to PROTO2
for purposes of method overloading. Ordinarily, the type signatures
should match up exactly, unless STRICT is zero, in which case we
shall allow differences in which the size and alignment of a type
is the same. */
static int
comp_proto_with_proto (tree proto1, tree proto2, int strict)
{
tree type1, type2;
/* The following test is needed in case there are hashing
collisions. */
if (METHOD_SEL_NAME (proto1) != METHOD_SEL_NAME (proto2))
return 0;
/* Compare return types. */
type1 = TREE_VALUE (TREE_TYPE (proto1));
type2 = TREE_VALUE (TREE_TYPE (proto2));
if (!objc_types_are_equivalent (type1, type2)
&& (strict || !objc_types_share_size_and_alignment (type1, type2)))
return 0;
/* Compare argument types. */
for (type1 = get_arg_type_list (proto1, METHOD_REF, 0),
type2 = get_arg_type_list (proto2, METHOD_REF, 0);
type1 && type2;
type1 = TREE_CHAIN (type1), type2 = TREE_CHAIN (type2))
{
if (!objc_types_are_equivalent (TREE_VALUE (type1), TREE_VALUE (type2))
&& (strict
|| !objc_types_share_size_and_alignment (TREE_VALUE (type1),
TREE_VALUE (type2))))
return 0;
}
return (!type1 && !type2);
}
/* Fold an OBJ_TYPE_REF expression for ObjC method dispatches, where
this occurs. ObjC method dispatches are _not_ like C++ virtual
member function dispatches, and we account for the difference here. */
tree
#ifdef OBJCPLUS
objc_fold_obj_type_ref (tree ref, tree known_type)
#else
objc_fold_obj_type_ref (tree ref ATTRIBUTE_UNUSED,
tree known_type ATTRIBUTE_UNUSED)
#endif
{
#ifdef OBJCPLUS
tree v = BINFO_VIRTUALS (TYPE_BINFO (known_type));
/* If the receiver does not have virtual member functions, there
is nothing we can (or need to) do here. */
if (!v)
return NULL_TREE;
/* Let C++ handle C++ virtual functions. */
return cp_fold_obj_type_ref (ref, known_type);
#else
/* For plain ObjC, we currently do not need to do anything. */
return NULL_TREE;
#endif
}
static void
objc_start_function (tree name, tree type, tree attrs,
#ifdef OBJCPLUS
tree params
#else
struct c_arg_info *params
#endif
)
{
tree fndecl = build_decl (FUNCTION_DECL, name, type);
#ifdef OBJCPLUS
DECL_ARGUMENTS (fndecl) = params;
DECL_INITIAL (fndecl) = error_mark_node;
DECL_EXTERNAL (fndecl) = 0;
TREE_STATIC (fndecl) = 1;
retrofit_lang_decl (fndecl);
cplus_decl_attributes (&fndecl, attrs, 0);
start_preparsed_function (fndecl, attrs, /*flags=*/SF_DEFAULT);
#else
struct c_label_context_se *nstack_se;
struct c_label_context_vm *nstack_vm;
nstack_se = XOBNEW (&parser_obstack, struct c_label_context_se);
nstack_se->labels_def = NULL;
nstack_se->labels_used = NULL;
nstack_se->next = label_context_stack_se;
label_context_stack_se = nstack_se;
nstack_vm = XOBNEW (&parser_obstack, struct c_label_context_vm);
nstack_vm->labels_def = NULL;
nstack_vm->labels_used = NULL;
nstack_vm->scope = 0;
nstack_vm->next = label_context_stack_vm;
label_context_stack_vm = nstack_vm;
current_function_returns_value = 0; /* Assume, until we see it does. */
current_function_returns_null = 0;
decl_attributes (&fndecl, attrs, 0);
announce_function (fndecl);
DECL_INITIAL (fndecl) = error_mark_node;
DECL_EXTERNAL (fndecl) = 0;
TREE_STATIC (fndecl) = 1;
current_function_decl = pushdecl (fndecl);
push_scope ();
declare_parm_level ();
DECL_RESULT (current_function_decl)
= build_decl (RESULT_DECL, NULL_TREE,
TREE_TYPE (TREE_TYPE (current_function_decl)));
DECL_ARTIFICIAL (DECL_RESULT (current_function_decl)) = 1;
DECL_IGNORED_P (DECL_RESULT (current_function_decl)) = 1;
start_fname_decls ();
store_parm_decls_from (params);
#endif
TREE_USED (current_function_decl) = 1;
}
/* - Generate an identifier for the function. the format is "_n_cls",
where 1 <= n <= nMethods, and cls is the name the implementation we
are processing.
- Install the return type from the method declaration.
- If we have a prototype, check for type consistency. */
static void
really_start_method (tree method,
#ifdef OBJCPLUS
tree parmlist
#else
struct c_arg_info *parmlist
#endif
)
{
tree ret_type, meth_type;
tree method_id;
const char *sel_name, *class_name, *cat_name;
char *buf;
/* Synth the storage class & assemble the return type. */
ret_type = TREE_VALUE (TREE_TYPE (method));
sel_name = IDENTIFIER_POINTER (METHOD_SEL_NAME (method));
class_name = IDENTIFIER_POINTER (CLASS_NAME (objc_implementation_context));
cat_name = ((TREE_CODE (objc_implementation_context)
== CLASS_IMPLEMENTATION_TYPE)
? NULL
: IDENTIFIER_POINTER (CLASS_SUPER_NAME (objc_implementation_context)));
method_slot++;
/* Make sure this is big enough for any plausible method label. */
buf = (char *) alloca (50 + strlen (sel_name) + strlen (class_name)
+ (cat_name ? strlen (cat_name) : 0));
OBJC_GEN_METHOD_LABEL (buf, TREE_CODE (method) == INSTANCE_METHOD_DECL,
class_name, cat_name, sel_name, method_slot);
method_id = get_identifier (buf);
#ifdef OBJCPLUS
/* Objective-C methods cannot be overloaded, so we don't need
the type encoding appended. It looks bad anyway... */
push_lang_context (lang_name_c);
#endif
meth_type
= build_function_type (ret_type,
get_arg_type_list (method, METHOD_DEF, 0));
objc_start_function (method_id, meth_type, NULL_TREE, parmlist);
/* Set self_decl from the first argument. */
self_decl = DECL_ARGUMENTS (current_function_decl);
/* Suppress unused warnings. */
TREE_USED (self_decl) = 1;
TREE_USED (TREE_CHAIN (self_decl)) = 1;
#ifdef OBJCPLUS
pop_lang_context ();
#endif
METHOD_DEFINITION (method) = current_function_decl;
/* Check consistency...start_function, pushdecl, duplicate_decls. */
if (implementation_template != objc_implementation_context)
{
tree proto
= lookup_method_static (implementation_template,
METHOD_SEL_NAME (method),
((TREE_CODE (method) == CLASS_METHOD_DECL)
| OBJC_LOOKUP_NO_SUPER));
if (proto)
{
if (!comp_proto_with_proto (method, proto, 1))
{
char type = (TREE_CODE (method) == INSTANCE_METHOD_DECL ? '-' : '+');
warn_with_method ("conflicting types for", type, method);
warn_with_method ("previous declaration of", type, proto);
}
}
else
{
/* We have a method @implementation even though we did not
see a corresponding @interface declaration (which is allowed
by Objective-C rules). Go ahead and place the method in
the @interface anyway, so that message dispatch lookups
will see it. */
tree interface = implementation_template;
if (TREE_CODE (objc_implementation_context)
== CATEGORY_IMPLEMENTATION_TYPE)
interface = lookup_category
(interface,
CLASS_SUPER_NAME (objc_implementation_context));
if (interface)
objc_add_method (interface, copy_node (method),
TREE_CODE (method) == CLASS_METHOD_DECL);
}
}
}
static void *UOBJC_SUPER_scope = 0;
/* _n_Method (id self, SEL sel, ...)
{
struct objc_super _S;
_msgSuper ((_S.self = self, _S.class = _cls, &_S), ...);
} */
static tree
get_super_receiver (void)
{
if (objc_method_context)
{
tree super_expr, super_expr_list;
if (!UOBJC_SUPER_decl)
{
UOBJC_SUPER_decl = build_decl (VAR_DECL, get_identifier (TAG_SUPER),
objc_super_template);
/* This prevents `unused variable' warnings when compiling with -Wall. */
TREE_USED (UOBJC_SUPER_decl) = 1;
lang_hooks.decls.pushdecl (UOBJC_SUPER_decl);
finish_decl (UOBJC_SUPER_decl, NULL_TREE, NULL_TREE);
UOBJC_SUPER_scope = objc_get_current_scope ();
}
/* Set receiver to self. */
super_expr = objc_build_component_ref (UOBJC_SUPER_decl, self_id);
super_expr = build_modify_expr (super_expr, NOP_EXPR, self_decl);
super_expr_list = super_expr;
/* Set class to begin searching. */
super_expr = objc_build_component_ref (UOBJC_SUPER_decl,
get_identifier ("super_class"));
if (TREE_CODE (objc_implementation_context) == CLASS_IMPLEMENTATION_TYPE)
{
/* [_cls, __cls]Super are "pre-built" in
synth_forward_declarations. */
super_expr = build_modify_expr (super_expr, NOP_EXPR,
((TREE_CODE (objc_method_context)
== INSTANCE_METHOD_DECL)
? ucls_super_ref
: uucls_super_ref));
}
else
/* We have a category. */
{
tree super_name = CLASS_SUPER_NAME (implementation_template);
tree super_class;
/* Barf if super used in a category of Object. */
if (!super_name)
{
error ("no super class declared in interface for %qs",
IDENTIFIER_POINTER (CLASS_NAME (implementation_template)));
return error_mark_node;
}
if (flag_next_runtime && !flag_zero_link)
{
super_class = objc_get_class_reference (super_name);
if (TREE_CODE (objc_method_context) == CLASS_METHOD_DECL)
/* If we are in a class method, we must retrieve the
_metaclass_ for the current class, pointed at by
the class's "isa" pointer. The following assumes that
"isa" is the first ivar in a class (which it must be). */
super_class
= build_indirect_ref
(build_c_cast (build_pointer_type (objc_class_type),
super_class), "unary *");
}
else
{
add_class_reference (super_name);
super_class = (TREE_CODE (objc_method_context) == INSTANCE_METHOD_DECL
? objc_get_class_decl : objc_get_meta_class_decl);
assemble_external (super_class);
super_class
= build_function_call
(super_class,
build_tree_list
(NULL_TREE,
my_build_string_pointer
(IDENTIFIER_LENGTH (super_name) + 1,
IDENTIFIER_POINTER (super_name))));
}
super_expr
= build_modify_expr (super_expr, NOP_EXPR,
build_c_cast (TREE_TYPE (super_expr),
super_class));
}
super_expr_list = build_compound_expr (super_expr_list, super_expr);
super_expr = build_unary_op (ADDR_EXPR, UOBJC_SUPER_decl, 0);
super_expr_list = build_compound_expr (super_expr_list, super_expr);
return super_expr_list;
}
else
{
error ("[super ...] must appear in a method context");
return error_mark_node;
}
}
/* When exiting a scope, sever links to a 'super' declaration (if any)
therein contained. */
void
objc_clear_super_receiver (void)
{
if (objc_method_context
&& UOBJC_SUPER_scope == objc_get_current_scope ()) {
UOBJC_SUPER_decl = 0;
UOBJC_SUPER_scope = 0;
}
}
void
objc_finish_method_definition (tree fndecl)
{
/* We cannot validly inline ObjC methods, at least not without a language
extension to declare that a method need not be dynamically
dispatched, so suppress all thoughts of doing so. */
DECL_INLINE (fndecl) = 0;
DECL_UNINLINABLE (fndecl) = 1;
#ifndef OBJCPLUS
/* The C++ front-end will have called finish_function() for us. */
finish_function ();
#endif
METHOD_ENCODING (objc_method_context)
= encode_method_prototype (objc_method_context);
/* Required to implement _msgSuper. This must be done AFTER finish_function,
since the optimizer may find "may be used before set" errors. */
objc_method_context = NULL_TREE;
if (should_call_super_dealloc)
warning (0, "method possibly missing a [super dealloc] call");
}
#if 0
int
lang_report_error_function (tree decl)
{
if (objc_method_context)
{
fprintf (stderr, "In method %qs\n",
IDENTIFIER_POINTER (METHOD_SEL_NAME (objc_method_context)));
return 1;
}
else
return 0;
}
#endif
/* Given a tree DECL node, produce a printable description of it in the given
buffer, overwriting the buffer. */
static char *
gen_declaration (tree decl)
{
errbuf[0] = '\0';
if (DECL_P (decl))
{
gen_type_name_0 (TREE_TYPE (decl));
if (DECL_NAME (decl))
{
if (!POINTER_TYPE_P (TREE_TYPE (decl)))
strcat (errbuf, " ");
strcat (errbuf, IDENTIFIER_POINTER (DECL_NAME (decl)));
}
if (DECL_INITIAL (decl)
&& TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST)
sprintf (errbuf + strlen (errbuf), ": " HOST_WIDE_INT_PRINT_DEC,
TREE_INT_CST_LOW (DECL_INITIAL (decl)));
}
return errbuf;
}
/* Given a tree TYPE node, produce a printable description of it in the given
buffer, overwriting the buffer. */
static char *
gen_type_name_0 (tree type)
{
tree orig = type, proto;
if (TYPE_P (type) && TYPE_NAME (type))
type = TYPE_NAME (type);
else if (POINTER_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
{
tree inner = TREE_TYPE (type);
while (TREE_CODE (inner) == ARRAY_TYPE)
inner = TREE_TYPE (inner);
gen_type_name_0 (inner);
if (!POINTER_TYPE_P (inner))
strcat (errbuf, " ");
if (POINTER_TYPE_P (type))
strcat (errbuf, "*");
else
while (type != inner)
{
strcat (errbuf, "[");
if (TYPE_DOMAIN (type))
{
char sz[20];
sprintf (sz, HOST_WIDE_INT_PRINT_DEC,
(TREE_INT_CST_LOW
(TYPE_MAX_VALUE (TYPE_DOMAIN (type))) + 1));
strcat (errbuf, sz);
}
strcat (errbuf, "]");
type = TREE_TYPE (type);
}
goto exit_function;
}
if (TREE_CODE (type) == TYPE_DECL && DECL_NAME (type))
type = DECL_NAME (type);
strcat (errbuf, TREE_CODE (type) == IDENTIFIER_NODE
? IDENTIFIER_POINTER (type)
: "");
/* For 'id' and 'Class', adopted protocols are stored in the pointee. */
if (objc_is_id (orig))
orig = TREE_TYPE (orig);
proto = TYPE_HAS_OBJC_INFO (orig) ? TYPE_OBJC_PROTOCOL_LIST (orig) : NULL_TREE;
if (proto)
{
strcat (errbuf, " <");
while (proto) {
strcat (errbuf,
IDENTIFIER_POINTER (PROTOCOL_NAME (TREE_VALUE (proto))));
proto = TREE_CHAIN (proto);
strcat (errbuf, proto ? ", " : ">");
}
}
exit_function:
return errbuf;
}
static char *
gen_type_name (tree type)
{
errbuf[0] = '\0';
return gen_type_name_0 (type);
}
/* Given a method tree, put a printable description into the given
buffer (overwriting) and return a pointer to the buffer. */
static char *
gen_method_decl (tree method)
{
tree chain;
strcpy (errbuf, "("); /* NB: Do _not_ call strcat() here. */
gen_type_name_0 (TREE_VALUE (TREE_TYPE (method)));
strcat (errbuf, ")");
chain = METHOD_SEL_ARGS (method);
if (chain)
{
/* We have a chain of keyword_decls. */
do
{
if (KEYWORD_KEY_NAME (chain))
strcat (errbuf, IDENTIFIER_POINTER (KEYWORD_KEY_NAME (chain)));
strcat (errbuf, ":(");
gen_type_name_0 (TREE_VALUE (TREE_TYPE (chain)));
strcat (errbuf, ")");
strcat (errbuf, IDENTIFIER_POINTER (KEYWORD_ARG_NAME (chain)));
if ((chain = TREE_CHAIN (chain)))
strcat (errbuf, " ");
}
while (chain);
if (METHOD_ADD_ARGS (method))
{
chain = TREE_CHAIN (METHOD_ADD_ARGS (method));
/* Know we have a chain of parm_decls. */
while (chain)
{
strcat (errbuf, ", ");
gen_type_name_0 (TREE_TYPE (TREE_VALUE (chain)));
chain = TREE_CHAIN (chain);
}
if (METHOD_ADD_ARGS_ELLIPSIS_P (method))
strcat (errbuf, ", ...");
}
}
else
/* We have a unary selector. */
strcat (errbuf, IDENTIFIER_POINTER (METHOD_SEL_NAME (method)));
return errbuf;
}
/* Debug info. */
/* Dump an @interface declaration of the supplied class CHAIN to the
supplied file FP. Used to implement the -gen-decls option (which
prints out an @interface declaration of all classes compiled in
this run); potentially useful for debugging the compiler too. */
static void
dump_interface (FILE *fp, tree chain)
{
/* FIXME: A heap overflow here whenever a method (or ivar)
declaration is so long that it doesn't fit in the buffer. The
code and all the related functions should be rewritten to avoid
using fixed size buffers. */
const char *my_name = IDENTIFIER_POINTER (CLASS_NAME (chain));
tree ivar_decls = CLASS_RAW_IVARS (chain);
tree nst_methods = CLASS_NST_METHODS (chain);
tree cls_methods = CLASS_CLS_METHODS (chain);
fprintf (fp, "\n@interface %s", my_name);
/* CLASS_SUPER_NAME is used to store the superclass name for
classes, and the category name for categories. */
if (CLASS_SUPER_NAME (chain))
{
const char *name = IDENTIFIER_POINTER (CLASS_SUPER_NAME (chain));
if (TREE_CODE (chain) == CATEGORY_IMPLEMENTATION_TYPE
|| TREE_CODE (chain) == CATEGORY_INTERFACE_TYPE)
{
fprintf (fp, " (%s)\n", name);
}
else
{
fprintf (fp, " : %s\n", name);
}
}
else
fprintf (fp, "\n");
/* FIXME - the following doesn't seem to work at the moment. */
if (ivar_decls)
{
fprintf (fp, "{\n");
do
{
fprintf (fp, "\t%s;\n", gen_declaration (ivar_decls));
ivar_decls = TREE_CHAIN (ivar_decls);
}
while (ivar_decls);
fprintf (fp, "}\n");
}
while (nst_methods)
{
fprintf (fp, "- %s;\n", gen_method_decl (nst_methods));
nst_methods = TREE_CHAIN (nst_methods);
}
while (cls_methods)
{
fprintf (fp, "+ %s;\n", gen_method_decl (cls_methods));
cls_methods = TREE_CHAIN (cls_methods);
}
fprintf (fp, "@end\n");
}
/* Demangle function for Objective-C */
static const char *
objc_demangle (const char *mangled)
{
char *demangled, *cp;
if (mangled[0] == '_' &&
(mangled[1] == 'i' || mangled[1] == 'c') &&
mangled[2] == '_')
{
cp = demangled = XNEWVEC (char, strlen(mangled) + 2);
if (mangled[1] == 'i')
*cp++ = '-'; /* for instance method */
else
*cp++ = '+'; /* for class method */
*cp++ = '['; /* opening left brace */
strcpy(cp, mangled+3); /* tack on the rest of the mangled name */
while (*cp && *cp == '_')
cp++; /* skip any initial underbars in class name */
cp = strchr(cp, '_'); /* find first non-initial underbar */
if (cp == NULL)
{
free(demangled); /* not mangled name */
return mangled;
}
if (cp[1] == '_') /* easy case: no category name */
{
*cp++ = ' '; /* replace two '_' with one ' ' */
strcpy(cp, mangled + (cp - demangled) + 2);
}
else
{
*cp++ = '('; /* less easy case: category name */
cp = strchr(cp, '_');
if (cp == 0)
{
free(demangled); /* not mangled name */
return mangled;
}
*cp++ = ')';
*cp++ = ' '; /* overwriting 1st char of method name... */
strcpy(cp, mangled + (cp - demangled)); /* get it back */
}
while (*cp && *cp == '_')
cp++; /* skip any initial underbars in method name */
for (; *cp; cp++)
if (*cp == '_')
*cp = ':'; /* replace remaining '_' with ':' */
*cp++ = ']'; /* closing right brace */
*cp++ = 0; /* string terminator */
return demangled;
}
else
return mangled; /* not an objc mangled name */
}
const char *
objc_printable_name (tree decl, int kind ATTRIBUTE_UNUSED)
{
return objc_demangle (IDENTIFIER_POINTER (DECL_NAME (decl)));
}
static void
init_objc (void)
{
gcc_obstack_init (&util_obstack);
util_firstobj = (char *) obstack_finish (&util_obstack);
errbuf = XNEWVEC (char, 1024 * 10);
hash_init ();
synth_module_prologue ();
}
static void
finish_objc (void)
{
struct imp_entry *impent;
tree chain;
/* The internally generated initializers appear to have missing braces.
Don't warn about this. */
int save_warn_missing_braces = warn_missing_braces;
warn_missing_braces = 0;
/* A missing @end may not be detected by the parser. */
if (objc_implementation_context)
{
warning (0, "%<@end%> missing in implementation context");
finish_class (objc_implementation_context);
objc_ivar_chain = NULL_TREE;
objc_implementation_context = NULL_TREE;
}
/* Process the static instances here because initialization of objc_symtab
depends on them. */
if (objc_static_instances)
generate_static_references ();
if (imp_list || class_names_chain
|| meth_var_names_chain || meth_var_types_chain || sel_ref_chain)
generate_objc_symtab_decl ();
for (impent = imp_list; impent; impent = impent->next)
{
objc_implementation_context = impent->imp_context;
implementation_template = impent->imp_template;
UOBJC_CLASS_decl = impent->class_decl;
UOBJC_METACLASS_decl = impent->meta_decl;
/* Dump the @interface of each class as we compile it, if the
-gen-decls option is in use. TODO: Dump the classes in the
order they were found, rather than in reverse order as we
are doing now. */
if (flag_gen_declaration)
{
dump_interface (gen_declaration_file, objc_implementation_context);
}
if (TREE_CODE (objc_implementation_context) == CLASS_IMPLEMENTATION_TYPE)
{
/* all of the following reference the string pool... */
generate_ivar_lists ();
generate_dispatch_tables ();
generate_shared_structures (impent->has_cxx_cdtors
? CLS_HAS_CXX_STRUCTORS
: 0);
}
else
{
generate_dispatch_tables ();
generate_category (objc_implementation_context);
}
}
/* If we are using an array of selectors, we must always
finish up the array decl even if no selectors were used. */
if (! flag_next_runtime || sel_ref_chain)
build_selector_translation_table ();
if (protocol_chain)
generate_protocols ();
if ((flag_replace_objc_classes && imp_list) || flag_objc_gc)
generate_objc_image_info ();
/* Arrange for ObjC data structures to be initialized at run time. */
if (objc_implementation_context || class_names_chain || objc_static_instances
|| meth_var_names_chain || meth_var_types_chain || sel_ref_chain)
{
build_module_descriptor ();
if (!flag_next_runtime)
build_module_initializer_routine ();
}
/* Dump the class references. This forces the appropriate classes
to be linked into the executable image, preserving unix archive
semantics. This can be removed when we move to a more dynamically
linked environment. */
for (chain = cls_ref_chain; chain; chain = TREE_CHAIN (chain))
{
handle_class_ref (chain);
if (TREE_PURPOSE (chain))
generate_classref_translation_entry (chain);
}
for (impent = imp_list; impent; impent = impent->next)
handle_impent (impent);
if (warn_selector)
{
int slot;
hash hsh;
/* Run through the selector hash tables and print a warning for any
selector which has multiple methods. */
for (slot = 0; slot < SIZEHASHTABLE; slot++)
{
for (hsh = cls_method_hash_list[slot]; hsh; hsh = hsh->next)
check_duplicates (hsh, 0, 1);
for (hsh = nst_method_hash_list[slot]; hsh; hsh = hsh->next)
check_duplicates (hsh, 0, 1);
}
}
warn_missing_braces = save_warn_missing_braces;
}
/* Subroutines of finish_objc. */
static void
generate_classref_translation_entry (tree chain)
{
tree expr, decl, type;
decl = TREE_PURPOSE (chain);
type = TREE_TYPE (decl);
expr = add_objc_string (TREE_VALUE (chain), class_names);
expr = convert (type, expr); /* cast! */
/* The decl that is the one that we
forward declared in build_class_reference. */
finish_var_decl (decl, expr);
return;
}
static void
handle_class_ref (tree chain)
{
const char *name = IDENTIFIER_POINTER (TREE_VALUE (chain));
char *string = (char *) alloca (strlen (name) + 30);
tree decl;
tree exp;
sprintf (string, "%sobjc_class_name_%s",
(flag_next_runtime ? "." : "__"), name);
#ifdef ASM_DECLARE_UNRESOLVED_REFERENCE
if (flag_next_runtime)
{
ASM_DECLARE_UNRESOLVED_REFERENCE (asm_out_file, string);
return;
}
#endif
/* Make a decl for this name, so we can use its address in a tree. */
decl = build_decl (VAR_DECL, get_identifier (string), char_type_node);
DECL_EXTERNAL (decl) = 1;
TREE_PUBLIC (decl) = 1;
pushdecl (decl);
rest_of_decl_compilation (decl, 0, 0);
/* Make a decl for the address. */
sprintf (string, "%sobjc_class_ref_%s",
(flag_next_runtime ? "." : "__"), name);
exp = build1 (ADDR_EXPR, string_type_node, decl);
decl = build_decl (VAR_DECL, get_identifier (string), string_type_node);
DECL_INITIAL (decl) = exp;
TREE_STATIC (decl) = 1;
TREE_USED (decl) = 1;
/* Force the output of the decl as this forces the reference of the class. */
mark_decl_referenced (decl);
pushdecl (decl);
rest_of_decl_compilation (decl, 0, 0);
}
static void
handle_impent (struct imp_entry *impent)
{
char *string;
objc_implementation_context = impent->imp_context;
implementation_template = impent->imp_template;
if (TREE_CODE (impent->imp_context) == CLASS_IMPLEMENTATION_TYPE)
{
const char *const class_name =
IDENTIFIER_POINTER (CLASS_NAME (impent->imp_context));
string = (char *) alloca (strlen (class_name) + 30);
sprintf (string, "%sobjc_class_name_%s",
(flag_next_runtime ? "." : "__"), class_name);
}
else if (TREE_CODE (impent->imp_context) == CATEGORY_IMPLEMENTATION_TYPE)
{
const char *const class_name =
IDENTIFIER_POINTER (CLASS_NAME (impent->imp_context));
const char *const class_super_name =
IDENTIFIER_POINTER (CLASS_SUPER_NAME (impent->imp_context));
string = (char *) alloca (strlen (class_name)
+ strlen (class_super_name) + 30);
/* Do the same for categories. Even though no references to
these symbols are generated automatically by the compiler, it
gives you a handle to pull them into an archive by hand. */
sprintf (string, "*%sobjc_category_name_%s_%s",
(flag_next_runtime ? "." : "__"), class_name, class_super_name);
}
else
return;
#ifdef ASM_DECLARE_CLASS_REFERENCE
if (flag_next_runtime)
{
ASM_DECLARE_CLASS_REFERENCE (asm_out_file, string);
return;
}
else
#endif
{
tree decl, init;
init = build_int_cst (c_common_type_for_size (BITS_PER_WORD, 1), 0);
decl = build_decl (VAR_DECL, get_identifier (string), TREE_TYPE (init));
TREE_PUBLIC (decl) = 1;
TREE_READONLY (decl) = 1;
TREE_USED (decl) = 1;
TREE_CONSTANT (decl) = 1;
DECL_CONTEXT (decl) = 0;
DECL_ARTIFICIAL (decl) = 1;
DECL_INITIAL (decl) = init;
assemble_variable (decl, 1, 0, 0);
}
}
/* The Fix-and-Continue functionality available in Mac OS X 10.3 and
later requires that ObjC translation units participating in F&C be
specially marked. The following routine accomplishes this. */
/* static int _OBJC_IMAGE_INFO[2] = { 0, 1 }; */
static void
generate_objc_image_info (void)
{
tree decl, initlist;
int flags
= ((flag_replace_objc_classes && imp_list ? 1 : 0)
| (flag_objc_gc ? 2 : 0));
decl = start_var_decl (build_array_type
(integer_type_node,
build_index_type (build_int_cst (NULL_TREE, 2 - 1))),
"_OBJC_IMAGE_INFO");
initlist = build_tree_list (NULL_TREE, build_int_cst (NULL_TREE, 0));
initlist = tree_cons (NULL_TREE, build_int_cst (NULL_TREE, flags), initlist);
initlist = objc_build_constructor (TREE_TYPE (decl), nreverse (initlist));
finish_var_decl (decl, initlist);
}
/* Look up ID as an instance variable. OTHER contains the result of
the C or C++ lookup, which we may want to use instead. */
tree
objc_lookup_ivar (tree other, tree id)
{
tree ivar;
/* If we are not inside of an ObjC method, ivar lookup makes no sense. */
if (!objc_method_context)
return other;
if (!strcmp (IDENTIFIER_POINTER (id), "super"))
/* We have a message to super. */
return get_super_receiver ();
/* In a class method, look up an instance variable only as a last
resort. */
if (TREE_CODE (objc_method_context) == CLASS_METHOD_DECL
&& other && other != error_mark_node)
return other;
/* Look up the ivar, but do not use it if it is not accessible. */
ivar = is_ivar (objc_ivar_chain, id);
if (!ivar || is_private (ivar))
return other;
/* In an instance method, a local variable (or parameter) may hide the
instance variable. */
if (TREE_CODE (objc_method_context) == INSTANCE_METHOD_DECL
&& other && other != error_mark_node
#ifdef OBJCPLUS
&& CP_DECL_CONTEXT (other) != global_namespace)
#else
&& !DECL_FILE_SCOPE_P (other))
#endif
{
warning (0, "local declaration of %qs hides instance variable",
IDENTIFIER_POINTER (id));
return other;
}
/* At this point, we are either in an instance method with no obscuring
local definitions, or in a class method with no alternate definitions
at all. */
return build_ivar_reference (id);
}
/* Possibly rewrite a function CALL into an OBJ_TYPE_REF expression. This
needs to be done if we are calling a function through a cast. */
tree
objc_rewrite_function_call (tree function, tree params)
{
if (TREE_CODE (function) == NOP_EXPR
&& TREE_CODE (TREE_OPERAND (function, 0)) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (TREE_OPERAND (function, 0), 0))
== FUNCTION_DECL)
{
function = build3 (OBJ_TYPE_REF, TREE_TYPE (function),
TREE_OPERAND (function, 0),
TREE_VALUE (params), size_zero_node);
}
return function;
}
/* Look for the special case of OBJC_TYPE_REF with the address of
a function in OBJ_TYPE_REF_EXPR (presumably objc_msgSend or one
of its cousins). */
enum gimplify_status
objc_gimplify_expr (tree *expr_p, tree *pre_p, tree *post_p)
{
enum gimplify_status r0, r1;
if (TREE_CODE (*expr_p) == OBJ_TYPE_REF
&& TREE_CODE (OBJ_TYPE_REF_EXPR (*expr_p)) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (OBJ_TYPE_REF_EXPR (*expr_p), 0))
== FUNCTION_DECL)
{
/* Postincrements in OBJ_TYPE_REF_OBJECT don't affect the
value of the OBJ_TYPE_REF, so force them to be emitted
during subexpression evaluation rather than after the
OBJ_TYPE_REF. This permits objc_msgSend calls in Objective
C to use direct rather than indirect calls when the
object expression has a postincrement. */
r0 = gimplify_expr (&OBJ_TYPE_REF_OBJECT (*expr_p), pre_p, NULL,
is_gimple_val, fb_rvalue);
r1 = gimplify_expr (&OBJ_TYPE_REF_EXPR (*expr_p), pre_p, post_p,
is_gimple_val, fb_rvalue);
return MIN (r0, r1);
}
#ifdef OBJCPLUS
return cp_gimplify_expr (expr_p, pre_p, post_p);
#else
return c_gimplify_expr (expr_p, pre_p, post_p);
#endif
}
/* Given a CALL expression, find the function being called. The ObjC
version looks for the OBJ_TYPE_REF_EXPR which is used for objc_msgSend. */
tree
objc_get_callee_fndecl (tree call_expr)
{
tree addr = TREE_OPERAND (call_expr, 0);
if (TREE_CODE (addr) != OBJ_TYPE_REF)
return 0;
addr = OBJ_TYPE_REF_EXPR (addr);
/* If the address is just `&f' for some function `f', then we know
that `f' is being called. */
if (TREE_CODE (addr) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
return TREE_OPERAND (addr, 0);
return 0;
}
#include "gt-objc-objc-act.h"