mirror of
https://github.com/freebsd/freebsd-src.git
synced 2024-12-04 05:58:57 +00:00
30f8cb812e
Some callers (e.g., ktls_decrypt()) violate this assumption and thus
could trigger a NULL pointer dereference in KMSAN kernels.
Reported by: glebius
Fixes: ec45f952a2
("sockbuf: Add KMSAN checks to sbappend*()")
MFC after: 1 week
1877 lines
45 KiB
C
1877 lines
45 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
#include "opt_kern_tls.h"
|
|
#include "opt_param.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/aio.h> /* for aio_swake proto */
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktls.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/msan.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <netinet/in.h>
|
|
|
|
/*
|
|
* Function pointer set by the AIO routines so that the socket buffer code
|
|
* can call back into the AIO module if it is loaded.
|
|
*/
|
|
void (*aio_swake)(struct socket *, struct sockbuf *);
|
|
|
|
/*
|
|
* Primitive routines for operating on socket buffers
|
|
*/
|
|
|
|
#define BUF_MAX_ADJ(_sz) (((u_quad_t)(_sz)) * MCLBYTES / (MSIZE + MCLBYTES))
|
|
|
|
u_long sb_max = SB_MAX;
|
|
u_long sb_max_adj = BUF_MAX_ADJ(SB_MAX);
|
|
|
|
static u_long sb_efficiency = 8; /* parameter for sbreserve() */
|
|
|
|
#ifdef KERN_TLS
|
|
static void sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m,
|
|
struct mbuf *n);
|
|
#endif
|
|
static struct mbuf *sbcut_internal(struct sockbuf *sb, int len);
|
|
static void sbflush_internal(struct sockbuf *sb);
|
|
|
|
/*
|
|
* Our own version of m_clrprotoflags(), that can preserve M_NOTREADY.
|
|
*/
|
|
static void
|
|
sbm_clrprotoflags(struct mbuf *m, int flags)
|
|
{
|
|
int mask;
|
|
|
|
mask = ~M_PROTOFLAGS;
|
|
if (flags & PRUS_NOTREADY)
|
|
mask |= M_NOTREADY;
|
|
while (m) {
|
|
m->m_flags &= mask;
|
|
m = m->m_next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compress M_NOTREADY mbufs after they have been readied by sbready().
|
|
*
|
|
* sbcompress() skips M_NOTREADY mbufs since the data is not available to
|
|
* be copied at the time of sbcompress(). This function combines small
|
|
* mbufs similar to sbcompress() once mbufs are ready. 'm0' is the first
|
|
* mbuf sbready() marked ready, and 'end' is the first mbuf still not
|
|
* ready.
|
|
*/
|
|
static void
|
|
sbready_compress(struct sockbuf *sb, struct mbuf *m0, struct mbuf *end)
|
|
{
|
|
struct mbuf *m, *n;
|
|
int ext_size;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
if ((sb->sb_flags & SB_NOCOALESCE) != 0)
|
|
return;
|
|
|
|
for (m = m0; m != end; m = m->m_next) {
|
|
MPASS((m->m_flags & M_NOTREADY) == 0);
|
|
/*
|
|
* NB: In sbcompress(), 'n' is the last mbuf in the
|
|
* socket buffer and 'm' is the new mbuf being copied
|
|
* into the trailing space of 'n'. Here, the roles
|
|
* are reversed and 'n' is the next mbuf after 'm'
|
|
* that is being copied into the trailing space of
|
|
* 'm'.
|
|
*/
|
|
n = m->m_next;
|
|
#ifdef KERN_TLS
|
|
/* Try to coalesce adjacent ktls mbuf hdr/trailers. */
|
|
if ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
|
|
(m->m_flags & M_EXTPG) &&
|
|
(n->m_flags & M_EXTPG) &&
|
|
!mbuf_has_tls_session(m) &&
|
|
!mbuf_has_tls_session(n)) {
|
|
int hdr_len, trail_len;
|
|
|
|
hdr_len = n->m_epg_hdrlen;
|
|
trail_len = m->m_epg_trllen;
|
|
if (trail_len != 0 && hdr_len != 0 &&
|
|
trail_len + hdr_len <= MBUF_PEXT_TRAIL_LEN) {
|
|
/* copy n's header to m's trailer */
|
|
memcpy(&m->m_epg_trail[trail_len],
|
|
n->m_epg_hdr, hdr_len);
|
|
m->m_epg_trllen += hdr_len;
|
|
m->m_len += hdr_len;
|
|
n->m_epg_hdrlen = 0;
|
|
n->m_len -= hdr_len;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Compress small unmapped mbufs into plain mbufs. */
|
|
if ((m->m_flags & M_EXTPG) && m->m_len <= MLEN &&
|
|
!mbuf_has_tls_session(m)) {
|
|
ext_size = m->m_ext.ext_size;
|
|
if (mb_unmapped_compress(m) == 0)
|
|
sb->sb_mbcnt -= ext_size;
|
|
}
|
|
|
|
while ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
|
|
M_WRITABLE(m) &&
|
|
(m->m_flags & M_EXTPG) == 0 &&
|
|
!mbuf_has_tls_session(n) &&
|
|
!mbuf_has_tls_session(m) &&
|
|
n->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
|
|
n->m_len <= M_TRAILINGSPACE(m) &&
|
|
m->m_type == n->m_type) {
|
|
KASSERT(sb->sb_lastrecord != n,
|
|
("%s: merging start of record (%p) into previous mbuf (%p)",
|
|
__func__, n, m));
|
|
m_copydata(n, 0, n->m_len, mtodo(m, m->m_len));
|
|
m->m_len += n->m_len;
|
|
m->m_next = n->m_next;
|
|
m->m_flags |= n->m_flags & M_EOR;
|
|
if (sb->sb_mbtail == n)
|
|
sb->sb_mbtail = m;
|
|
|
|
sb->sb_mbcnt -= MSIZE;
|
|
if (n->m_flags & M_EXT)
|
|
sb->sb_mbcnt -= n->m_ext.ext_size;
|
|
m_free(n);
|
|
n = m->m_next;
|
|
}
|
|
}
|
|
SBLASTRECORDCHK(sb);
|
|
SBLASTMBUFCHK(sb);
|
|
}
|
|
|
|
/*
|
|
* Mark ready "count" units of I/O starting with "m". Most mbufs
|
|
* count as a single unit of I/O except for M_EXTPG mbufs which
|
|
* are backed by multiple pages.
|
|
*/
|
|
int
|
|
sbready(struct sockbuf *sb, struct mbuf *m0, int count)
|
|
{
|
|
struct mbuf *m;
|
|
u_int blocker;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
|
|
KASSERT(count > 0, ("%s: invalid count %d", __func__, count));
|
|
|
|
m = m0;
|
|
blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0;
|
|
|
|
while (count > 0) {
|
|
KASSERT(m->m_flags & M_NOTREADY,
|
|
("%s: m %p !M_NOTREADY", __func__, m));
|
|
if ((m->m_flags & M_EXTPG) != 0 && m->m_epg_npgs != 0) {
|
|
if (count < m->m_epg_nrdy) {
|
|
m->m_epg_nrdy -= count;
|
|
count = 0;
|
|
break;
|
|
}
|
|
count -= m->m_epg_nrdy;
|
|
m->m_epg_nrdy = 0;
|
|
} else
|
|
count--;
|
|
|
|
m->m_flags &= ~(M_NOTREADY | blocker);
|
|
if (blocker)
|
|
sb->sb_acc += m->m_len;
|
|
m = m->m_next;
|
|
}
|
|
|
|
/*
|
|
* If the first mbuf is still not fully ready because only
|
|
* some of its backing pages were readied, no further progress
|
|
* can be made.
|
|
*/
|
|
if (m0 == m) {
|
|
MPASS(m->m_flags & M_NOTREADY);
|
|
return (EINPROGRESS);
|
|
}
|
|
|
|
if (!blocker) {
|
|
sbready_compress(sb, m0, m);
|
|
return (EINPROGRESS);
|
|
}
|
|
|
|
/* This one was blocking all the queue. */
|
|
for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) {
|
|
KASSERT(m->m_flags & M_BLOCKED,
|
|
("%s: m %p !M_BLOCKED", __func__, m));
|
|
m->m_flags &= ~M_BLOCKED;
|
|
sb->sb_acc += m->m_len;
|
|
}
|
|
|
|
sb->sb_fnrdy = m;
|
|
sbready_compress(sb, m0, m);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Adjust sockbuf state reflecting allocation of m.
|
|
*/
|
|
void
|
|
sballoc(struct sockbuf *sb, struct mbuf *m)
|
|
{
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
sb->sb_ccc += m->m_len;
|
|
|
|
if (sb->sb_fnrdy == NULL) {
|
|
if (m->m_flags & M_NOTREADY)
|
|
sb->sb_fnrdy = m;
|
|
else
|
|
sb->sb_acc += m->m_len;
|
|
} else
|
|
m->m_flags |= M_BLOCKED;
|
|
|
|
if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
|
|
sb->sb_ctl += m->m_len;
|
|
|
|
sb->sb_mbcnt += MSIZE;
|
|
|
|
if (m->m_flags & M_EXT)
|
|
sb->sb_mbcnt += m->m_ext.ext_size;
|
|
}
|
|
|
|
/*
|
|
* Adjust sockbuf state reflecting freeing of m.
|
|
*/
|
|
void
|
|
sbfree(struct sockbuf *sb, struct mbuf *m)
|
|
{
|
|
|
|
#if 0 /* XXX: not yet: soclose() call path comes here w/o lock. */
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
#endif
|
|
|
|
sb->sb_ccc -= m->m_len;
|
|
|
|
if (!(m->m_flags & M_NOTAVAIL))
|
|
sb->sb_acc -= m->m_len;
|
|
|
|
if (m == sb->sb_fnrdy) {
|
|
struct mbuf *n;
|
|
|
|
KASSERT(m->m_flags & M_NOTREADY,
|
|
("%s: m %p !M_NOTREADY", __func__, m));
|
|
|
|
n = m->m_next;
|
|
while (n != NULL && !(n->m_flags & M_NOTREADY)) {
|
|
n->m_flags &= ~M_BLOCKED;
|
|
sb->sb_acc += n->m_len;
|
|
n = n->m_next;
|
|
}
|
|
sb->sb_fnrdy = n;
|
|
}
|
|
|
|
if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
|
|
sb->sb_ctl -= m->m_len;
|
|
|
|
sb->sb_mbcnt -= MSIZE;
|
|
if (m->m_flags & M_EXT)
|
|
sb->sb_mbcnt -= m->m_ext.ext_size;
|
|
|
|
if (sb->sb_sndptr == m) {
|
|
sb->sb_sndptr = NULL;
|
|
sb->sb_sndptroff = 0;
|
|
}
|
|
if (sb->sb_sndptroff != 0)
|
|
sb->sb_sndptroff -= m->m_len;
|
|
}
|
|
|
|
#ifdef KERN_TLS
|
|
/*
|
|
* Similar to sballoc/sbfree but does not adjust state associated with
|
|
* the sb_mb chain such as sb_fnrdy or sb_sndptr*. Also assumes mbufs
|
|
* are not ready.
|
|
*/
|
|
void
|
|
sballoc_ktls_rx(struct sockbuf *sb, struct mbuf *m)
|
|
{
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
sb->sb_ccc += m->m_len;
|
|
sb->sb_tlscc += m->m_len;
|
|
|
|
sb->sb_mbcnt += MSIZE;
|
|
|
|
if (m->m_flags & M_EXT)
|
|
sb->sb_mbcnt += m->m_ext.ext_size;
|
|
}
|
|
|
|
void
|
|
sbfree_ktls_rx(struct sockbuf *sb, struct mbuf *m)
|
|
{
|
|
|
|
#if 0 /* XXX: not yet: soclose() call path comes here w/o lock. */
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
#endif
|
|
|
|
sb->sb_ccc -= m->m_len;
|
|
sb->sb_tlscc -= m->m_len;
|
|
|
|
sb->sb_mbcnt -= MSIZE;
|
|
|
|
if (m->m_flags & M_EXT)
|
|
sb->sb_mbcnt -= m->m_ext.ext_size;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Socantsendmore indicates that no more data will be sent on the socket; it
|
|
* would normally be applied to a socket when the user informs the system
|
|
* that no more data is to be sent, by the protocol code (in case
|
|
* PRU_SHUTDOWN). Socantrcvmore indicates that no more data will be
|
|
* received, and will normally be applied to the socket by a protocol when it
|
|
* detects that the peer will send no more data. Data queued for reading in
|
|
* the socket may yet be read.
|
|
*/
|
|
void
|
|
socantsendmore_locked(struct socket *so)
|
|
{
|
|
|
|
SOCK_SENDBUF_LOCK_ASSERT(so);
|
|
|
|
so->so_snd.sb_state |= SBS_CANTSENDMORE;
|
|
sowwakeup_locked(so);
|
|
SOCK_SENDBUF_UNLOCK_ASSERT(so);
|
|
}
|
|
|
|
void
|
|
socantsendmore(struct socket *so)
|
|
{
|
|
|
|
SOCK_SENDBUF_LOCK(so);
|
|
socantsendmore_locked(so);
|
|
SOCK_SENDBUF_UNLOCK_ASSERT(so);
|
|
}
|
|
|
|
void
|
|
socantrcvmore_locked(struct socket *so)
|
|
{
|
|
|
|
SOCK_RECVBUF_LOCK_ASSERT(so);
|
|
|
|
so->so_rcv.sb_state |= SBS_CANTRCVMORE;
|
|
#ifdef KERN_TLS
|
|
if (so->so_rcv.sb_flags & SB_TLS_RX)
|
|
ktls_check_rx(&so->so_rcv);
|
|
#endif
|
|
sorwakeup_locked(so);
|
|
SOCK_RECVBUF_UNLOCK_ASSERT(so);
|
|
}
|
|
|
|
void
|
|
socantrcvmore(struct socket *so)
|
|
{
|
|
|
|
SOCK_RECVBUF_LOCK(so);
|
|
socantrcvmore_locked(so);
|
|
SOCK_RECVBUF_UNLOCK_ASSERT(so);
|
|
}
|
|
|
|
void
|
|
soroverflow_locked(struct socket *so)
|
|
{
|
|
|
|
SOCK_RECVBUF_LOCK_ASSERT(so);
|
|
|
|
if (so->so_options & SO_RERROR) {
|
|
so->so_rerror = ENOBUFS;
|
|
sorwakeup_locked(so);
|
|
} else
|
|
SOCK_RECVBUF_UNLOCK(so);
|
|
|
|
SOCK_RECVBUF_UNLOCK_ASSERT(so);
|
|
}
|
|
|
|
void
|
|
soroverflow(struct socket *so)
|
|
{
|
|
|
|
SOCK_RECVBUF_LOCK(so);
|
|
soroverflow_locked(so);
|
|
SOCK_RECVBUF_UNLOCK_ASSERT(so);
|
|
}
|
|
|
|
/*
|
|
* Wait for data to arrive at/drain from a socket buffer.
|
|
*/
|
|
int
|
|
sbwait(struct socket *so, sb_which which)
|
|
{
|
|
struct sockbuf *sb;
|
|
|
|
SOCK_BUF_LOCK_ASSERT(so, which);
|
|
|
|
sb = sobuf(so, which);
|
|
sb->sb_flags |= SB_WAIT;
|
|
return (msleep_sbt(&sb->sb_acc, soeventmtx(so, which),
|
|
(sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
|
|
sb->sb_timeo, 0, 0));
|
|
}
|
|
|
|
/*
|
|
* Wakeup processes waiting on a socket buffer. Do asynchronous notification
|
|
* via SIGIO if the socket has the SS_ASYNC flag set.
|
|
*
|
|
* Called with the socket buffer lock held; will release the lock by the end
|
|
* of the function. This allows the caller to acquire the socket buffer lock
|
|
* while testing for the need for various sorts of wakeup and hold it through
|
|
* to the point where it's no longer required. We currently hold the lock
|
|
* through calls out to other subsystems (with the exception of kqueue), and
|
|
* then release it to avoid lock order issues. It's not clear that's
|
|
* correct.
|
|
*/
|
|
static __always_inline void
|
|
sowakeup(struct socket *so, const sb_which which)
|
|
{
|
|
struct sockbuf *sb;
|
|
int ret;
|
|
|
|
SOCK_BUF_LOCK_ASSERT(so, which);
|
|
|
|
sb = sobuf(so, which);
|
|
selwakeuppri(sb->sb_sel, PSOCK);
|
|
if (!SEL_WAITING(sb->sb_sel))
|
|
sb->sb_flags &= ~SB_SEL;
|
|
if (sb->sb_flags & SB_WAIT) {
|
|
sb->sb_flags &= ~SB_WAIT;
|
|
wakeup(&sb->sb_acc);
|
|
}
|
|
KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
|
|
if (sb->sb_upcall != NULL) {
|
|
ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
|
|
if (ret == SU_ISCONNECTED) {
|
|
KASSERT(sb == &so->so_rcv,
|
|
("SO_SND upcall returned SU_ISCONNECTED"));
|
|
soupcall_clear(so, SO_RCV);
|
|
}
|
|
} else
|
|
ret = SU_OK;
|
|
if (sb->sb_flags & SB_AIO)
|
|
sowakeup_aio(so, which);
|
|
SOCK_BUF_UNLOCK(so, which);
|
|
if (ret == SU_ISCONNECTED)
|
|
soisconnected(so);
|
|
if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
|
|
pgsigio(&so->so_sigio, SIGIO, 0);
|
|
SOCK_BUF_UNLOCK_ASSERT(so, which);
|
|
}
|
|
|
|
/*
|
|
* Do we need to notify the other side when I/O is possible?
|
|
*/
|
|
static __always_inline bool
|
|
sb_notify(const struct sockbuf *sb)
|
|
{
|
|
return ((sb->sb_flags & (SB_WAIT | SB_SEL | SB_ASYNC |
|
|
SB_UPCALL | SB_AIO | SB_KNOTE)) != 0);
|
|
}
|
|
|
|
void
|
|
sorwakeup_locked(struct socket *so)
|
|
{
|
|
SOCK_RECVBUF_LOCK_ASSERT(so);
|
|
if (sb_notify(&so->so_rcv))
|
|
sowakeup(so, SO_RCV);
|
|
else
|
|
SOCK_RECVBUF_UNLOCK(so);
|
|
}
|
|
|
|
void
|
|
sowwakeup_locked(struct socket *so)
|
|
{
|
|
SOCK_SENDBUF_LOCK_ASSERT(so);
|
|
if (sb_notify(&so->so_snd))
|
|
sowakeup(so, SO_SND);
|
|
else
|
|
SOCK_SENDBUF_UNLOCK(so);
|
|
}
|
|
|
|
/*
|
|
* Socket buffer (struct sockbuf) utility routines.
|
|
*
|
|
* Each socket contains two socket buffers: one for sending data and one for
|
|
* receiving data. Each buffer contains a queue of mbufs, information about
|
|
* the number of mbufs and amount of data in the queue, and other fields
|
|
* allowing select() statements and notification on data availability to be
|
|
* implemented.
|
|
*
|
|
* Data stored in a socket buffer is maintained as a list of records. Each
|
|
* record is a list of mbufs chained together with the m_next field. Records
|
|
* are chained together with the m_nextpkt field. The upper level routine
|
|
* soreceive() expects the following conventions to be observed when placing
|
|
* information in the receive buffer:
|
|
*
|
|
* 1. If the protocol requires each message be preceded by the sender's name,
|
|
* then a record containing that name must be present before any
|
|
* associated data (mbuf's must be of type MT_SONAME).
|
|
* 2. If the protocol supports the exchange of ``access rights'' (really just
|
|
* additional data associated with the message), and there are ``rights''
|
|
* to be received, then a record containing this data should be present
|
|
* (mbuf's must be of type MT_RIGHTS).
|
|
* 3. If a name or rights record exists, then it must be followed by a data
|
|
* record, perhaps of zero length.
|
|
*
|
|
* Before using a new socket structure it is first necessary to reserve
|
|
* buffer space to the socket, by calling sbreserve(). This should commit
|
|
* some of the available buffer space in the system buffer pool for the
|
|
* socket (currently, it does nothing but enforce limits). The space should
|
|
* be released by calling sbrelease() when the socket is destroyed.
|
|
*/
|
|
int
|
|
soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
|
|
{
|
|
struct thread *td = curthread;
|
|
|
|
SOCK_SENDBUF_LOCK(so);
|
|
SOCK_RECVBUF_LOCK(so);
|
|
if (sbreserve_locked(so, SO_SND, sndcc, td) == 0)
|
|
goto bad;
|
|
if (sbreserve_locked(so, SO_RCV, rcvcc, td) == 0)
|
|
goto bad2;
|
|
if (so->so_rcv.sb_lowat == 0)
|
|
so->so_rcv.sb_lowat = 1;
|
|
if (so->so_snd.sb_lowat == 0)
|
|
so->so_snd.sb_lowat = MCLBYTES;
|
|
if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
|
|
so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
|
|
SOCK_RECVBUF_UNLOCK(so);
|
|
SOCK_SENDBUF_UNLOCK(so);
|
|
return (0);
|
|
bad2:
|
|
sbrelease_locked(so, SO_SND);
|
|
bad:
|
|
SOCK_RECVBUF_UNLOCK(so);
|
|
SOCK_SENDBUF_UNLOCK(so);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
static int
|
|
sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error = 0;
|
|
u_long tmp_sb_max = sb_max;
|
|
|
|
error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
if (tmp_sb_max < MSIZE + MCLBYTES)
|
|
return (EINVAL);
|
|
sb_max = tmp_sb_max;
|
|
sb_max_adj = BUF_MAX_ADJ(sb_max);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Allot mbufs to a sockbuf. Attempt to scale mbmax so that mbcnt doesn't
|
|
* become limiting if buffering efficiency is near the normal case.
|
|
*/
|
|
bool
|
|
sbreserve_locked_limit(struct socket *so, sb_which which, u_long cc,
|
|
u_long buf_max, struct thread *td)
|
|
{
|
|
struct sockbuf *sb = sobuf(so, which);
|
|
rlim_t sbsize_limit;
|
|
|
|
SOCK_BUF_LOCK_ASSERT(so, which);
|
|
|
|
/*
|
|
* When a thread is passed, we take into account the thread's socket
|
|
* buffer size limit. The caller will generally pass curthread, but
|
|
* in the TCP input path, NULL will be passed to indicate that no
|
|
* appropriate thread resource limits are available. In that case,
|
|
* we don't apply a process limit.
|
|
*/
|
|
if (cc > BUF_MAX_ADJ(buf_max))
|
|
return (false);
|
|
if (td != NULL) {
|
|
sbsize_limit = lim_cur(td, RLIMIT_SBSIZE);
|
|
} else
|
|
sbsize_limit = RLIM_INFINITY;
|
|
if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
|
|
sbsize_limit))
|
|
return (false);
|
|
sb->sb_mbmax = min(cc * sb_efficiency, buf_max);
|
|
if (sb->sb_lowat > sb->sb_hiwat)
|
|
sb->sb_lowat = sb->sb_hiwat;
|
|
return (true);
|
|
}
|
|
|
|
bool
|
|
sbreserve_locked(struct socket *so, sb_which which, u_long cc,
|
|
struct thread *td)
|
|
{
|
|
return (sbreserve_locked_limit(so, which, cc, sb_max, td));
|
|
}
|
|
|
|
int
|
|
sbsetopt(struct socket *so, struct sockopt *sopt)
|
|
{
|
|
struct sockbuf *sb;
|
|
sb_which wh;
|
|
short *flags;
|
|
u_int cc, *hiwat, *lowat;
|
|
int error, optval;
|
|
|
|
error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Values < 1 make no sense for any of these options,
|
|
* so disallow them.
|
|
*/
|
|
if (optval < 1)
|
|
return (EINVAL);
|
|
cc = optval;
|
|
|
|
sb = NULL;
|
|
SOCK_LOCK(so);
|
|
if (SOLISTENING(so)) {
|
|
switch (sopt->sopt_name) {
|
|
case SO_SNDLOWAT:
|
|
case SO_SNDBUF:
|
|
lowat = &so->sol_sbsnd_lowat;
|
|
hiwat = &so->sol_sbsnd_hiwat;
|
|
flags = &so->sol_sbsnd_flags;
|
|
break;
|
|
case SO_RCVLOWAT:
|
|
case SO_RCVBUF:
|
|
lowat = &so->sol_sbrcv_lowat;
|
|
hiwat = &so->sol_sbrcv_hiwat;
|
|
flags = &so->sol_sbrcv_flags;
|
|
break;
|
|
}
|
|
} else {
|
|
switch (sopt->sopt_name) {
|
|
case SO_SNDLOWAT:
|
|
case SO_SNDBUF:
|
|
sb = &so->so_snd;
|
|
wh = SO_SND;
|
|
break;
|
|
case SO_RCVLOWAT:
|
|
case SO_RCVBUF:
|
|
sb = &so->so_rcv;
|
|
wh = SO_RCV;
|
|
break;
|
|
}
|
|
flags = &sb->sb_flags;
|
|
hiwat = &sb->sb_hiwat;
|
|
lowat = &sb->sb_lowat;
|
|
SOCK_BUF_LOCK(so, wh);
|
|
}
|
|
|
|
error = 0;
|
|
switch (sopt->sopt_name) {
|
|
case SO_SNDBUF:
|
|
case SO_RCVBUF:
|
|
if (SOLISTENING(so)) {
|
|
if (cc > sb_max_adj) {
|
|
error = ENOBUFS;
|
|
break;
|
|
}
|
|
*hiwat = cc;
|
|
if (*lowat > *hiwat)
|
|
*lowat = *hiwat;
|
|
} else {
|
|
if (!sbreserve_locked(so, wh, cc, curthread))
|
|
error = ENOBUFS;
|
|
}
|
|
if (error == 0)
|
|
*flags &= ~SB_AUTOSIZE;
|
|
break;
|
|
case SO_SNDLOWAT:
|
|
case SO_RCVLOWAT:
|
|
/*
|
|
* Make sure the low-water is never greater than the
|
|
* high-water.
|
|
*/
|
|
*lowat = (cc > *hiwat) ? *hiwat : cc;
|
|
break;
|
|
}
|
|
|
|
if (!SOLISTENING(so))
|
|
SOCK_BUF_UNLOCK(so, wh);
|
|
SOCK_UNLOCK(so);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Free mbufs held by a socket, and reserved mbuf space.
|
|
*/
|
|
static void
|
|
sbrelease_internal(struct socket *so, sb_which which)
|
|
{
|
|
struct sockbuf *sb = sobuf(so, which);
|
|
|
|
sbflush_internal(sb);
|
|
(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
|
|
RLIM_INFINITY);
|
|
sb->sb_mbmax = 0;
|
|
}
|
|
|
|
void
|
|
sbrelease_locked(struct socket *so, sb_which which)
|
|
{
|
|
|
|
SOCK_BUF_LOCK_ASSERT(so, which);
|
|
|
|
sbrelease_internal(so, which);
|
|
}
|
|
|
|
void
|
|
sbrelease(struct socket *so, sb_which which)
|
|
{
|
|
|
|
SOCK_BUF_LOCK(so, which);
|
|
sbrelease_locked(so, which);
|
|
SOCK_BUF_UNLOCK(so, which);
|
|
}
|
|
|
|
void
|
|
sbdestroy(struct socket *so, sb_which which)
|
|
{
|
|
#ifdef KERN_TLS
|
|
struct sockbuf *sb = sobuf(so, which);
|
|
|
|
if (sb->sb_tls_info != NULL)
|
|
ktls_free(sb->sb_tls_info);
|
|
sb->sb_tls_info = NULL;
|
|
#endif
|
|
sbrelease_internal(so, which);
|
|
}
|
|
|
|
/*
|
|
* Routines to add and remove data from an mbuf queue.
|
|
*
|
|
* The routines sbappend() or sbappendrecord() are normally called to append
|
|
* new mbufs to a socket buffer, after checking that adequate space is
|
|
* available, comparing the function sbspace() with the amount of data to be
|
|
* added. sbappendrecord() differs from sbappend() in that data supplied is
|
|
* treated as the beginning of a new record. To place a sender's address,
|
|
* optional access rights, and data in a socket receive buffer,
|
|
* sbappendaddr() should be used. To place access rights and data in a
|
|
* socket receive buffer, sbappendrights() should be used. In either case,
|
|
* the new data begins a new record. Note that unlike sbappend() and
|
|
* sbappendrecord(), these routines check for the caller that there will be
|
|
* enough space to store the data. Each fails if there is not enough space,
|
|
* or if it cannot find mbufs to store additional information in.
|
|
*
|
|
* Reliable protocols may use the socket send buffer to hold data awaiting
|
|
* acknowledgement. Data is normally copied from a socket send buffer in a
|
|
* protocol with m_copy for output to a peer, and then removing the data from
|
|
* the socket buffer with sbdrop() or sbdroprecord() when the data is
|
|
* acknowledged by the peer.
|
|
*/
|
|
#ifdef SOCKBUF_DEBUG
|
|
void
|
|
sblastrecordchk(struct sockbuf *sb, const char *file, int line)
|
|
{
|
|
struct mbuf *m = sb->sb_mb;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
while (m && m->m_nextpkt)
|
|
m = m->m_nextpkt;
|
|
|
|
if (m != sb->sb_lastrecord) {
|
|
printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
|
|
__func__, sb->sb_mb, sb->sb_lastrecord, m);
|
|
printf("packet chain:\n");
|
|
for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
|
|
printf("\t%p\n", m);
|
|
panic("%s from %s:%u", __func__, file, line);
|
|
}
|
|
}
|
|
|
|
void
|
|
sblastmbufchk(struct sockbuf *sb, const char *file, int line)
|
|
{
|
|
struct mbuf *m = sb->sb_mb;
|
|
struct mbuf *n;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
while (m && m->m_nextpkt)
|
|
m = m->m_nextpkt;
|
|
|
|
while (m && m->m_next)
|
|
m = m->m_next;
|
|
|
|
if (m != sb->sb_mbtail) {
|
|
printf("%s: sb_mb %p sb_mbtail %p last %p\n",
|
|
__func__, sb->sb_mb, sb->sb_mbtail, m);
|
|
printf("packet tree:\n");
|
|
for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
|
|
printf("\t");
|
|
for (n = m; n != NULL; n = n->m_next)
|
|
printf("%p ", n);
|
|
printf("\n");
|
|
}
|
|
panic("%s from %s:%u", __func__, file, line);
|
|
}
|
|
|
|
#ifdef KERN_TLS
|
|
m = sb->sb_mtls;
|
|
while (m && m->m_next)
|
|
m = m->m_next;
|
|
|
|
if (m != sb->sb_mtlstail) {
|
|
printf("%s: sb_mtls %p sb_mtlstail %p last %p\n",
|
|
__func__, sb->sb_mtls, sb->sb_mtlstail, m);
|
|
printf("TLS packet tree:\n");
|
|
printf("\t");
|
|
for (m = sb->sb_mtls; m != NULL; m = m->m_next) {
|
|
printf("%p ", m);
|
|
}
|
|
printf("\n");
|
|
panic("%s from %s:%u", __func__, file, line);
|
|
}
|
|
#endif
|
|
}
|
|
#endif /* SOCKBUF_DEBUG */
|
|
|
|
#define SBLINKRECORD(sb, m0) do { \
|
|
SOCKBUF_LOCK_ASSERT(sb); \
|
|
if ((sb)->sb_lastrecord != NULL) \
|
|
(sb)->sb_lastrecord->m_nextpkt = (m0); \
|
|
else \
|
|
(sb)->sb_mb = (m0); \
|
|
(sb)->sb_lastrecord = (m0); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
/*
|
|
* Append mbuf chain m to the last record in the socket buffer sb. The
|
|
* additional space associated the mbuf chain is recorded in sb. Empty mbufs
|
|
* are discarded and mbufs are compacted where possible.
|
|
*/
|
|
void
|
|
sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags)
|
|
{
|
|
struct mbuf *n;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
if (m == NULL)
|
|
return;
|
|
kmsan_check_mbuf(m, "sbappend");
|
|
sbm_clrprotoflags(m, flags);
|
|
SBLASTRECORDCHK(sb);
|
|
n = sb->sb_mb;
|
|
if (n) {
|
|
while (n->m_nextpkt)
|
|
n = n->m_nextpkt;
|
|
do {
|
|
if (n->m_flags & M_EOR) {
|
|
sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
|
|
return;
|
|
}
|
|
} while (n->m_next && (n = n->m_next));
|
|
} else {
|
|
/*
|
|
* XXX Would like to simply use sb_mbtail here, but
|
|
* XXX I need to verify that I won't miss an EOR that
|
|
* XXX way.
|
|
*/
|
|
if ((n = sb->sb_lastrecord) != NULL) {
|
|
do {
|
|
if (n->m_flags & M_EOR) {
|
|
sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
|
|
return;
|
|
}
|
|
} while (n->m_next && (n = n->m_next));
|
|
} else {
|
|
/*
|
|
* If this is the first record in the socket buffer,
|
|
* it's also the last record.
|
|
*/
|
|
sb->sb_lastrecord = m;
|
|
}
|
|
}
|
|
sbcompress(sb, m, n);
|
|
SBLASTRECORDCHK(sb);
|
|
}
|
|
|
|
/*
|
|
* Append mbuf chain m to the last record in the socket buffer sb. The
|
|
* additional space associated the mbuf chain is recorded in sb. Empty mbufs
|
|
* are discarded and mbufs are compacted where possible.
|
|
*/
|
|
void
|
|
sbappend(struct sockbuf *sb, struct mbuf *m, int flags)
|
|
{
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
sbappend_locked(sb, m, flags);
|
|
SOCKBUF_UNLOCK(sb);
|
|
}
|
|
|
|
#ifdef KERN_TLS
|
|
/*
|
|
* Append an mbuf containing encrypted TLS data. The data
|
|
* is marked M_NOTREADY until it has been decrypted and
|
|
* stored as a TLS record.
|
|
*/
|
|
static void
|
|
sbappend_ktls_rx(struct sockbuf *sb, struct mbuf *m)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct mbuf *n;
|
|
int flags;
|
|
|
|
ifp = NULL;
|
|
flags = M_NOTREADY;
|
|
|
|
SBLASTMBUFCHK(sb);
|
|
|
|
/* Mbuf chain must start with a packet header. */
|
|
MPASS((m->m_flags & M_PKTHDR) != 0);
|
|
|
|
/* Remove all packet headers and mbuf tags to get a pure data chain. */
|
|
for (n = m; n != NULL; n = n->m_next) {
|
|
if (n->m_flags & M_PKTHDR) {
|
|
ifp = m->m_pkthdr.leaf_rcvif;
|
|
if ((n->m_pkthdr.csum_flags & CSUM_TLS_MASK) ==
|
|
CSUM_TLS_DECRYPTED) {
|
|
/* Mark all mbufs in this packet decrypted. */
|
|
flags = M_NOTREADY | M_DECRYPTED;
|
|
} else {
|
|
flags = M_NOTREADY;
|
|
}
|
|
m_demote_pkthdr(n);
|
|
}
|
|
|
|
n->m_flags &= M_DEMOTEFLAGS;
|
|
n->m_flags |= flags;
|
|
|
|
MPASS((n->m_flags & M_NOTREADY) != 0);
|
|
}
|
|
|
|
sbcompress_ktls_rx(sb, m, sb->sb_mtlstail);
|
|
ktls_check_rx(sb);
|
|
|
|
/* Check for incoming packet route changes: */
|
|
if (ifp != NULL && sb->sb_tls_info->rx_ifp != NULL &&
|
|
sb->sb_tls_info->rx_ifp != ifp)
|
|
ktls_input_ifp_mismatch(sb, ifp);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This version of sbappend() should only be used when the caller absolutely
|
|
* knows that there will never be more than one record in the socket buffer,
|
|
* that is, a stream protocol (such as TCP).
|
|
*/
|
|
void
|
|
sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
|
|
{
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
|
|
|
|
kmsan_check_mbuf(m, "sbappend");
|
|
|
|
#ifdef KERN_TLS
|
|
/*
|
|
* Decrypted TLS records are appended as records via
|
|
* sbappendrecord(). TCP passes encrypted TLS records to this
|
|
* function which must be scheduled for decryption.
|
|
*/
|
|
if (sb->sb_flags & SB_TLS_RX) {
|
|
sbappend_ktls_rx(sb, m);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
|
|
|
|
SBLASTMBUFCHK(sb);
|
|
|
|
#ifdef KERN_TLS
|
|
if (sb->sb_tls_info != NULL)
|
|
ktls_seq(sb, m);
|
|
#endif
|
|
|
|
/* Remove all packet headers and mbuf tags to get a pure data chain. */
|
|
m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
|
|
|
|
sbcompress(sb, m, sb->sb_mbtail);
|
|
|
|
sb->sb_lastrecord = sb->sb_mb;
|
|
SBLASTRECORDCHK(sb);
|
|
}
|
|
|
|
/*
|
|
* This version of sbappend() should only be used when the caller absolutely
|
|
* knows that there will never be more than one record in the socket buffer,
|
|
* that is, a stream protocol (such as TCP).
|
|
*/
|
|
void
|
|
sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
|
|
{
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
sbappendstream_locked(sb, m, flags);
|
|
SOCKBUF_UNLOCK(sb);
|
|
}
|
|
|
|
#ifdef SOCKBUF_DEBUG
|
|
void
|
|
sbcheck(struct sockbuf *sb, const char *file, int line)
|
|
{
|
|
struct mbuf *m, *n, *fnrdy;
|
|
u_long acc, ccc, mbcnt;
|
|
#ifdef KERN_TLS
|
|
u_long tlscc;
|
|
#endif
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
acc = ccc = mbcnt = 0;
|
|
fnrdy = NULL;
|
|
|
|
for (m = sb->sb_mb; m; m = n) {
|
|
n = m->m_nextpkt;
|
|
for (; m; m = m->m_next) {
|
|
if (m->m_len == 0) {
|
|
printf("sb %p empty mbuf %p\n", sb, m);
|
|
goto fail;
|
|
}
|
|
if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
|
|
if (m != sb->sb_fnrdy) {
|
|
printf("sb %p: fnrdy %p != m %p\n",
|
|
sb, sb->sb_fnrdy, m);
|
|
goto fail;
|
|
}
|
|
fnrdy = m;
|
|
}
|
|
if (fnrdy) {
|
|
if (!(m->m_flags & M_NOTAVAIL)) {
|
|
printf("sb %p: fnrdy %p, m %p is avail\n",
|
|
sb, sb->sb_fnrdy, m);
|
|
goto fail;
|
|
}
|
|
} else
|
|
acc += m->m_len;
|
|
ccc += m->m_len;
|
|
mbcnt += MSIZE;
|
|
if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
|
|
mbcnt += m->m_ext.ext_size;
|
|
}
|
|
}
|
|
#ifdef KERN_TLS
|
|
/*
|
|
* Account for mbufs "detached" by ktls_detach_record() while
|
|
* they are decrypted by ktls_decrypt(). tlsdcc gives a count
|
|
* of the detached bytes that are included in ccc. The mbufs
|
|
* and clusters are not included in the socket buffer
|
|
* accounting.
|
|
*/
|
|
ccc += sb->sb_tlsdcc;
|
|
|
|
tlscc = 0;
|
|
for (m = sb->sb_mtls; m; m = m->m_next) {
|
|
if (m->m_nextpkt != NULL) {
|
|
printf("sb %p TLS mbuf %p with nextpkt\n", sb, m);
|
|
goto fail;
|
|
}
|
|
if ((m->m_flags & M_NOTREADY) == 0) {
|
|
printf("sb %p TLS mbuf %p ready\n", sb, m);
|
|
goto fail;
|
|
}
|
|
tlscc += m->m_len;
|
|
ccc += m->m_len;
|
|
mbcnt += MSIZE;
|
|
if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
|
|
mbcnt += m->m_ext.ext_size;
|
|
}
|
|
|
|
if (sb->sb_tlscc != tlscc) {
|
|
printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
|
|
sb->sb_tlsdcc);
|
|
goto fail;
|
|
}
|
|
#endif
|
|
if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
|
|
printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
|
|
acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
|
|
#ifdef KERN_TLS
|
|
printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
|
|
sb->sb_tlsdcc);
|
|
#endif
|
|
goto fail;
|
|
}
|
|
return;
|
|
fail:
|
|
panic("%s from %s:%u", __func__, file, line);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* As above, except the mbuf chain begins a new record.
|
|
*/
|
|
void
|
|
sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
if (m0 == NULL)
|
|
return;
|
|
|
|
kmsan_check_mbuf(m0, "sbappend");
|
|
m_clrprotoflags(m0);
|
|
|
|
/*
|
|
* Put the first mbuf on the queue. Note this permits zero length
|
|
* records.
|
|
*/
|
|
sballoc(sb, m0);
|
|
SBLASTRECORDCHK(sb);
|
|
SBLINKRECORD(sb, m0);
|
|
sb->sb_mbtail = m0;
|
|
m = m0->m_next;
|
|
m0->m_next = 0;
|
|
if (m && (m0->m_flags & M_EOR)) {
|
|
m0->m_flags &= ~M_EOR;
|
|
m->m_flags |= M_EOR;
|
|
}
|
|
/* always call sbcompress() so it can do SBLASTMBUFCHK() */
|
|
sbcompress(sb, m, m0);
|
|
}
|
|
|
|
/*
|
|
* As above, except the mbuf chain begins a new record.
|
|
*/
|
|
void
|
|
sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
|
|
{
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
sbappendrecord_locked(sb, m0);
|
|
SOCKBUF_UNLOCK(sb);
|
|
}
|
|
|
|
/* Helper routine that appends data, control, and address to a sockbuf. */
|
|
static int
|
|
sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
|
|
struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
|
|
{
|
|
struct mbuf *m, *n, *nlast;
|
|
|
|
if (m0 != NULL)
|
|
kmsan_check_mbuf(m0, "sbappend");
|
|
if (control != NULL)
|
|
kmsan_check_mbuf(control, "sbappend");
|
|
|
|
#if MSIZE <= 256
|
|
if (asa->sa_len > MLEN)
|
|
return (0);
|
|
#endif
|
|
m = m_get(M_NOWAIT, MT_SONAME);
|
|
if (m == NULL)
|
|
return (0);
|
|
m->m_len = asa->sa_len;
|
|
bcopy(asa, mtod(m, caddr_t), asa->sa_len);
|
|
if (m0) {
|
|
M_ASSERT_NO_SND_TAG(m0);
|
|
m_clrprotoflags(m0);
|
|
m_tag_delete_chain(m0, NULL);
|
|
/*
|
|
* Clear some persistent info from pkthdr.
|
|
* We don't use m_demote(), because some netgraph consumers
|
|
* expect M_PKTHDR presence.
|
|
*/
|
|
m0->m_pkthdr.rcvif = NULL;
|
|
m0->m_pkthdr.flowid = 0;
|
|
m0->m_pkthdr.csum_flags = 0;
|
|
m0->m_pkthdr.fibnum = 0;
|
|
m0->m_pkthdr.rsstype = 0;
|
|
}
|
|
if (ctrl_last)
|
|
ctrl_last->m_next = m0; /* concatenate data to control */
|
|
else
|
|
control = m0;
|
|
m->m_next = control;
|
|
for (n = m; n->m_next != NULL; n = n->m_next)
|
|
sballoc(sb, n);
|
|
sballoc(sb, n);
|
|
nlast = n;
|
|
SBLINKRECORD(sb, m);
|
|
|
|
sb->sb_mbtail = nlast;
|
|
SBLASTMBUFCHK(sb);
|
|
|
|
SBLASTRECORDCHK(sb);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Append address and data, and optionally, control (ancillary) data to the
|
|
* receive queue of a socket. If present, m0 must include a packet header
|
|
* with total length. Returns 0 if no space in sockbuf or insufficient
|
|
* mbufs.
|
|
*/
|
|
int
|
|
sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
|
|
struct mbuf *m0, struct mbuf *control)
|
|
{
|
|
struct mbuf *ctrl_last;
|
|
int space = asa->sa_len;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
if (m0 && (m0->m_flags & M_PKTHDR) == 0)
|
|
panic("sbappendaddr_locked");
|
|
if (m0)
|
|
space += m0->m_pkthdr.len;
|
|
space += m_length(control, &ctrl_last);
|
|
|
|
if (space > sbspace(sb))
|
|
return (0);
|
|
return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
|
|
}
|
|
|
|
/*
|
|
* Append address and data, and optionally, control (ancillary) data to the
|
|
* receive queue of a socket. If present, m0 must include a packet header
|
|
* with total length. Returns 0 if insufficient mbufs. Does not validate space
|
|
* on the receiving sockbuf.
|
|
*/
|
|
int
|
|
sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
|
|
struct mbuf *m0, struct mbuf *control)
|
|
{
|
|
struct mbuf *ctrl_last;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
ctrl_last = (control == NULL) ? NULL : m_last(control);
|
|
return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
|
|
}
|
|
|
|
/*
|
|
* Append address and data, and optionally, control (ancillary) data to the
|
|
* receive queue of a socket. If present, m0 must include a packet header
|
|
* with total length. Returns 0 if no space in sockbuf or insufficient
|
|
* mbufs.
|
|
*/
|
|
int
|
|
sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
|
|
struct mbuf *m0, struct mbuf *control)
|
|
{
|
|
int retval;
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
retval = sbappendaddr_locked(sb, asa, m0, control);
|
|
SOCKBUF_UNLOCK(sb);
|
|
return (retval);
|
|
}
|
|
|
|
void
|
|
sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
|
|
struct mbuf *control, int flags)
|
|
{
|
|
struct mbuf *m, *mlast;
|
|
|
|
if (m0 != NULL)
|
|
kmsan_check_mbuf(m0, "sbappend");
|
|
kmsan_check_mbuf(control, "sbappend");
|
|
|
|
sbm_clrprotoflags(m0, flags);
|
|
m_last(control)->m_next = m0;
|
|
|
|
SBLASTRECORDCHK(sb);
|
|
|
|
for (m = control; m->m_next; m = m->m_next)
|
|
sballoc(sb, m);
|
|
sballoc(sb, m);
|
|
mlast = m;
|
|
SBLINKRECORD(sb, control);
|
|
|
|
sb->sb_mbtail = mlast;
|
|
SBLASTMBUFCHK(sb);
|
|
|
|
SBLASTRECORDCHK(sb);
|
|
}
|
|
|
|
void
|
|
sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
|
|
int flags)
|
|
{
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
sbappendcontrol_locked(sb, m0, control, flags);
|
|
SOCKBUF_UNLOCK(sb);
|
|
}
|
|
|
|
/*
|
|
* Append the data in mbuf chain (m) into the socket buffer sb following mbuf
|
|
* (n). If (n) is NULL, the buffer is presumed empty.
|
|
*
|
|
* When the data is compressed, mbufs in the chain may be handled in one of
|
|
* three ways:
|
|
*
|
|
* (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
|
|
* record boundary, and no change in data type).
|
|
*
|
|
* (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
|
|
* an mbuf already in the socket buffer. This can occur if an
|
|
* appropriate mbuf exists, there is room, both mbufs are not marked as
|
|
* not ready, and no merging of data types will occur.
|
|
*
|
|
* (3) The mbuf may be appended to the end of the existing mbuf chain.
|
|
*
|
|
* If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
|
|
* end-of-record.
|
|
*/
|
|
void
|
|
sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
|
|
{
|
|
int eor = 0;
|
|
struct mbuf *o;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
while (m) {
|
|
eor |= m->m_flags & M_EOR;
|
|
if (m->m_len == 0 &&
|
|
(eor == 0 ||
|
|
(((o = m->m_next) || (o = n)) &&
|
|
o->m_type == m->m_type))) {
|
|
if (sb->sb_lastrecord == m)
|
|
sb->sb_lastrecord = m->m_next;
|
|
m = m_free(m);
|
|
continue;
|
|
}
|
|
if (n && (n->m_flags & M_EOR) == 0 &&
|
|
M_WRITABLE(n) &&
|
|
((sb->sb_flags & SB_NOCOALESCE) == 0) &&
|
|
!(m->m_flags & M_NOTREADY) &&
|
|
!(n->m_flags & (M_NOTREADY | M_EXTPG)) &&
|
|
!mbuf_has_tls_session(m) &&
|
|
!mbuf_has_tls_session(n) &&
|
|
m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
|
|
m->m_len <= M_TRAILINGSPACE(n) &&
|
|
n->m_type == m->m_type) {
|
|
m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
|
|
n->m_len += m->m_len;
|
|
sb->sb_ccc += m->m_len;
|
|
if (sb->sb_fnrdy == NULL)
|
|
sb->sb_acc += m->m_len;
|
|
if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
|
|
/* XXX: Probably don't need.*/
|
|
sb->sb_ctl += m->m_len;
|
|
m = m_free(m);
|
|
continue;
|
|
}
|
|
if (m->m_len <= MLEN && (m->m_flags & M_EXTPG) &&
|
|
(m->m_flags & M_NOTREADY) == 0 &&
|
|
!mbuf_has_tls_session(m))
|
|
(void)mb_unmapped_compress(m);
|
|
if (n)
|
|
n->m_next = m;
|
|
else
|
|
sb->sb_mb = m;
|
|
sb->sb_mbtail = m;
|
|
sballoc(sb, m);
|
|
n = m;
|
|
m->m_flags &= ~M_EOR;
|
|
m = m->m_next;
|
|
n->m_next = 0;
|
|
}
|
|
if (eor) {
|
|
KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
|
|
n->m_flags |= eor;
|
|
}
|
|
SBLASTMBUFCHK(sb);
|
|
}
|
|
|
|
#ifdef KERN_TLS
|
|
/*
|
|
* A version of sbcompress() for encrypted TLS RX mbufs. These mbufs
|
|
* are appended to the 'sb_mtls' chain instead of 'sb_mb' and are also
|
|
* a bit simpler (no EOR markers, always MT_DATA, etc.).
|
|
*/
|
|
static void
|
|
sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
|
|
{
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
while (m) {
|
|
KASSERT((m->m_flags & M_EOR) == 0,
|
|
("TLS RX mbuf %p with EOR", m));
|
|
KASSERT(m->m_type == MT_DATA,
|
|
("TLS RX mbuf %p is not MT_DATA", m));
|
|
KASSERT((m->m_flags & M_NOTREADY) != 0,
|
|
("TLS RX mbuf %p ready", m));
|
|
KASSERT((m->m_flags & M_EXTPG) == 0,
|
|
("TLS RX mbuf %p unmapped", m));
|
|
|
|
if (m->m_len == 0) {
|
|
m = m_free(m);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Even though both 'n' and 'm' are NOTREADY, it's ok
|
|
* to coalesce the data.
|
|
*/
|
|
if (n &&
|
|
M_WRITABLE(n) &&
|
|
((sb->sb_flags & SB_NOCOALESCE) == 0) &&
|
|
!((m->m_flags ^ n->m_flags) & M_DECRYPTED) &&
|
|
!(n->m_flags & M_EXTPG) &&
|
|
m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
|
|
m->m_len <= M_TRAILINGSPACE(n)) {
|
|
m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
|
|
n->m_len += m->m_len;
|
|
sb->sb_ccc += m->m_len;
|
|
sb->sb_tlscc += m->m_len;
|
|
m = m_free(m);
|
|
continue;
|
|
}
|
|
if (n)
|
|
n->m_next = m;
|
|
else
|
|
sb->sb_mtls = m;
|
|
sb->sb_mtlstail = m;
|
|
sballoc_ktls_rx(sb, m);
|
|
n = m;
|
|
m = m->m_next;
|
|
n->m_next = NULL;
|
|
}
|
|
SBLASTMBUFCHK(sb);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Free all mbufs in a sockbuf. Check that all resources are reclaimed.
|
|
*/
|
|
static void
|
|
sbflush_internal(struct sockbuf *sb)
|
|
{
|
|
|
|
while (sb->sb_mbcnt || sb->sb_tlsdcc) {
|
|
/*
|
|
* Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
|
|
* we would loop forever. Panic instead.
|
|
*/
|
|
if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
|
|
break;
|
|
m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
|
|
}
|
|
KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
|
|
("%s: ccc %u mb %p mbcnt %u", __func__,
|
|
sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
|
|
}
|
|
|
|
void
|
|
sbflush_locked(struct sockbuf *sb)
|
|
{
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
sbflush_internal(sb);
|
|
}
|
|
|
|
void
|
|
sbflush(struct sockbuf *sb)
|
|
{
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
sbflush_locked(sb);
|
|
SOCKBUF_UNLOCK(sb);
|
|
}
|
|
|
|
/*
|
|
* Cut data from (the front of) a sockbuf.
|
|
*/
|
|
static struct mbuf *
|
|
sbcut_internal(struct sockbuf *sb, int len)
|
|
{
|
|
struct mbuf *m, *next, *mfree;
|
|
bool is_tls;
|
|
|
|
KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0",
|
|
__func__, len));
|
|
KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u",
|
|
__func__, len, sb->sb_ccc));
|
|
|
|
next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
|
|
is_tls = false;
|
|
mfree = NULL;
|
|
|
|
while (len > 0) {
|
|
if (m == NULL) {
|
|
#ifdef KERN_TLS
|
|
if (next == NULL && !is_tls) {
|
|
if (sb->sb_tlsdcc != 0) {
|
|
MPASS(len >= sb->sb_tlsdcc);
|
|
len -= sb->sb_tlsdcc;
|
|
sb->sb_ccc -= sb->sb_tlsdcc;
|
|
sb->sb_tlsdcc = 0;
|
|
if (len == 0)
|
|
break;
|
|
}
|
|
next = sb->sb_mtls;
|
|
is_tls = true;
|
|
}
|
|
#endif
|
|
KASSERT(next, ("%s: no next, len %d", __func__, len));
|
|
m = next;
|
|
next = m->m_nextpkt;
|
|
}
|
|
if (m->m_len > len) {
|
|
KASSERT(!(m->m_flags & M_NOTAVAIL),
|
|
("%s: m %p M_NOTAVAIL", __func__, m));
|
|
m->m_len -= len;
|
|
m->m_data += len;
|
|
sb->sb_ccc -= len;
|
|
sb->sb_acc -= len;
|
|
if (sb->sb_sndptroff != 0)
|
|
sb->sb_sndptroff -= len;
|
|
if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
|
|
sb->sb_ctl -= len;
|
|
break;
|
|
}
|
|
len -= m->m_len;
|
|
#ifdef KERN_TLS
|
|
if (is_tls)
|
|
sbfree_ktls_rx(sb, m);
|
|
else
|
|
#endif
|
|
sbfree(sb, m);
|
|
/*
|
|
* Do not put M_NOTREADY buffers to the free list, they
|
|
* are referenced from outside.
|
|
*/
|
|
if (m->m_flags & M_NOTREADY && !is_tls)
|
|
m = m->m_next;
|
|
else {
|
|
struct mbuf *n;
|
|
|
|
n = m->m_next;
|
|
m->m_next = mfree;
|
|
mfree = m;
|
|
m = n;
|
|
}
|
|
}
|
|
/*
|
|
* Free any zero-length mbufs from the buffer.
|
|
* For SOCK_DGRAM sockets such mbufs represent empty records.
|
|
* XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer,
|
|
* when sosend_generic() needs to send only control data.
|
|
*/
|
|
while (m && m->m_len == 0) {
|
|
struct mbuf *n;
|
|
|
|
sbfree(sb, m);
|
|
n = m->m_next;
|
|
m->m_next = mfree;
|
|
mfree = m;
|
|
m = n;
|
|
}
|
|
#ifdef KERN_TLS
|
|
if (is_tls) {
|
|
sb->sb_mb = NULL;
|
|
sb->sb_mtls = m;
|
|
if (m == NULL)
|
|
sb->sb_mtlstail = NULL;
|
|
} else
|
|
#endif
|
|
if (m) {
|
|
sb->sb_mb = m;
|
|
m->m_nextpkt = next;
|
|
} else
|
|
sb->sb_mb = next;
|
|
/*
|
|
* First part is an inline SB_EMPTY_FIXUP(). Second part makes sure
|
|
* sb_lastrecord is up-to-date if we dropped part of the last record.
|
|
*/
|
|
m = sb->sb_mb;
|
|
if (m == NULL) {
|
|
sb->sb_mbtail = NULL;
|
|
sb->sb_lastrecord = NULL;
|
|
} else if (m->m_nextpkt == NULL) {
|
|
sb->sb_lastrecord = m;
|
|
}
|
|
|
|
return (mfree);
|
|
}
|
|
|
|
/*
|
|
* Drop data from (the front of) a sockbuf.
|
|
*/
|
|
void
|
|
sbdrop_locked(struct sockbuf *sb, int len)
|
|
{
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
m_freem(sbcut_internal(sb, len));
|
|
}
|
|
|
|
/*
|
|
* Drop data from (the front of) a sockbuf,
|
|
* and return it to caller.
|
|
*/
|
|
struct mbuf *
|
|
sbcut_locked(struct sockbuf *sb, int len)
|
|
{
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
return (sbcut_internal(sb, len));
|
|
}
|
|
|
|
void
|
|
sbdrop(struct sockbuf *sb, int len)
|
|
{
|
|
struct mbuf *mfree;
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
mfree = sbcut_internal(sb, len);
|
|
SOCKBUF_UNLOCK(sb);
|
|
|
|
m_freem(mfree);
|
|
}
|
|
|
|
struct mbuf *
|
|
sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
|
|
if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
|
|
*moff = off;
|
|
if (sb->sb_sndptr == NULL) {
|
|
sb->sb_sndptr = sb->sb_mb;
|
|
sb->sb_sndptroff = 0;
|
|
}
|
|
return (sb->sb_mb);
|
|
} else {
|
|
m = sb->sb_sndptr;
|
|
off -= sb->sb_sndptroff;
|
|
}
|
|
*moff = off;
|
|
return (m);
|
|
}
|
|
|
|
void
|
|
sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len)
|
|
{
|
|
/*
|
|
* A small copy was done, advance forward the sb_sbsndptr to cover
|
|
* it.
|
|
*/
|
|
struct mbuf *m;
|
|
|
|
if (mb != sb->sb_sndptr) {
|
|
/* Did not copyout at the same mbuf */
|
|
return;
|
|
}
|
|
m = mb;
|
|
while (m && (len > 0)) {
|
|
if (len >= m->m_len) {
|
|
len -= m->m_len;
|
|
if (m->m_next) {
|
|
sb->sb_sndptroff += m->m_len;
|
|
sb->sb_sndptr = m->m_next;
|
|
}
|
|
m = m->m_next;
|
|
} else {
|
|
len = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return the first mbuf and the mbuf data offset for the provided
|
|
* send offset without changing the "sb_sndptroff" field.
|
|
*/
|
|
struct mbuf *
|
|
sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
|
|
|
|
/*
|
|
* If the "off" is below the stored offset, which happens on
|
|
* retransmits, just use "sb_mb":
|
|
*/
|
|
if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
|
|
m = sb->sb_mb;
|
|
} else {
|
|
m = sb->sb_sndptr;
|
|
off -= sb->sb_sndptroff;
|
|
}
|
|
while (off > 0 && m != NULL) {
|
|
if (off < m->m_len)
|
|
break;
|
|
off -= m->m_len;
|
|
m = m->m_next;
|
|
}
|
|
*moff = off;
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* Drop a record off the front of a sockbuf and move the next record to the
|
|
* front.
|
|
*/
|
|
void
|
|
sbdroprecord_locked(struct sockbuf *sb)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
m = sb->sb_mb;
|
|
if (m) {
|
|
sb->sb_mb = m->m_nextpkt;
|
|
do {
|
|
sbfree(sb, m);
|
|
m = m_free(m);
|
|
} while (m);
|
|
}
|
|
SB_EMPTY_FIXUP(sb);
|
|
}
|
|
|
|
/*
|
|
* Drop a record off the front of a sockbuf and move the next record to the
|
|
* front.
|
|
*/
|
|
void
|
|
sbdroprecord(struct sockbuf *sb)
|
|
{
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
sbdroprecord_locked(sb);
|
|
SOCKBUF_UNLOCK(sb);
|
|
}
|
|
|
|
/*
|
|
* Create a "control" mbuf containing the specified data with the specified
|
|
* type for presentation on a socket buffer.
|
|
*/
|
|
struct mbuf *
|
|
sbcreatecontrol(const void *p, u_int size, int type, int level, int wait)
|
|
{
|
|
struct cmsghdr *cp;
|
|
struct mbuf *m;
|
|
|
|
MBUF_CHECKSLEEP(wait);
|
|
|
|
if (wait == M_NOWAIT) {
|
|
if (CMSG_SPACE(size) > MCLBYTES)
|
|
return (NULL);
|
|
} else
|
|
KASSERT(CMSG_SPACE(size) <= MCLBYTES,
|
|
("%s: passed CMSG_SPACE(%u) > MCLBYTES", __func__, size));
|
|
|
|
if (CMSG_SPACE(size) > MLEN)
|
|
m = m_getcl(wait, MT_CONTROL, 0);
|
|
else
|
|
m = m_get(wait, MT_CONTROL);
|
|
if (m == NULL)
|
|
return (NULL);
|
|
|
|
KASSERT(CMSG_SPACE(size) <= M_TRAILINGSPACE(m),
|
|
("sbcreatecontrol: short mbuf"));
|
|
/*
|
|
* Don't leave the padding between the msg header and the
|
|
* cmsg data and the padding after the cmsg data un-initialized.
|
|
*/
|
|
cp = mtod(m, struct cmsghdr *);
|
|
bzero(cp, CMSG_SPACE(size));
|
|
if (p != NULL)
|
|
(void)memcpy(CMSG_DATA(cp), p, size);
|
|
m->m_len = CMSG_SPACE(size);
|
|
cp->cmsg_len = CMSG_LEN(size);
|
|
cp->cmsg_level = level;
|
|
cp->cmsg_type = type;
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* This does the same for socket buffers that sotoxsocket does for sockets:
|
|
* generate an user-format data structure describing the socket buffer. Note
|
|
* that the xsockbuf structure, since it is always embedded in a socket, does
|
|
* not include a self pointer nor a length. We make this entry point public
|
|
* in case some other mechanism needs it.
|
|
*/
|
|
void
|
|
sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
|
|
{
|
|
|
|
xsb->sb_cc = sb->sb_ccc;
|
|
xsb->sb_hiwat = sb->sb_hiwat;
|
|
xsb->sb_mbcnt = sb->sb_mbcnt;
|
|
xsb->sb_mbmax = sb->sb_mbmax;
|
|
xsb->sb_lowat = sb->sb_lowat;
|
|
xsb->sb_flags = sb->sb_flags;
|
|
xsb->sb_timeo = sb->sb_timeo;
|
|
}
|
|
|
|
/* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
|
|
static int dummy;
|
|
SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW | CTLFLAG_SKIP, &dummy, 0, "");
|
|
SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
|
|
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, &sb_max, 0,
|
|
sysctl_handle_sb_max, "LU",
|
|
"Maximum socket buffer size");
|
|
SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
|
|
&sb_efficiency, 0, "Socket buffer size waste factor");
|