mirror of
https://github.com/freebsd/freebsd-src.git
synced 2024-12-03 10:29:15 +00:00
28f8db1403
the LINT configuation.
1123 lines
29 KiB
C
1123 lines
29 KiB
C
/*
|
|
* Copyright (c) University of British Columbia, 1984
|
|
* Copyright (C) Computer Science Department IV,
|
|
* University of Erlangen-Nuremberg, Germany, 1992
|
|
* Copyright (c) 1991, 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by the
|
|
* Laboratory for Computation Vision and the Computer Science Department
|
|
* of the the University of British Columbia and the Computer Science
|
|
* Department (IV) of the University of Erlangen-Nuremberg, Germany.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)pk_input.c 8.1 (Berkeley) 6/10/93
|
|
* $Id: pk_input.c,v 1.5 1995/05/30 08:08:59 rgrimes Exp $
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/errno.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_llc.h>
|
|
#include <net/route.h>
|
|
|
|
#include <netccitt/dll.h>
|
|
#include <netccitt/x25.h>
|
|
#include <netccitt/pk.h>
|
|
#include <netccitt/pk_var.h>
|
|
#include <netccitt/llc_var.h>
|
|
|
|
struct pklcd *pk_listenhead;
|
|
struct pkcb_q pkcb_q = {&pkcb_q, &pkcb_q};
|
|
|
|
/*
|
|
* ccittintr() is the generic interrupt handler for HDLC, LLC2, and X.25. This
|
|
* allows to have kernel running X.25 but no HDLC or LLC2 or both (in case we
|
|
* employ boards that do all the stuff themselves, e.g. ADAX X.25 or TPS ISDN.)
|
|
*/
|
|
void
|
|
ccittintr (void)
|
|
{
|
|
extern struct ifqueue pkintrq;
|
|
extern struct ifqueue hdintrq;
|
|
|
|
#ifdef HDLC
|
|
if (hdintrq.ifq_len)
|
|
hdintr ();
|
|
#endif
|
|
#ifdef LLC
|
|
if (llcintrq.ifq_len)
|
|
llcintr ();
|
|
#endif
|
|
if (pkintrq.ifq_len)
|
|
pkintr ();
|
|
}
|
|
|
|
NETISR_SET(NETISR_CCITT, ccittintr);
|
|
|
|
struct pkcb *
|
|
pk_newlink (ia, llnext)
|
|
struct x25_ifaddr *ia;
|
|
caddr_t llnext;
|
|
{
|
|
register struct x25config *xcp = &ia -> ia_xc;
|
|
register struct pkcb *pkp;
|
|
register struct pklcd *lcp;
|
|
register struct protosw *pp;
|
|
unsigned size;
|
|
|
|
pp = pffindproto (AF_CCITT, (int) xcp -> xc_lproto, 0);
|
|
if (pp == 0 || pp -> pr_output == 0) {
|
|
pk_message (0, xcp, "link level protosw error");
|
|
return ((struct pkcb *)0);
|
|
}
|
|
/*
|
|
* Allocate a network control block structure
|
|
*/
|
|
size = sizeof (struct pkcb);
|
|
pkp = (struct pkcb *) malloc (size, M_PCB, M_WAITOK);
|
|
if (pkp == 0)
|
|
return ((struct pkcb *)0);
|
|
bzero ((caddr_t) pkp, size);
|
|
pkp -> pk_lloutput = pp -> pr_output;
|
|
pkp -> pk_llctlinput = (caddr_t (*)()) pp -> pr_ctlinput;
|
|
pkp -> pk_xcp = xcp;
|
|
pkp -> pk_ia = ia;
|
|
pkp -> pk_state = DTE_WAITING;
|
|
pkp -> pk_llnext = llnext;
|
|
insque (pkp, &pkcb_q);
|
|
|
|
/*
|
|
* set defaults
|
|
*/
|
|
|
|
if (xcp -> xc_pwsize == 0)
|
|
xcp -> xc_pwsize = DEFAULT_WINDOW_SIZE;
|
|
if (xcp -> xc_psize == 0)
|
|
xcp -> xc_psize = X25_PS128;
|
|
/*
|
|
* Allocate logical channel descriptor vector
|
|
*/
|
|
|
|
(void) pk_resize (pkp);
|
|
return (pkp);
|
|
}
|
|
|
|
|
|
pk_dellink (pkp)
|
|
register struct pkcb *pkp;
|
|
{
|
|
register int i;
|
|
register struct protosw *pp;
|
|
|
|
/*
|
|
* Essentially we have the choice to
|
|
* (a) go ahead and let the route be deleted and
|
|
* leave the pkcb associated with that route
|
|
* as it is, i.e. the connections stay open
|
|
* (b) do a pk_disconnect() on all channels associated
|
|
* with the route via the pkcb and then proceed.
|
|
*
|
|
* For the time being we stick with (b)
|
|
*/
|
|
|
|
for (i = 1; i < pkp -> pk_maxlcn; ++i)
|
|
if (pkp -> pk_chan[i])
|
|
pk_disconnect (pkp -> pk_chan[i]);
|
|
|
|
/*
|
|
* Free the pkcb
|
|
*/
|
|
|
|
/*
|
|
* First find the protoswitch to get hold of the link level
|
|
* protocol to be notified that the packet level entity is
|
|
* dissolving ...
|
|
*/
|
|
pp = pffindproto (AF_CCITT, (int) pkp -> pk_xcp -> xc_lproto, 0);
|
|
if (pp == 0 || pp -> pr_output == 0) {
|
|
pk_message (0, pkp -> pk_xcp, "link level protosw error");
|
|
return (EPROTONOSUPPORT);
|
|
}
|
|
|
|
pkp -> pk_refcount--;
|
|
if (!pkp -> pk_refcount) {
|
|
struct dll_ctlinfo ctlinfo;
|
|
|
|
remque (pkp);
|
|
if (pkp -> pk_rt -> rt_llinfo == (caddr_t) pkp)
|
|
pkp -> pk_rt -> rt_llinfo = (caddr_t) NULL;
|
|
|
|
/*
|
|
* Tell the link level that the pkcb is dissolving
|
|
*/
|
|
if (pp -> pr_ctlinput && pkp -> pk_llnext) {
|
|
ctlinfo.dlcti_pcb = pkp -> pk_llnext;
|
|
ctlinfo.dlcti_rt = pkp -> pk_rt;
|
|
(pp -> pr_ctlinput)(PRC_DISCONNECT_REQUEST,
|
|
pkp -> pk_xcp, &ctlinfo);
|
|
}
|
|
free ((caddr_t) pkp -> pk_chan, M_IFADDR);
|
|
free ((caddr_t) pkp, M_PCB);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
pk_resize (pkp)
|
|
register struct pkcb *pkp;
|
|
{
|
|
struct pklcd *dev_lcp = 0;
|
|
struct x25config *xcp = pkp -> pk_xcp;
|
|
if (pkp -> pk_chan &&
|
|
(pkp -> pk_maxlcn != xcp -> xc_maxlcn)) {
|
|
pk_restart (pkp, X25_RESTART_NETWORK_CONGESTION);
|
|
dev_lcp = pkp -> pk_chan[0];
|
|
free ((caddr_t) pkp -> pk_chan, M_IFADDR);
|
|
pkp -> pk_chan = 0;
|
|
}
|
|
if (pkp -> pk_chan == 0) {
|
|
unsigned size;
|
|
pkp -> pk_maxlcn = xcp -> xc_maxlcn;
|
|
size = (pkp -> pk_maxlcn + 1) * sizeof (struct pklcd *);
|
|
pkp -> pk_chan =
|
|
(struct pklcd **) malloc (size, M_IFADDR, M_WAITOK);
|
|
if (pkp -> pk_chan) {
|
|
bzero ((caddr_t) pkp -> pk_chan, size);
|
|
/*
|
|
* Allocate a logical channel descriptor for lcn 0
|
|
*/
|
|
if (dev_lcp == 0 &&
|
|
(dev_lcp = pk_attach ((struct socket *)0)) == 0)
|
|
return (ENOBUFS);
|
|
dev_lcp -> lcd_state = READY;
|
|
dev_lcp -> lcd_pkp = pkp;
|
|
pkp -> pk_chan[0] = dev_lcp;
|
|
} else {
|
|
if (dev_lcp)
|
|
pk_close (dev_lcp);
|
|
return (ENOBUFS);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This procedure is called by the link level whenever the link
|
|
* becomes operational, is reset, or when the link goes down.
|
|
*/
|
|
/*VARARGS*/
|
|
caddr_t
|
|
pk_ctlinput (code, src, addr)
|
|
struct sockaddr *src;
|
|
caddr_t addr;
|
|
{
|
|
register struct pkcb *pkp = (struct pkcb *) addr;
|
|
|
|
switch (code) {
|
|
case PRC_LINKUP:
|
|
if (pkp -> pk_state == DTE_WAITING)
|
|
pk_restart (pkp, X25_RESTART_NETWORK_CONGESTION);
|
|
break;
|
|
|
|
case PRC_LINKDOWN:
|
|
pk_restart (pkp, -1); /* Clear all active circuits */
|
|
pkp -> pk_state = DTE_WAITING;
|
|
break;
|
|
|
|
case PRC_LINKRESET:
|
|
pk_restart (pkp, X25_RESTART_NETWORK_CONGESTION);
|
|
break;
|
|
|
|
case PRC_CONNECT_INDICATION: {
|
|
struct rtentry *llrt;
|
|
|
|
if ((llrt = rtalloc1(src, 0, 0UL)) == 0)
|
|
return 0;
|
|
else llrt -> rt_refcnt--;
|
|
|
|
pkp = (((struct npaidbentry *) llrt -> rt_llinfo) -> np_rt) ?
|
|
(struct pkcb *)(((struct npaidbentry *) llrt -> rt_llinfo) -> np_rt -> rt_llinfo) : (struct pkcb *) 0;
|
|
if (pkp == (struct pkcb *) 0)
|
|
return 0;
|
|
pkp -> pk_llnext = addr;
|
|
|
|
return ((caddr_t) pkp);
|
|
}
|
|
case PRC_DISCONNECT_INDICATION:
|
|
pk_restart (pkp, -1) ; /* Clear all active circuits */
|
|
pkp -> pk_state = DTE_WAITING;
|
|
pkp -> pk_llnext = (caddr_t) 0;
|
|
}
|
|
return (0);
|
|
}
|
|
struct ifqueue pkintrq;
|
|
/*
|
|
* This routine is called if there are semi-smart devices that do HDLC
|
|
* in hardware and want to queue the packet and call level 3 directly
|
|
*/
|
|
pkintr ()
|
|
{
|
|
register struct mbuf *m;
|
|
register struct ifaddr *ifa;
|
|
register struct ifnet *ifp;
|
|
register int s;
|
|
|
|
for (;;) {
|
|
s = splimp ();
|
|
IF_DEQUEUE (&pkintrq, m);
|
|
splx (s);
|
|
if (m == 0)
|
|
break;
|
|
if (m -> m_len < PKHEADERLN) {
|
|
printf ("pkintr: packet too short (len=%d)\n",
|
|
m -> m_len);
|
|
m_freem (m);
|
|
continue;
|
|
}
|
|
pk_input (m);
|
|
}
|
|
}
|
|
struct mbuf *pk_bad_packet;
|
|
struct mbuf_cache pk_input_cache = {0 };
|
|
/*
|
|
* X.25 PACKET INPUT
|
|
*
|
|
* This procedure is called by a link level procedure whenever
|
|
* an information frame is received. It decodes the packet and
|
|
* demultiplexes based on the logical channel number.
|
|
*
|
|
* We change the original conventions of the UBC code here --
|
|
* since there may be multiple pkcb's for a given interface
|
|
* of type 802.2 class 2, we retrieve which one it is from
|
|
* m_pkthdr.rcvif (which has been overwritten by lower layers);
|
|
* That field is then restored for the benefit of upper layers which
|
|
* may make use of it, such as CLNP.
|
|
*
|
|
*/
|
|
|
|
#define RESTART_DTE_ORIGINATED(xp) (((xp) -> packet_cause == X25_RESTART_DTE_ORIGINATED) || \
|
|
((xp) -> packet_cause >= X25_RESTART_DTE_ORIGINATED2))
|
|
|
|
pk_input (m)
|
|
register struct mbuf *m;
|
|
{
|
|
register struct x25_packet *xp;
|
|
register struct pklcd *lcp;
|
|
register struct socket *so = 0;
|
|
register struct pkcb *pkp;
|
|
int ptype, lcn, lcdstate = LISTEN;
|
|
|
|
if (pk_input_cache.mbc_size || pk_input_cache.mbc_oldsize)
|
|
mbuf_cache (&pk_input_cache, m);
|
|
if ((m -> m_flags & M_PKTHDR) == 0)
|
|
panic ("pkintr");
|
|
|
|
if ((pkp = (struct pkcb *) m -> m_pkthdr.rcvif) == 0)
|
|
return;
|
|
xp = mtod (m, struct x25_packet *);
|
|
ptype = pk_decode (xp);
|
|
lcn = LCN(xp);
|
|
lcp = pkp -> pk_chan[lcn];
|
|
|
|
/*
|
|
* If the DTE is in Restart state, then it will ignore data,
|
|
* interrupt, call setup and clearing, flow control and reset
|
|
* packets.
|
|
*/
|
|
if (lcn < 0 || lcn > pkp -> pk_maxlcn) {
|
|
pk_message (lcn, pkp -> pk_xcp, "illegal lcn");
|
|
m_freem (m);
|
|
return;
|
|
}
|
|
|
|
pk_trace (pkp -> pk_xcp, m, "P-In");
|
|
|
|
if (pkp -> pk_state != DTE_READY && ptype != RESTART && ptype != RESTART_CONF) {
|
|
m_freem (m);
|
|
return;
|
|
}
|
|
if (lcp) {
|
|
so = lcp -> lcd_so;
|
|
lcdstate = lcp -> lcd_state;
|
|
} else {
|
|
if (ptype == CLEAR) { /* idle line probe (Datapac specific) */
|
|
/* send response on lcd 0's output queue */
|
|
lcp = pkp -> pk_chan[0];
|
|
lcp -> lcd_template = pk_template (lcn, X25_CLEAR_CONFIRM);
|
|
pk_output (lcp);
|
|
m_freem (m);
|
|
return;
|
|
}
|
|
if (ptype != CALL)
|
|
ptype = INVALID_PACKET;
|
|
}
|
|
|
|
if (lcn == 0 && ptype != RESTART && ptype != RESTART_CONF) {
|
|
pk_message (0, pkp -> pk_xcp, "illegal ptype (%d, %s) on lcn 0",
|
|
ptype, pk_name[ptype / MAXSTATES]);
|
|
if (pk_bad_packet)
|
|
m_freem (pk_bad_packet);
|
|
pk_bad_packet = m;
|
|
return;
|
|
}
|
|
|
|
m -> m_pkthdr.rcvif = pkp -> pk_ia -> ia_ifp;
|
|
|
|
switch (ptype + lcdstate) {
|
|
/*
|
|
* Incoming Call packet received.
|
|
*/
|
|
case CALL + LISTEN:
|
|
pk_incoming_call (pkp, m);
|
|
break;
|
|
|
|
/*
|
|
* Call collision: Just throw this "incoming call" away since
|
|
* the DCE will ignore it anyway.
|
|
*/
|
|
case CALL + SENT_CALL:
|
|
pk_message ((int) lcn, pkp -> pk_xcp,
|
|
"incoming call collision");
|
|
break;
|
|
|
|
/*
|
|
* Call confirmation packet received. This usually means our
|
|
* previous connect request is now complete.
|
|
*/
|
|
case CALL_ACCEPTED + SENT_CALL:
|
|
MCHTYPE(m, MT_CONTROL);
|
|
pk_call_accepted (lcp, m);
|
|
break;
|
|
|
|
/*
|
|
* This condition can only happen if the previous state was
|
|
* SENT_CALL. Just ignore the packet, eventually a clear
|
|
* confirmation should arrive.
|
|
*/
|
|
case CALL_ACCEPTED + SENT_CLEAR:
|
|
break;
|
|
|
|
/*
|
|
* Clear packet received. This requires a complete tear down
|
|
* of the virtual circuit. Free buffers and control blocks.
|
|
* and send a clear confirmation.
|
|
*/
|
|
case CLEAR + READY:
|
|
case CLEAR + RECEIVED_CALL:
|
|
case CLEAR + SENT_CALL:
|
|
case CLEAR + DATA_TRANSFER:
|
|
lcp -> lcd_state = RECEIVED_CLEAR;
|
|
lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_CLEAR_CONFIRM);
|
|
pk_output (lcp);
|
|
pk_clearcause (pkp, xp);
|
|
if (lcp -> lcd_upper) {
|
|
MCHTYPE(m, MT_CONTROL);
|
|
lcp -> lcd_upper (lcp, m);
|
|
}
|
|
pk_close (lcp);
|
|
lcp = 0;
|
|
break;
|
|
|
|
/*
|
|
* Clear collision: Treat this clear packet as a confirmation.
|
|
*/
|
|
case CLEAR + SENT_CLEAR:
|
|
pk_close (lcp);
|
|
break;
|
|
|
|
/*
|
|
* Clear confirmation received. This usually means the virtual
|
|
* circuit is now completely removed.
|
|
*/
|
|
case CLEAR_CONF + SENT_CLEAR:
|
|
pk_close (lcp);
|
|
break;
|
|
|
|
/*
|
|
* A clear confirmation on an unassigned logical channel - just
|
|
* ignore it. Note: All other packets on an unassigned channel
|
|
* results in a clear.
|
|
*/
|
|
case CLEAR_CONF + READY:
|
|
case CLEAR_CONF + LISTEN:
|
|
break;
|
|
|
|
/*
|
|
* Data packet received. Pass on to next level. Move the Q and M
|
|
* bits into the data portion for the next level.
|
|
*/
|
|
case DATA + DATA_TRANSFER:
|
|
if (lcp -> lcd_reset_condition) {
|
|
ptype = DELETE_PACKET;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Process the P(S) flow control information in this Data packet.
|
|
* Check that the packets arrive in the correct sequence and that
|
|
* they are within the "lcd_input_window". Input window rotation is
|
|
* initiated by the receive interface.
|
|
*/
|
|
|
|
if (PS(xp) != ((lcp -> lcd_rsn + 1) % MODULUS) ||
|
|
PS(xp) == ((lcp -> lcd_input_window + lcp -> lcd_windowsize) % MODULUS)) {
|
|
m_freem (m);
|
|
pk_procerror (RESET, lcp, "p(s) flow control error", 1);
|
|
break;
|
|
}
|
|
lcp -> lcd_rsn = PS(xp);
|
|
|
|
if (pk_ack (lcp, PR(xp)) != PACKET_OK) {
|
|
m_freem (m);
|
|
break;
|
|
}
|
|
m -> m_data += PKHEADERLN;
|
|
m -> m_len -= PKHEADERLN;
|
|
m -> m_pkthdr.len -= PKHEADERLN;
|
|
|
|
lcp -> lcd_rxcnt++;
|
|
if (lcp -> lcd_flags & X25_MBS_HOLD) {
|
|
register struct mbuf *n = lcp -> lcd_cps;
|
|
int mbit = MBIT(xp);
|
|
octet q_and_d_bits;
|
|
|
|
if (n) {
|
|
n -> m_pkthdr.len += m -> m_pkthdr.len;
|
|
while (n -> m_next)
|
|
n = n -> m_next;
|
|
n -> m_next = m;
|
|
m = lcp -> lcd_cps;
|
|
|
|
if (lcp -> lcd_cpsmax &&
|
|
n -> m_pkthdr.len > lcp -> lcd_cpsmax) {
|
|
pk_procerror (RESET, lcp,
|
|
"C.P.S. overflow", 128);
|
|
return;
|
|
}
|
|
q_and_d_bits = 0xc0 & *(octet *) xp;
|
|
xp = (struct x25_packet *)
|
|
(mtod (m, octet *) - PKHEADERLN);
|
|
*(octet *) xp |= q_and_d_bits;
|
|
}
|
|
if (mbit) {
|
|
lcp -> lcd_cps = m;
|
|
pk_flowcontrol (lcp, 0, 1);
|
|
return;
|
|
}
|
|
lcp -> lcd_cps = 0;
|
|
}
|
|
if (so == 0)
|
|
break;
|
|
if (lcp -> lcd_flags & X25_MQBIT) {
|
|
octet t = (X25GBITS(xp -> bits, q_bit)) ? t = 0x80 : 0;
|
|
|
|
if (MBIT(xp))
|
|
t |= 0x40;
|
|
m -> m_data -= 1;
|
|
m -> m_len += 1;
|
|
m -> m_pkthdr.len += 1;
|
|
*mtod (m, octet *) = t;
|
|
}
|
|
|
|
/*
|
|
* Discard Q-BIT packets if the application
|
|
* doesn't want to be informed of M and Q bit status
|
|
*/
|
|
if (X25GBITS(xp -> bits, q_bit)
|
|
&& (lcp -> lcd_flags & X25_MQBIT) == 0) {
|
|
m_freem (m);
|
|
/*
|
|
* NB. This is dangerous: sending a RR here can
|
|
* cause sequence number errors if a previous data
|
|
* packet has not yet been passed up to the application
|
|
* (RR's are normally generated via PRU_RCVD).
|
|
*/
|
|
pk_flowcontrol (lcp, 0, 1);
|
|
} else {
|
|
sbappendrecord (&so -> so_rcv, m);
|
|
sorwakeup (so);
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Interrupt packet received.
|
|
*/
|
|
case INTERRUPT + DATA_TRANSFER:
|
|
if (lcp -> lcd_reset_condition)
|
|
break;
|
|
lcp -> lcd_intrdata = xp -> packet_data;
|
|
lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_INTERRUPT_CONFIRM);
|
|
pk_output (lcp);
|
|
m -> m_data += PKHEADERLN;
|
|
m -> m_len -= PKHEADERLN;
|
|
m -> m_pkthdr.len -= PKHEADERLN;
|
|
MCHTYPE(m, MT_OOBDATA);
|
|
if (so) {
|
|
if (so -> so_options & SO_OOBINLINE)
|
|
sbinsertoob (&so -> so_rcv, m);
|
|
else
|
|
m_freem (m);
|
|
sohasoutofband (so);
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Interrupt confirmation packet received.
|
|
*/
|
|
case INTERRUPT_CONF + DATA_TRANSFER:
|
|
if (lcp -> lcd_reset_condition)
|
|
break;
|
|
if (lcp -> lcd_intrconf_pending == TRUE)
|
|
lcp -> lcd_intrconf_pending = FALSE;
|
|
else
|
|
pk_procerror (RESET, lcp, "unexpected packet", 43);
|
|
break;
|
|
|
|
/*
|
|
* Receiver ready received. Rotate the output window and output
|
|
* any data packets waiting transmission.
|
|
*/
|
|
case RR + DATA_TRANSFER:
|
|
if (lcp -> lcd_reset_condition ||
|
|
pk_ack (lcp, PR(xp)) != PACKET_OK) {
|
|
ptype = DELETE_PACKET;
|
|
break;
|
|
}
|
|
if (lcp -> lcd_rnr_condition == TRUE)
|
|
lcp -> lcd_rnr_condition = FALSE;
|
|
pk_output (lcp);
|
|
break;
|
|
|
|
/*
|
|
* Receiver Not Ready received. Packets up to the P(R) can be
|
|
* be sent. Condition is cleared with a RR.
|
|
*/
|
|
case RNR + DATA_TRANSFER:
|
|
if (lcp -> lcd_reset_condition ||
|
|
pk_ack (lcp, PR(xp)) != PACKET_OK) {
|
|
ptype = DELETE_PACKET;
|
|
break;
|
|
}
|
|
lcp -> lcd_rnr_condition = TRUE;
|
|
break;
|
|
|
|
/*
|
|
* Reset packet received. Set state to FLOW_OPEN. The Input and
|
|
* Output window edges ar set to zero. Both the send and receive
|
|
* numbers are reset. A confirmation is returned.
|
|
*/
|
|
case RESET + DATA_TRANSFER:
|
|
if (lcp -> lcd_reset_condition)
|
|
/* Reset collision. Just ignore packet. */
|
|
break;
|
|
|
|
pk_resetcause (pkp, xp);
|
|
lcp -> lcd_window_condition = lcp -> lcd_rnr_condition =
|
|
lcp -> lcd_intrconf_pending = FALSE;
|
|
lcp -> lcd_output_window = lcp -> lcd_input_window =
|
|
lcp -> lcd_last_transmitted_pr = 0;
|
|
lcp -> lcd_ssn = 0;
|
|
lcp -> lcd_rsn = MODULUS - 1;
|
|
|
|
lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_RESET_CONFIRM);
|
|
pk_output (lcp);
|
|
|
|
pk_flush (lcp);
|
|
if (so == 0)
|
|
break;
|
|
wakeup ((caddr_t) & so -> so_timeo);
|
|
sorwakeup (so);
|
|
sowwakeup (so);
|
|
break;
|
|
|
|
/*
|
|
* Reset confirmation received.
|
|
*/
|
|
case RESET_CONF + DATA_TRANSFER:
|
|
if (lcp -> lcd_reset_condition) {
|
|
lcp -> lcd_reset_condition = FALSE;
|
|
pk_output (lcp);
|
|
}
|
|
else
|
|
pk_procerror (RESET, lcp, "unexpected packet", 32);
|
|
break;
|
|
|
|
case DATA + SENT_CLEAR:
|
|
ptype = DELETE_PACKET;
|
|
case RR + SENT_CLEAR:
|
|
case RNR + SENT_CLEAR:
|
|
case INTERRUPT + SENT_CLEAR:
|
|
case INTERRUPT_CONF + SENT_CLEAR:
|
|
case RESET + SENT_CLEAR:
|
|
case RESET_CONF + SENT_CLEAR:
|
|
/* Just ignore p if we have sent a CLEAR already.
|
|
*/
|
|
break;
|
|
|
|
/*
|
|
* Restart sets all the permanent virtual circuits to the "Data
|
|
* Transfer" stae and all the switched virtual circuits to the
|
|
* "Ready" state.
|
|
*/
|
|
case RESTART + READY:
|
|
switch (pkp -> pk_state) {
|
|
case DTE_SENT_RESTART:
|
|
/*
|
|
* Restart collision.
|
|
* If case the restart cause is "DTE originated" we
|
|
* have a DTE-DTE situation and are trying to resolve
|
|
* who is going to play DTE/DCE [ISO 8208:4.2-4.5]
|
|
*/
|
|
if (RESTART_DTE_ORIGINATED(xp)) {
|
|
pk_restart (pkp, X25_RESTART_DTE_ORIGINATED);
|
|
pk_message (0, pkp -> pk_xcp,
|
|
"RESTART collision");
|
|
if ((pkp -> pk_restartcolls++) > MAXRESTARTCOLLISIONS) {
|
|
pk_message (0, pkp -> pk_xcp,
|
|
"excessive RESTART collisions");
|
|
pkp -> pk_restartcolls = 0;
|
|
}
|
|
break;
|
|
}
|
|
pkp -> pk_state = DTE_READY;
|
|
pkp -> pk_dxerole |= DTE_PLAYDTE;
|
|
pkp -> pk_dxerole &= ~DTE_PLAYDCE;
|
|
pk_message (0, pkp -> pk_xcp,
|
|
"Packet level operational");
|
|
pk_message (0, pkp -> pk_xcp,
|
|
"Assuming DTE role");
|
|
if (pkp -> pk_dxerole & DTE_CONNECTPENDING)
|
|
pk_callcomplete (pkp);
|
|
break;
|
|
|
|
default:
|
|
pk_restart (pkp, -1);
|
|
pk_restartcause (pkp, xp);
|
|
pkp -> pk_chan[0] -> lcd_template = pk_template (0,
|
|
X25_RESTART_CONFIRM);
|
|
pk_output (pkp -> pk_chan[0]);
|
|
pkp -> pk_state = DTE_READY;
|
|
pkp -> pk_dxerole |= RESTART_DTE_ORIGINATED(xp) ? DTE_PLAYDCE :
|
|
DTE_PLAYDTE;
|
|
if (pkp -> pk_dxerole & DTE_PLAYDTE) {
|
|
pkp -> pk_dxerole &= ~DTE_PLAYDCE;
|
|
pk_message (0, pkp -> pk_xcp,
|
|
"Assuming DTE role");
|
|
} else {
|
|
pkp -> pk_dxerole &= ~DTE_PLAYDTE;
|
|
pk_message (0, pkp -> pk_xcp,
|
|
"Assuming DCE role");
|
|
}
|
|
if (pkp -> pk_dxerole & DTE_CONNECTPENDING)
|
|
pk_callcomplete (pkp);
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Restart confirmation received. All logical channels are set
|
|
* to READY.
|
|
*/
|
|
case RESTART_CONF + READY:
|
|
switch (pkp -> pk_state) {
|
|
case DTE_SENT_RESTART:
|
|
pkp -> pk_state = DTE_READY;
|
|
pkp -> pk_dxerole |= DTE_PLAYDTE;
|
|
pkp -> pk_dxerole &= ~DTE_PLAYDCE;
|
|
pk_message (0, pkp -> pk_xcp,
|
|
"Packet level operational");
|
|
pk_message (0, pkp -> pk_xcp,
|
|
"Assuming DTE role");
|
|
if (pkp -> pk_dxerole & DTE_CONNECTPENDING)
|
|
pk_callcomplete (pkp);
|
|
break;
|
|
|
|
default:
|
|
/* Restart local procedure error. */
|
|
pk_restart (pkp, X25_RESTART_LOCAL_PROCEDURE_ERROR);
|
|
pkp -> pk_state = DTE_SENT_RESTART;
|
|
pkp -> pk_dxerole &= ~(DTE_PLAYDTE | DTE_PLAYDCE);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
if (lcp) {
|
|
pk_procerror (CLEAR, lcp, "unknown packet error", 33);
|
|
pk_message (lcn, pkp -> pk_xcp,
|
|
"\"%s\" unexpected in \"%s\" state",
|
|
pk_name[ptype/MAXSTATES], pk_state[lcdstate]);
|
|
} else
|
|
pk_message (lcn, pkp -> pk_xcp,
|
|
"packet arrived on unassigned lcn");
|
|
break;
|
|
}
|
|
if (so == 0 && lcp && lcp -> lcd_upper && lcdstate == DATA_TRANSFER) {
|
|
if (ptype != DATA && ptype != INTERRUPT)
|
|
MCHTYPE(m, MT_CONTROL);
|
|
lcp -> lcd_upper (lcp, m);
|
|
} else if (ptype != DATA && ptype != INTERRUPT)
|
|
m_freem (m);
|
|
}
|
|
|
|
static
|
|
prune_dnic (from, to, dnicname, xcp)
|
|
char *from, *to, *dnicname;
|
|
register struct x25config *xcp;
|
|
{
|
|
register char *cp1 = from, *cp2 = from;
|
|
if (xcp -> xc_prepnd0 && *cp1 == '0') {
|
|
from = ++cp1;
|
|
goto copyrest;
|
|
}
|
|
if (xcp -> xc_nodnic) {
|
|
for (cp1 = dnicname; *cp2 = *cp1++;)
|
|
cp2++;
|
|
cp1 = from;
|
|
}
|
|
copyrest:
|
|
for (cp1 = dnicname; *cp2 = *cp1++;)
|
|
cp2++;
|
|
}
|
|
/* static */
|
|
pk_simple_bsd (from, to, lower, len)
|
|
register octet *from, *to;
|
|
register len, lower;
|
|
{
|
|
register int c;
|
|
while (--len >= 0) {
|
|
c = *from;
|
|
if (lower & 0x01)
|
|
*from++;
|
|
else
|
|
c >>= 4;
|
|
c &= 0x0f; c |= 0x30; *to++ = c; lower++;
|
|
}
|
|
*to = 0;
|
|
}
|
|
|
|
/*static octet * */
|
|
pk_from_bcd (a, iscalling, sa, xcp)
|
|
register struct x25_calladdr *a;
|
|
register struct sockaddr_x25 *sa;
|
|
register struct x25config *xcp;
|
|
{
|
|
octet buf[MAXADDRLN+1];
|
|
octet *cp;
|
|
unsigned count;
|
|
|
|
bzero ((caddr_t) sa, sizeof (*sa));
|
|
sa -> x25_len = sizeof (*sa);
|
|
sa -> x25_family = AF_CCITT;
|
|
if (iscalling) {
|
|
cp = a -> address_field + (X25GBITS(a -> addrlens, called_addrlen) / 2);
|
|
count = X25GBITS(a -> addrlens, calling_addrlen);
|
|
pk_simple_bsd (cp, buf, X25GBITS(a -> addrlens, called_addrlen), count);
|
|
} else {
|
|
count = X25GBITS(a -> addrlens, called_addrlen);
|
|
pk_simple_bsd (a -> address_field, buf, 0, count);
|
|
}
|
|
if (xcp -> xc_addr.x25_net && (xcp -> xc_nodnic || xcp -> xc_prepnd0)) {
|
|
octet dnicname[sizeof (long) * NBBY/3 + 2];
|
|
|
|
sprintf ((char *) dnicname, "%d", xcp -> xc_addr.x25_net);
|
|
prune_dnic ((char *) buf, sa -> x25_addr, dnicname, xcp);
|
|
} else
|
|
bcopy ((caddr_t) buf, (caddr_t) sa -> x25_addr, count + 1);
|
|
}
|
|
|
|
static
|
|
save_extra (m0, fp, so)
|
|
struct mbuf *m0;
|
|
octet *fp;
|
|
struct socket *so;
|
|
{
|
|
register struct mbuf *m;
|
|
struct cmsghdr cmsghdr;
|
|
if (m = m_copy (m, 0, (int)M_COPYALL)) {
|
|
int off = fp - mtod (m0, octet *);
|
|
int len = m -> m_pkthdr.len - off + sizeof (cmsghdr);
|
|
cmsghdr.cmsg_len = len;
|
|
cmsghdr.cmsg_level = AF_CCITT;
|
|
cmsghdr.cmsg_type = PK_FACILITIES;
|
|
m_adj (m, off);
|
|
M_PREPEND (m, sizeof (cmsghdr), M_DONTWAIT);
|
|
if (m == 0)
|
|
return;
|
|
bcopy ((caddr_t)&cmsghdr, mtod (m, caddr_t), sizeof (cmsghdr));
|
|
MCHTYPE(m, MT_CONTROL);
|
|
sbappendrecord (&so -> so_rcv, m);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This routine handles incoming call packets. It matches the protocol
|
|
* field on the Call User Data field (usually the first four bytes) with
|
|
* sockets awaiting connections.
|
|
*/
|
|
|
|
pk_incoming_call (pkp, m0)
|
|
struct mbuf *m0;
|
|
struct pkcb *pkp;
|
|
{
|
|
register struct pklcd *lcp = 0, *l;
|
|
register struct sockaddr_x25 *sa;
|
|
register struct x25_calladdr *a;
|
|
register struct socket *so = 0;
|
|
struct x25_packet *xp = mtod (m0, struct x25_packet *);
|
|
struct mbuf *m;
|
|
struct x25config *xcp = pkp -> pk_xcp;
|
|
int len = m0 -> m_pkthdr.len;
|
|
unsigned udlen;
|
|
char *errstr = "server unavailable";
|
|
octet *u, *facp;
|
|
int lcn = LCN(xp);
|
|
|
|
/* First, copy the data from the incoming call packet to a X25 address
|
|
descriptor. It is to be regretted that you have
|
|
to parse the facilities into a sockaddr to determine
|
|
if reverse charging is being requested */
|
|
if ((m = m_get (M_DONTWAIT, MT_SONAME)) == 0)
|
|
return;
|
|
sa = mtod (m, struct sockaddr_x25 *);
|
|
a = (struct x25_calladdr *) &xp -> packet_data;
|
|
facp = u = (octet *) (a -> address_field +
|
|
((X25GBITS(a -> addrlens, called_addrlen) + X25GBITS(a -> addrlens, calling_addrlen) + 1) / 2));
|
|
u += *u + 1;
|
|
udlen = min (16, ((octet *) xp) + len - u);
|
|
if (udlen < 0)
|
|
udlen = 0;
|
|
pk_from_bcd (a, 1, sa, pkp -> pk_xcp); /* get calling address */
|
|
pk_parse_facilities (facp, sa);
|
|
bcopy ((caddr_t) u, sa -> x25_udata, udlen);
|
|
sa -> x25_udlen = udlen;
|
|
|
|
/*
|
|
* Now, loop through the listen sockets looking for a match on the
|
|
* PID. That is the first few octets of the user data field.
|
|
* This is the closest thing to a port number for X.25 packets.
|
|
* It does provide a way of multiplexing services at the user level.
|
|
*/
|
|
|
|
for (l = pk_listenhead; l; l = l -> lcd_listen) {
|
|
struct sockaddr_x25 *sxp = l -> lcd_ceaddr;
|
|
|
|
if (bcmp (sxp -> x25_udata, u, sxp -> x25_udlen))
|
|
continue;
|
|
if (sxp -> x25_net &&
|
|
sxp -> x25_net != xcp -> xc_addr.x25_net)
|
|
continue;
|
|
/*
|
|
* don't accept incoming calls with the D-Bit on
|
|
* unless the server agrees
|
|
*/
|
|
if (X25GBITS(xp -> bits, d_bit) && !(sxp -> x25_opts.op_flags & X25_DBIT)) {
|
|
errstr = "incoming D-Bit mismatch";
|
|
break;
|
|
}
|
|
/*
|
|
* don't accept incoming collect calls unless
|
|
* the server sets the reverse charging option.
|
|
*/
|
|
if ((sxp -> x25_opts.op_flags & (X25_OLDSOCKADDR|X25_REVERSE_CHARGE)) == 0 &&
|
|
sa -> x25_opts.op_flags & X25_REVERSE_CHARGE) {
|
|
errstr = "incoming collect call refused";
|
|
break;
|
|
}
|
|
if (l -> lcd_so) {
|
|
if (so = sonewconn (l -> lcd_so, SS_ISCONNECTED))
|
|
lcp = (struct pklcd *) so -> so_pcb;
|
|
} else
|
|
lcp = pk_attach ((struct socket *) 0);
|
|
if (lcp == 0) {
|
|
/*
|
|
* Insufficient space or too many unaccepted
|
|
* connections. Just throw the call away.
|
|
*/
|
|
errstr = "server malfunction";
|
|
break;
|
|
}
|
|
lcp -> lcd_upper = l -> lcd_upper;
|
|
lcp -> lcd_upnext = l -> lcd_upnext;
|
|
lcp -> lcd_lcn = lcn;
|
|
lcp -> lcd_state = RECEIVED_CALL;
|
|
sa -> x25_opts.op_flags |= (sxp -> x25_opts.op_flags &
|
|
~X25_REVERSE_CHARGE) | l -> lcd_flags;
|
|
pk_assoc (pkp, lcp, sa);
|
|
lcp -> lcd_faddr = *sa;
|
|
lcp -> lcd_laddr.x25_udlen = sxp -> x25_udlen;
|
|
lcp -> lcd_craddr = &lcp -> lcd_faddr;
|
|
lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_CALL_ACCEPTED);
|
|
if (lcp -> lcd_flags & X25_DBIT) {
|
|
if (X25GBITS(xp -> bits, d_bit))
|
|
X25SBITS(mtod (lcp -> lcd_template,
|
|
struct x25_packet *) -> bits, d_bit, 1);
|
|
else
|
|
lcp -> lcd_flags &= ~X25_DBIT;
|
|
}
|
|
if (so) {
|
|
pk_output (lcp);
|
|
soisconnected (so);
|
|
if (so -> so_options & SO_OOBINLINE)
|
|
save_extra (m0, facp, so);
|
|
} else if (lcp -> lcd_upper) {
|
|
(*lcp -> lcd_upper) (lcp, m0);
|
|
}
|
|
(void) m_free (m);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the call fails for whatever reason, we still need to build a
|
|
* skeleton LCD in order to be able to properly receive the CLEAR
|
|
* CONFIRMATION.
|
|
*/
|
|
#ifdef WATERLOO /* be explicit */
|
|
if (l == 0 && bcmp (sa -> x25_udata, "ean", 3) == 0)
|
|
pk_message (lcn, pkp -> pk_xcp, "host=%s ean%c: %s",
|
|
sa -> x25_addr, sa -> x25_udata[3] & 0xff, errstr);
|
|
else if (l == 0 && bcmp (sa -> x25_udata, "\1\0\0\0", 4) == 0)
|
|
pk_message (lcn, pkp -> pk_xcp, "host=%s x29d: %s",
|
|
sa -> x25_addr, errstr);
|
|
else
|
|
#endif
|
|
pk_message (lcn, pkp -> pk_xcp, "host=%s pid=%x %x %x %x: %s",
|
|
sa -> x25_addr, sa -> x25_udata[0] & 0xff,
|
|
sa -> x25_udata[1] & 0xff, sa -> x25_udata[2] & 0xff,
|
|
sa -> x25_udata[3] & 0xff, errstr);
|
|
if ((lcp = pk_attach ((struct socket *)0)) == 0) {
|
|
(void) m_free (m);
|
|
return;
|
|
}
|
|
lcp -> lcd_lcn = lcn;
|
|
lcp -> lcd_state = RECEIVED_CALL;
|
|
pk_assoc (pkp, lcp, sa);
|
|
(void) m_free (m);
|
|
pk_clear (lcp, 0, 1);
|
|
}
|
|
|
|
pk_call_accepted (lcp, m)
|
|
struct pklcd *lcp;
|
|
struct mbuf *m;
|
|
{
|
|
register struct x25_calladdr *ap;
|
|
register octet *fcp;
|
|
struct x25_packet *xp = mtod (m, struct x25_packet *);
|
|
int len = m -> m_len;
|
|
|
|
lcp -> lcd_state = DATA_TRANSFER;
|
|
if (lcp -> lcd_so)
|
|
soisconnected (lcp -> lcd_so);
|
|
if ((lcp -> lcd_flags & X25_DBIT) && (X25GBITS(xp -> bits, d_bit) == 0))
|
|
lcp -> lcd_flags &= ~X25_DBIT;
|
|
if (len > 3) {
|
|
ap = (struct x25_calladdr *) &xp -> packet_data;
|
|
fcp = (octet *) ap -> address_field + (X25GBITS(ap -> addrlens, calling_addrlen) +
|
|
X25GBITS(ap -> addrlens, called_addrlen) + 1) / 2;
|
|
if (fcp + *fcp <= ((octet *) xp) + len)
|
|
pk_parse_facilities (fcp, lcp -> lcd_ceaddr);
|
|
}
|
|
pk_assoc (lcp -> lcd_pkp, lcp, lcp -> lcd_ceaddr);
|
|
if (lcp -> lcd_so == 0 && lcp -> lcd_upper)
|
|
lcp -> lcd_upper (lcp, m);
|
|
}
|
|
|
|
pk_parse_facilities (fcp, sa)
|
|
register octet *fcp;
|
|
register struct sockaddr_x25 *sa;
|
|
{
|
|
register octet *maxfcp;
|
|
|
|
maxfcp = fcp + *fcp;
|
|
fcp++;
|
|
while (fcp < maxfcp) {
|
|
/*
|
|
* Ignore national DCE or DTE facilities
|
|
*/
|
|
if (*fcp == 0 || *fcp == 0xff)
|
|
break;
|
|
switch (*fcp) {
|
|
case FACILITIES_WINDOWSIZE:
|
|
sa -> x25_opts.op_wsize = fcp[1];
|
|
fcp += 3;
|
|
break;
|
|
|
|
case FACILITIES_PACKETSIZE:
|
|
sa -> x25_opts.op_psize = fcp[1];
|
|
fcp += 3;
|
|
break;
|
|
|
|
case FACILITIES_THROUGHPUT:
|
|
sa -> x25_opts.op_speed = fcp[1];
|
|
fcp += 2;
|
|
break;
|
|
|
|
case FACILITIES_REVERSE_CHARGE:
|
|
if (fcp[1] & 01)
|
|
sa -> x25_opts.op_flags |= X25_REVERSE_CHARGE;
|
|
/*
|
|
* Datapac specific: for a X.25(1976) DTE, bit 2
|
|
* indicates a "hi priority" (eg. international) call.
|
|
*/
|
|
if (fcp[1] & 02 && sa -> x25_opts.op_psize == 0)
|
|
sa -> x25_opts.op_psize = X25_PS128;
|
|
fcp += 2;
|
|
break;
|
|
|
|
default:
|
|
/*printf("unknown facility %x, class=%d\n", *fcp, (*fcp & 0xc0) >> 6);*/
|
|
switch ((*fcp & 0xc0) >> 6) {
|
|
case 0: /* class A */
|
|
fcp += 2;
|
|
break;
|
|
|
|
case 1:
|
|
fcp += 3;
|
|
break;
|
|
|
|
case 2:
|
|
fcp += 4;
|
|
break;
|
|
|
|
case 3:
|
|
fcp++;
|
|
fcp += *fcp;
|
|
}
|
|
}
|
|
}
|
|
}
|