mirror of
https://github.com/freebsd/freebsd-src.git
synced 2024-11-30 08:43:23 +00:00
dd744a896b
Changelog: https://git.tcpdump.org/libpcap/blob/104271ba4a14de6743e43bcf87536786d8fddea4:/CHANGES Reviewed by: emaste Obtained from: https://www.tcpdump.org/release/libpcap-1.10.4.tar.gz Sponsored by: The FreeBSD Foundation
3100 lines
75 KiB
C
3100 lines
75 KiB
C
/*
|
|
* Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that: (1) source code distributions
|
|
* retain the above copyright notice and this paragraph in its entirety, (2)
|
|
* distributions including binary code include the above copyright notice and
|
|
* this paragraph in its entirety in the documentation or other materials
|
|
* provided with the distribution, and (3) all advertising materials mentioning
|
|
* features or use of this software display the following acknowledgement:
|
|
* ``This product includes software developed by the University of California,
|
|
* Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
|
|
* the University nor the names of its contributors may be used to endorse
|
|
* or promote products derived from this software without specific prior
|
|
* written permission.
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
*
|
|
* Optimization module for BPF code intermediate representation.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include <pcap-types.h>
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <memory.h>
|
|
#include <setjmp.h>
|
|
#include <string.h>
|
|
#include <limits.h> /* for SIZE_MAX */
|
|
#include <errno.h>
|
|
|
|
#include "pcap-int.h"
|
|
|
|
#include "gencode.h"
|
|
#include "optimize.h"
|
|
#include "diag-control.h"
|
|
|
|
#ifdef HAVE_OS_PROTO_H
|
|
#include "os-proto.h"
|
|
#endif
|
|
|
|
#ifdef BDEBUG
|
|
/*
|
|
* The internal "debug printout" flag for the filter expression optimizer.
|
|
* The code to print that stuff is present only if BDEBUG is defined, so
|
|
* the flag, and the routine to set it, are defined only if BDEBUG is
|
|
* defined.
|
|
*/
|
|
static int pcap_optimizer_debug;
|
|
|
|
/*
|
|
* Routine to set that flag.
|
|
*
|
|
* This is intended for libpcap developers, not for general use.
|
|
* If you want to set these in a program, you'll have to declare this
|
|
* routine yourself, with the appropriate DLL import attribute on Windows;
|
|
* it's not declared in any header file, and won't be declared in any
|
|
* header file provided by libpcap.
|
|
*/
|
|
PCAP_API void pcap_set_optimizer_debug(int value);
|
|
|
|
PCAP_API_DEF void
|
|
pcap_set_optimizer_debug(int value)
|
|
{
|
|
pcap_optimizer_debug = value;
|
|
}
|
|
|
|
/*
|
|
* The internal "print dot graph" flag for the filter expression optimizer.
|
|
* The code to print that stuff is present only if BDEBUG is defined, so
|
|
* the flag, and the routine to set it, are defined only if BDEBUG is
|
|
* defined.
|
|
*/
|
|
static int pcap_print_dot_graph;
|
|
|
|
/*
|
|
* Routine to set that flag.
|
|
*
|
|
* This is intended for libpcap developers, not for general use.
|
|
* If you want to set these in a program, you'll have to declare this
|
|
* routine yourself, with the appropriate DLL import attribute on Windows;
|
|
* it's not declared in any header file, and won't be declared in any
|
|
* header file provided by libpcap.
|
|
*/
|
|
PCAP_API void pcap_set_print_dot_graph(int value);
|
|
|
|
PCAP_API_DEF void
|
|
pcap_set_print_dot_graph(int value)
|
|
{
|
|
pcap_print_dot_graph = value;
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* lowest_set_bit().
|
|
*
|
|
* Takes a 32-bit integer as an argument.
|
|
*
|
|
* If handed a non-zero value, returns the index of the lowest set bit,
|
|
* counting upwards from zero.
|
|
*
|
|
* If handed zero, the results are platform- and compiler-dependent.
|
|
* Keep it out of the light, don't give it any water, don't feed it
|
|
* after midnight, and don't pass zero to it.
|
|
*
|
|
* This is the same as the count of trailing zeroes in the word.
|
|
*/
|
|
#if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
|
|
/*
|
|
* GCC 3.4 and later; we have __builtin_ctz().
|
|
*/
|
|
#define lowest_set_bit(mask) ((u_int)__builtin_ctz(mask))
|
|
#elif defined(_MSC_VER)
|
|
/*
|
|
* Visual Studio; we support only 2005 and later, so use
|
|
* _BitScanForward().
|
|
*/
|
|
#include <intrin.h>
|
|
|
|
#ifndef __clang__
|
|
#pragma intrinsic(_BitScanForward)
|
|
#endif
|
|
|
|
static __forceinline u_int
|
|
lowest_set_bit(int mask)
|
|
{
|
|
unsigned long bit;
|
|
|
|
/*
|
|
* Don't sign-extend mask if long is longer than int.
|
|
* (It's currently not, in MSVC, even on 64-bit platforms, but....)
|
|
*/
|
|
if (_BitScanForward(&bit, (unsigned int)mask) == 0)
|
|
abort(); /* mask is zero */
|
|
return (u_int)bit;
|
|
}
|
|
#elif defined(MSDOS) && defined(__DJGPP__)
|
|
/*
|
|
* MS-DOS with DJGPP, which declares ffs() in <string.h>, which
|
|
* we've already included.
|
|
*/
|
|
#define lowest_set_bit(mask) ((u_int)(ffs((mask)) - 1))
|
|
#elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
|
|
/*
|
|
* MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
|
|
* or some other platform (UN*X conforming to a sufficient recent version
|
|
* of the Single UNIX Specification).
|
|
*/
|
|
#include <strings.h>
|
|
#define lowest_set_bit(mask) (u_int)((ffs((mask)) - 1))
|
|
#else
|
|
/*
|
|
* None of the above.
|
|
* Use a perfect-hash-function-based function.
|
|
*/
|
|
static u_int
|
|
lowest_set_bit(int mask)
|
|
{
|
|
unsigned int v = (unsigned int)mask;
|
|
|
|
static const u_int MultiplyDeBruijnBitPosition[32] = {
|
|
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
|
|
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
|
|
};
|
|
|
|
/*
|
|
* We strip off all but the lowermost set bit (v & ~v),
|
|
* and perform a minimal perfect hash on it to look up the
|
|
* number of low-order zero bits in a table.
|
|
*
|
|
* See:
|
|
*
|
|
* http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
|
|
*
|
|
* http://supertech.csail.mit.edu/papers/debruijn.pdf
|
|
*/
|
|
return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Represents a deleted instruction.
|
|
*/
|
|
#define NOP -1
|
|
|
|
/*
|
|
* Register numbers for use-def values.
|
|
* 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
|
|
* location. A_ATOM is the accumulator and X_ATOM is the index
|
|
* register.
|
|
*/
|
|
#define A_ATOM BPF_MEMWORDS
|
|
#define X_ATOM (BPF_MEMWORDS+1)
|
|
|
|
/*
|
|
* This define is used to represent *both* the accumulator and
|
|
* x register in use-def computations.
|
|
* Currently, the use-def code assumes only one definition per instruction.
|
|
*/
|
|
#define AX_ATOM N_ATOMS
|
|
|
|
/*
|
|
* These data structures are used in a Cocke and Shwarz style
|
|
* value numbering scheme. Since the flowgraph is acyclic,
|
|
* exit values can be propagated from a node's predecessors
|
|
* provided it is uniquely defined.
|
|
*/
|
|
struct valnode {
|
|
int code;
|
|
bpf_u_int32 v0, v1;
|
|
int val; /* the value number */
|
|
struct valnode *next;
|
|
};
|
|
|
|
/* Integer constants mapped with the load immediate opcode. */
|
|
#define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0U)
|
|
|
|
struct vmapinfo {
|
|
int is_const;
|
|
bpf_u_int32 const_val;
|
|
};
|
|
|
|
typedef struct {
|
|
/*
|
|
* Place to longjmp to on an error.
|
|
*/
|
|
jmp_buf top_ctx;
|
|
|
|
/*
|
|
* The buffer into which to put error message.
|
|
*/
|
|
char *errbuf;
|
|
|
|
/*
|
|
* A flag to indicate that further optimization is needed.
|
|
* Iterative passes are continued until a given pass yields no
|
|
* code simplification or branch movement.
|
|
*/
|
|
int done;
|
|
|
|
/*
|
|
* XXX - detect loops that do nothing but repeated AND/OR pullups
|
|
* and edge moves.
|
|
* If 100 passes in a row do nothing but that, treat that as a
|
|
* sign that we're in a loop that just shuffles in a cycle in
|
|
* which each pass just shuffles the code and we eventually
|
|
* get back to the original configuration.
|
|
*
|
|
* XXX - we need a non-heuristic way of detecting, or preventing,
|
|
* such a cycle.
|
|
*/
|
|
int non_branch_movement_performed;
|
|
|
|
u_int n_blocks; /* number of blocks in the CFG; guaranteed to be > 0, as it's a RET instruction at a minimum */
|
|
struct block **blocks;
|
|
u_int n_edges; /* twice n_blocks, so guaranteed to be > 0 */
|
|
struct edge **edges;
|
|
|
|
/*
|
|
* A bit vector set representation of the dominators.
|
|
* We round up the set size to the next power of two.
|
|
*/
|
|
u_int nodewords; /* number of 32-bit words for a bit vector of "number of nodes" bits; guaranteed to be > 0 */
|
|
u_int edgewords; /* number of 32-bit words for a bit vector of "number of edges" bits; guaranteed to be > 0 */
|
|
struct block **levels;
|
|
bpf_u_int32 *space;
|
|
|
|
#define BITS_PER_WORD (8*sizeof(bpf_u_int32))
|
|
/*
|
|
* True if a is in uset {p}
|
|
*/
|
|
#define SET_MEMBER(p, a) \
|
|
((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
|
|
|
|
/*
|
|
* Add 'a' to uset p.
|
|
*/
|
|
#define SET_INSERT(p, a) \
|
|
(p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
|
|
|
|
/*
|
|
* Delete 'a' from uset p.
|
|
*/
|
|
#define SET_DELETE(p, a) \
|
|
(p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
|
|
|
|
/*
|
|
* a := a intersect b
|
|
* n must be guaranteed to be > 0
|
|
*/
|
|
#define SET_INTERSECT(a, b, n)\
|
|
{\
|
|
register bpf_u_int32 *_x = a, *_y = b;\
|
|
register u_int _n = n;\
|
|
do *_x++ &= *_y++; while (--_n != 0);\
|
|
}
|
|
|
|
/*
|
|
* a := a - b
|
|
* n must be guaranteed to be > 0
|
|
*/
|
|
#define SET_SUBTRACT(a, b, n)\
|
|
{\
|
|
register bpf_u_int32 *_x = a, *_y = b;\
|
|
register u_int _n = n;\
|
|
do *_x++ &=~ *_y++; while (--_n != 0);\
|
|
}
|
|
|
|
/*
|
|
* a := a union b
|
|
* n must be guaranteed to be > 0
|
|
*/
|
|
#define SET_UNION(a, b, n)\
|
|
{\
|
|
register bpf_u_int32 *_x = a, *_y = b;\
|
|
register u_int _n = n;\
|
|
do *_x++ |= *_y++; while (--_n != 0);\
|
|
}
|
|
|
|
uset all_dom_sets;
|
|
uset all_closure_sets;
|
|
uset all_edge_sets;
|
|
|
|
#define MODULUS 213
|
|
struct valnode *hashtbl[MODULUS];
|
|
bpf_u_int32 curval;
|
|
bpf_u_int32 maxval;
|
|
|
|
struct vmapinfo *vmap;
|
|
struct valnode *vnode_base;
|
|
struct valnode *next_vnode;
|
|
} opt_state_t;
|
|
|
|
typedef struct {
|
|
/*
|
|
* Place to longjmp to on an error.
|
|
*/
|
|
jmp_buf top_ctx;
|
|
|
|
/*
|
|
* The buffer into which to put error message.
|
|
*/
|
|
char *errbuf;
|
|
|
|
/*
|
|
* Some pointers used to convert the basic block form of the code,
|
|
* into the array form that BPF requires. 'fstart' will point to
|
|
* the malloc'd array while 'ftail' is used during the recursive
|
|
* traversal.
|
|
*/
|
|
struct bpf_insn *fstart;
|
|
struct bpf_insn *ftail;
|
|
} conv_state_t;
|
|
|
|
static void opt_init(opt_state_t *, struct icode *);
|
|
static void opt_cleanup(opt_state_t *);
|
|
static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...)
|
|
PCAP_PRINTFLIKE(2, 3);
|
|
|
|
static void intern_blocks(opt_state_t *, struct icode *);
|
|
|
|
static void find_inedges(opt_state_t *, struct block *);
|
|
#ifdef BDEBUG
|
|
static void opt_dump(opt_state_t *, struct icode *);
|
|
#endif
|
|
|
|
#ifndef MAX
|
|
#define MAX(a,b) ((a)>(b)?(a):(b))
|
|
#endif
|
|
|
|
static void
|
|
find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
|
|
{
|
|
int level;
|
|
|
|
if (isMarked(ic, b))
|
|
return;
|
|
|
|
Mark(ic, b);
|
|
b->link = 0;
|
|
|
|
if (JT(b)) {
|
|
find_levels_r(opt_state, ic, JT(b));
|
|
find_levels_r(opt_state, ic, JF(b));
|
|
level = MAX(JT(b)->level, JF(b)->level) + 1;
|
|
} else
|
|
level = 0;
|
|
b->level = level;
|
|
b->link = opt_state->levels[level];
|
|
opt_state->levels[level] = b;
|
|
}
|
|
|
|
/*
|
|
* Level graph. The levels go from 0 at the leaves to
|
|
* N_LEVELS at the root. The opt_state->levels[] array points to the
|
|
* first node of the level list, whose elements are linked
|
|
* with the 'link' field of the struct block.
|
|
*/
|
|
static void
|
|
find_levels(opt_state_t *opt_state, struct icode *ic)
|
|
{
|
|
memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
|
|
unMarkAll(ic);
|
|
find_levels_r(opt_state, ic, ic->root);
|
|
}
|
|
|
|
/*
|
|
* Find dominator relationships.
|
|
* Assumes graph has been leveled.
|
|
*/
|
|
static void
|
|
find_dom(opt_state_t *opt_state, struct block *root)
|
|
{
|
|
u_int i;
|
|
int level;
|
|
struct block *b;
|
|
bpf_u_int32 *x;
|
|
|
|
/*
|
|
* Initialize sets to contain all nodes.
|
|
*/
|
|
x = opt_state->all_dom_sets;
|
|
/*
|
|
* In opt_init(), we've made sure the product doesn't overflow.
|
|
*/
|
|
i = opt_state->n_blocks * opt_state->nodewords;
|
|
while (i != 0) {
|
|
--i;
|
|
*x++ = 0xFFFFFFFFU;
|
|
}
|
|
/* Root starts off empty. */
|
|
for (i = opt_state->nodewords; i != 0;) {
|
|
--i;
|
|
root->dom[i] = 0;
|
|
}
|
|
|
|
/* root->level is the highest level no found. */
|
|
for (level = root->level; level >= 0; --level) {
|
|
for (b = opt_state->levels[level]; b; b = b->link) {
|
|
SET_INSERT(b->dom, b->id);
|
|
if (JT(b) == 0)
|
|
continue;
|
|
SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
|
|
SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
propedom(opt_state_t *opt_state, struct edge *ep)
|
|
{
|
|
SET_INSERT(ep->edom, ep->id);
|
|
if (ep->succ) {
|
|
SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
|
|
SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute edge dominators.
|
|
* Assumes graph has been leveled and predecessors established.
|
|
*/
|
|
static void
|
|
find_edom(opt_state_t *opt_state, struct block *root)
|
|
{
|
|
u_int i;
|
|
uset x;
|
|
int level;
|
|
struct block *b;
|
|
|
|
x = opt_state->all_edge_sets;
|
|
/*
|
|
* In opt_init(), we've made sure the product doesn't overflow.
|
|
*/
|
|
for (i = opt_state->n_edges * opt_state->edgewords; i != 0; ) {
|
|
--i;
|
|
x[i] = 0xFFFFFFFFU;
|
|
}
|
|
|
|
/* root->level is the highest level no found. */
|
|
memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
|
|
memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
|
|
for (level = root->level; level >= 0; --level) {
|
|
for (b = opt_state->levels[level]; b != 0; b = b->link) {
|
|
propedom(opt_state, &b->et);
|
|
propedom(opt_state, &b->ef);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find the backwards transitive closure of the flow graph. These sets
|
|
* are backwards in the sense that we find the set of nodes that reach
|
|
* a given node, not the set of nodes that can be reached by a node.
|
|
*
|
|
* Assumes graph has been leveled.
|
|
*/
|
|
static void
|
|
find_closure(opt_state_t *opt_state, struct block *root)
|
|
{
|
|
int level;
|
|
struct block *b;
|
|
|
|
/*
|
|
* Initialize sets to contain no nodes.
|
|
*/
|
|
memset((char *)opt_state->all_closure_sets, 0,
|
|
opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));
|
|
|
|
/* root->level is the highest level no found. */
|
|
for (level = root->level; level >= 0; --level) {
|
|
for (b = opt_state->levels[level]; b; b = b->link) {
|
|
SET_INSERT(b->closure, b->id);
|
|
if (JT(b) == 0)
|
|
continue;
|
|
SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
|
|
SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return the register number that is used by s.
|
|
*
|
|
* Returns ATOM_A if A is used, ATOM_X if X is used, AX_ATOM if both A and X
|
|
* are used, the scratch memory location's number if a scratch memory
|
|
* location is used (e.g., 0 for M[0]), or -1 if none of those are used.
|
|
*
|
|
* The implementation should probably change to an array access.
|
|
*/
|
|
static int
|
|
atomuse(struct stmt *s)
|
|
{
|
|
register int c = s->code;
|
|
|
|
if (c == NOP)
|
|
return -1;
|
|
|
|
switch (BPF_CLASS(c)) {
|
|
|
|
case BPF_RET:
|
|
return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
|
|
(BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
|
|
|
|
case BPF_LD:
|
|
case BPF_LDX:
|
|
/*
|
|
* As there are fewer than 2^31 memory locations,
|
|
* s->k should be convertible to int without problems.
|
|
*/
|
|
return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
|
|
(BPF_MODE(c) == BPF_MEM) ? (int)s->k : -1;
|
|
|
|
case BPF_ST:
|
|
return A_ATOM;
|
|
|
|
case BPF_STX:
|
|
return X_ATOM;
|
|
|
|
case BPF_JMP:
|
|
case BPF_ALU:
|
|
if (BPF_SRC(c) == BPF_X)
|
|
return AX_ATOM;
|
|
return A_ATOM;
|
|
|
|
case BPF_MISC:
|
|
return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
|
|
}
|
|
abort();
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Return the register number that is defined by 's'. We assume that
|
|
* a single stmt cannot define more than one register. If no register
|
|
* is defined, return -1.
|
|
*
|
|
* The implementation should probably change to an array access.
|
|
*/
|
|
static int
|
|
atomdef(struct stmt *s)
|
|
{
|
|
if (s->code == NOP)
|
|
return -1;
|
|
|
|
switch (BPF_CLASS(s->code)) {
|
|
|
|
case BPF_LD:
|
|
case BPF_ALU:
|
|
return A_ATOM;
|
|
|
|
case BPF_LDX:
|
|
return X_ATOM;
|
|
|
|
case BPF_ST:
|
|
case BPF_STX:
|
|
return s->k;
|
|
|
|
case BPF_MISC:
|
|
return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Compute the sets of registers used, defined, and killed by 'b'.
|
|
*
|
|
* "Used" means that a statement in 'b' uses the register before any
|
|
* statement in 'b' defines it, i.e. it uses the value left in
|
|
* that register by a predecessor block of this block.
|
|
* "Defined" means that a statement in 'b' defines it.
|
|
* "Killed" means that a statement in 'b' defines it before any
|
|
* statement in 'b' uses it, i.e. it kills the value left in that
|
|
* register by a predecessor block of this block.
|
|
*/
|
|
static void
|
|
compute_local_ud(struct block *b)
|
|
{
|
|
struct slist *s;
|
|
atomset def = 0, use = 0, killed = 0;
|
|
int atom;
|
|
|
|
for (s = b->stmts; s; s = s->next) {
|
|
if (s->s.code == NOP)
|
|
continue;
|
|
atom = atomuse(&s->s);
|
|
if (atom >= 0) {
|
|
if (atom == AX_ATOM) {
|
|
if (!ATOMELEM(def, X_ATOM))
|
|
use |= ATOMMASK(X_ATOM);
|
|
if (!ATOMELEM(def, A_ATOM))
|
|
use |= ATOMMASK(A_ATOM);
|
|
}
|
|
else if (atom < N_ATOMS) {
|
|
if (!ATOMELEM(def, atom))
|
|
use |= ATOMMASK(atom);
|
|
}
|
|
else
|
|
abort();
|
|
}
|
|
atom = atomdef(&s->s);
|
|
if (atom >= 0) {
|
|
if (!ATOMELEM(use, atom))
|
|
killed |= ATOMMASK(atom);
|
|
def |= ATOMMASK(atom);
|
|
}
|
|
}
|
|
if (BPF_CLASS(b->s.code) == BPF_JMP) {
|
|
/*
|
|
* XXX - what about RET?
|
|
*/
|
|
atom = atomuse(&b->s);
|
|
if (atom >= 0) {
|
|
if (atom == AX_ATOM) {
|
|
if (!ATOMELEM(def, X_ATOM))
|
|
use |= ATOMMASK(X_ATOM);
|
|
if (!ATOMELEM(def, A_ATOM))
|
|
use |= ATOMMASK(A_ATOM);
|
|
}
|
|
else if (atom < N_ATOMS) {
|
|
if (!ATOMELEM(def, atom))
|
|
use |= ATOMMASK(atom);
|
|
}
|
|
else
|
|
abort();
|
|
}
|
|
}
|
|
|
|
b->def = def;
|
|
b->kill = killed;
|
|
b->in_use = use;
|
|
}
|
|
|
|
/*
|
|
* Assume graph is already leveled.
|
|
*/
|
|
static void
|
|
find_ud(opt_state_t *opt_state, struct block *root)
|
|
{
|
|
int i, maxlevel;
|
|
struct block *p;
|
|
|
|
/*
|
|
* root->level is the highest level no found;
|
|
* count down from there.
|
|
*/
|
|
maxlevel = root->level;
|
|
for (i = maxlevel; i >= 0; --i)
|
|
for (p = opt_state->levels[i]; p; p = p->link) {
|
|
compute_local_ud(p);
|
|
p->out_use = 0;
|
|
}
|
|
|
|
for (i = 1; i <= maxlevel; ++i) {
|
|
for (p = opt_state->levels[i]; p; p = p->link) {
|
|
p->out_use |= JT(p)->in_use | JF(p)->in_use;
|
|
p->in_use |= p->out_use &~ p->kill;
|
|
}
|
|
}
|
|
}
|
|
static void
|
|
init_val(opt_state_t *opt_state)
|
|
{
|
|
opt_state->curval = 0;
|
|
opt_state->next_vnode = opt_state->vnode_base;
|
|
memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
|
|
memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
|
|
}
|
|
|
|
/*
|
|
* Because we really don't have an IR, this stuff is a little messy.
|
|
*
|
|
* This routine looks in the table of existing value number for a value
|
|
* with generated from an operation with the specified opcode and
|
|
* the specified values. If it finds it, it returns its value number,
|
|
* otherwise it makes a new entry in the table and returns the
|
|
* value number of that entry.
|
|
*/
|
|
static bpf_u_int32
|
|
F(opt_state_t *opt_state, int code, bpf_u_int32 v0, bpf_u_int32 v1)
|
|
{
|
|
u_int hash;
|
|
bpf_u_int32 val;
|
|
struct valnode *p;
|
|
|
|
hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
|
|
hash %= MODULUS;
|
|
|
|
for (p = opt_state->hashtbl[hash]; p; p = p->next)
|
|
if (p->code == code && p->v0 == v0 && p->v1 == v1)
|
|
return p->val;
|
|
|
|
/*
|
|
* Not found. Allocate a new value, and assign it a new
|
|
* value number.
|
|
*
|
|
* opt_state->curval starts out as 0, which means VAL_UNKNOWN; we
|
|
* increment it before using it as the new value number, which
|
|
* means we never assign VAL_UNKNOWN.
|
|
*
|
|
* XXX - unless we overflow, but we probably won't have 2^32-1
|
|
* values; we treat 32 bits as effectively infinite.
|
|
*/
|
|
val = ++opt_state->curval;
|
|
if (BPF_MODE(code) == BPF_IMM &&
|
|
(BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
|
|
opt_state->vmap[val].const_val = v0;
|
|
opt_state->vmap[val].is_const = 1;
|
|
}
|
|
p = opt_state->next_vnode++;
|
|
p->val = val;
|
|
p->code = code;
|
|
p->v0 = v0;
|
|
p->v1 = v1;
|
|
p->next = opt_state->hashtbl[hash];
|
|
opt_state->hashtbl[hash] = p;
|
|
|
|
return val;
|
|
}
|
|
|
|
static inline void
|
|
vstore(struct stmt *s, bpf_u_int32 *valp, bpf_u_int32 newval, int alter)
|
|
{
|
|
if (alter && newval != VAL_UNKNOWN && *valp == newval)
|
|
s->code = NOP;
|
|
else
|
|
*valp = newval;
|
|
}
|
|
|
|
/*
|
|
* Do constant-folding on binary operators.
|
|
* (Unary operators are handled elsewhere.)
|
|
*/
|
|
static void
|
|
fold_op(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 v0, bpf_u_int32 v1)
|
|
{
|
|
bpf_u_int32 a, b;
|
|
|
|
a = opt_state->vmap[v0].const_val;
|
|
b = opt_state->vmap[v1].const_val;
|
|
|
|
switch (BPF_OP(s->code)) {
|
|
case BPF_ADD:
|
|
a += b;
|
|
break;
|
|
|
|
case BPF_SUB:
|
|
a -= b;
|
|
break;
|
|
|
|
case BPF_MUL:
|
|
a *= b;
|
|
break;
|
|
|
|
case BPF_DIV:
|
|
if (b == 0)
|
|
opt_error(opt_state, "division by zero");
|
|
a /= b;
|
|
break;
|
|
|
|
case BPF_MOD:
|
|
if (b == 0)
|
|
opt_error(opt_state, "modulus by zero");
|
|
a %= b;
|
|
break;
|
|
|
|
case BPF_AND:
|
|
a &= b;
|
|
break;
|
|
|
|
case BPF_OR:
|
|
a |= b;
|
|
break;
|
|
|
|
case BPF_XOR:
|
|
a ^= b;
|
|
break;
|
|
|
|
case BPF_LSH:
|
|
/*
|
|
* A left shift of more than the width of the type
|
|
* is undefined in C; we'll just treat it as shifting
|
|
* all the bits out.
|
|
*
|
|
* XXX - the BPF interpreter doesn't check for this,
|
|
* so its behavior is dependent on the behavior of
|
|
* the processor on which it's running. There are
|
|
* processors on which it shifts all the bits out
|
|
* and processors on which it does no shift.
|
|
*/
|
|
if (b < 32)
|
|
a <<= b;
|
|
else
|
|
a = 0;
|
|
break;
|
|
|
|
case BPF_RSH:
|
|
/*
|
|
* A right shift of more than the width of the type
|
|
* is undefined in C; we'll just treat it as shifting
|
|
* all the bits out.
|
|
*
|
|
* XXX - the BPF interpreter doesn't check for this,
|
|
* so its behavior is dependent on the behavior of
|
|
* the processor on which it's running. There are
|
|
* processors on which it shifts all the bits out
|
|
* and processors on which it does no shift.
|
|
*/
|
|
if (b < 32)
|
|
a >>= b;
|
|
else
|
|
a = 0;
|
|
break;
|
|
|
|
default:
|
|
abort();
|
|
}
|
|
s->k = a;
|
|
s->code = BPF_LD|BPF_IMM;
|
|
/*
|
|
* XXX - optimizer loop detection.
|
|
*/
|
|
opt_state->non_branch_movement_performed = 1;
|
|
opt_state->done = 0;
|
|
}
|
|
|
|
static inline struct slist *
|
|
this_op(struct slist *s)
|
|
{
|
|
while (s != 0 && s->s.code == NOP)
|
|
s = s->next;
|
|
return s;
|
|
}
|
|
|
|
static void
|
|
opt_not(struct block *b)
|
|
{
|
|
struct block *tmp = JT(b);
|
|
|
|
JT(b) = JF(b);
|
|
JF(b) = tmp;
|
|
}
|
|
|
|
static void
|
|
opt_peep(opt_state_t *opt_state, struct block *b)
|
|
{
|
|
struct slist *s;
|
|
struct slist *next, *last;
|
|
bpf_u_int32 val;
|
|
|
|
s = b->stmts;
|
|
if (s == 0)
|
|
return;
|
|
|
|
last = s;
|
|
for (/*empty*/; /*empty*/; s = next) {
|
|
/*
|
|
* Skip over nops.
|
|
*/
|
|
s = this_op(s);
|
|
if (s == 0)
|
|
break; /* nothing left in the block */
|
|
|
|
/*
|
|
* Find the next real instruction after that one
|
|
* (skipping nops).
|
|
*/
|
|
next = this_op(s->next);
|
|
if (next == 0)
|
|
break; /* no next instruction */
|
|
last = next;
|
|
|
|
/*
|
|
* st M[k] --> st M[k]
|
|
* ldx M[k] tax
|
|
*/
|
|
if (s->s.code == BPF_ST &&
|
|
next->s.code == (BPF_LDX|BPF_MEM) &&
|
|
s->s.k == next->s.k) {
|
|
/*
|
|
* XXX - optimizer loop detection.
|
|
*/
|
|
opt_state->non_branch_movement_performed = 1;
|
|
opt_state->done = 0;
|
|
next->s.code = BPF_MISC|BPF_TAX;
|
|
}
|
|
/*
|
|
* ld #k --> ldx #k
|
|
* tax txa
|
|
*/
|
|
if (s->s.code == (BPF_LD|BPF_IMM) &&
|
|
next->s.code == (BPF_MISC|BPF_TAX)) {
|
|
s->s.code = BPF_LDX|BPF_IMM;
|
|
next->s.code = BPF_MISC|BPF_TXA;
|
|
/*
|
|
* XXX - optimizer loop detection.
|
|
*/
|
|
opt_state->non_branch_movement_performed = 1;
|
|
opt_state->done = 0;
|
|
}
|
|
/*
|
|
* This is an ugly special case, but it happens
|
|
* when you say tcp[k] or udp[k] where k is a constant.
|
|
*/
|
|
if (s->s.code == (BPF_LD|BPF_IMM)) {
|
|
struct slist *add, *tax, *ild;
|
|
|
|
/*
|
|
* Check that X isn't used on exit from this
|
|
* block (which the optimizer might cause).
|
|
* We know the code generator won't generate
|
|
* any local dependencies.
|
|
*/
|
|
if (ATOMELEM(b->out_use, X_ATOM))
|
|
continue;
|
|
|
|
/*
|
|
* Check that the instruction following the ldi
|
|
* is an addx, or it's an ldxms with an addx
|
|
* following it (with 0 or more nops between the
|
|
* ldxms and addx).
|
|
*/
|
|
if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
|
|
add = next;
|
|
else
|
|
add = this_op(next->next);
|
|
if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
|
|
continue;
|
|
|
|
/*
|
|
* Check that a tax follows that (with 0 or more
|
|
* nops between them).
|
|
*/
|
|
tax = this_op(add->next);
|
|
if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
|
|
continue;
|
|
|
|
/*
|
|
* Check that an ild follows that (with 0 or more
|
|
* nops between them).
|
|
*/
|
|
ild = this_op(tax->next);
|
|
if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
|
|
BPF_MODE(ild->s.code) != BPF_IND)
|
|
continue;
|
|
/*
|
|
* We want to turn this sequence:
|
|
*
|
|
* (004) ldi #0x2 {s}
|
|
* (005) ldxms [14] {next} -- optional
|
|
* (006) addx {add}
|
|
* (007) tax {tax}
|
|
* (008) ild [x+0] {ild}
|
|
*
|
|
* into this sequence:
|
|
*
|
|
* (004) nop
|
|
* (005) ldxms [14]
|
|
* (006) nop
|
|
* (007) nop
|
|
* (008) ild [x+2]
|
|
*
|
|
* XXX We need to check that X is not
|
|
* subsequently used, because we want to change
|
|
* what'll be in it after this sequence.
|
|
*
|
|
* We know we can eliminate the accumulator
|
|
* modifications earlier in the sequence since
|
|
* it is defined by the last stmt of this sequence
|
|
* (i.e., the last statement of the sequence loads
|
|
* a value into the accumulator, so we can eliminate
|
|
* earlier operations on the accumulator).
|
|
*/
|
|
ild->s.k += s->s.k;
|
|
s->s.code = NOP;
|
|
add->s.code = NOP;
|
|
tax->s.code = NOP;
|
|
/*
|
|
* XXX - optimizer loop detection.
|
|
*/
|
|
opt_state->non_branch_movement_performed = 1;
|
|
opt_state->done = 0;
|
|
}
|
|
}
|
|
/*
|
|
* If the comparison at the end of a block is an equality
|
|
* comparison against a constant, and nobody uses the value
|
|
* we leave in the A register at the end of a block, and
|
|
* the operation preceding the comparison is an arithmetic
|
|
* operation, we can sometime optimize it away.
|
|
*/
|
|
if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
|
|
!ATOMELEM(b->out_use, A_ATOM)) {
|
|
/*
|
|
* We can optimize away certain subtractions of the
|
|
* X register.
|
|
*/
|
|
if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
|
|
val = b->val[X_ATOM];
|
|
if (opt_state->vmap[val].is_const) {
|
|
/*
|
|
* If we have a subtract to do a comparison,
|
|
* and the X register is a known constant,
|
|
* we can merge this value into the
|
|
* comparison:
|
|
*
|
|
* sub x -> nop
|
|
* jeq #y jeq #(x+y)
|
|
*/
|
|
b->s.k += opt_state->vmap[val].const_val;
|
|
last->s.code = NOP;
|
|
/*
|
|
* XXX - optimizer loop detection.
|
|
*/
|
|
opt_state->non_branch_movement_performed = 1;
|
|
opt_state->done = 0;
|
|
} else if (b->s.k == 0) {
|
|
/*
|
|
* If the X register isn't a constant,
|
|
* and the comparison in the test is
|
|
* against 0, we can compare with the
|
|
* X register, instead:
|
|
*
|
|
* sub x -> nop
|
|
* jeq #0 jeq x
|
|
*/
|
|
last->s.code = NOP;
|
|
b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
|
|
/*
|
|
* XXX - optimizer loop detection.
|
|
*/
|
|
opt_state->non_branch_movement_performed = 1;
|
|
opt_state->done = 0;
|
|
}
|
|
}
|
|
/*
|
|
* Likewise, a constant subtract can be simplified:
|
|
*
|
|
* sub #x -> nop
|
|
* jeq #y -> jeq #(x+y)
|
|
*/
|
|
else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
|
|
last->s.code = NOP;
|
|
b->s.k += last->s.k;
|
|
/*
|
|
* XXX - optimizer loop detection.
|
|
*/
|
|
opt_state->non_branch_movement_performed = 1;
|
|
opt_state->done = 0;
|
|
}
|
|
/*
|
|
* And, similarly, a constant AND can be simplified
|
|
* if we're testing against 0, i.e.:
|
|
*
|
|
* and #k nop
|
|
* jeq #0 -> jset #k
|
|
*/
|
|
else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
|
|
b->s.k == 0) {
|
|
b->s.k = last->s.k;
|
|
b->s.code = BPF_JMP|BPF_K|BPF_JSET;
|
|
last->s.code = NOP;
|
|
/*
|
|
* XXX - optimizer loop detection.
|
|
*/
|
|
opt_state->non_branch_movement_performed = 1;
|
|
opt_state->done = 0;
|
|
opt_not(b);
|
|
}
|
|
}
|
|
/*
|
|
* jset #0 -> never
|
|
* jset #ffffffff -> always
|
|
*/
|
|
if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
|
|
if (b->s.k == 0)
|
|
JT(b) = JF(b);
|
|
if (b->s.k == 0xffffffffU)
|
|
JF(b) = JT(b);
|
|
}
|
|
/*
|
|
* If we're comparing against the index register, and the index
|
|
* register is a known constant, we can just compare against that
|
|
* constant.
|
|
*/
|
|
val = b->val[X_ATOM];
|
|
if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
|
|
bpf_u_int32 v = opt_state->vmap[val].const_val;
|
|
b->s.code &= ~BPF_X;
|
|
b->s.k = v;
|
|
}
|
|
/*
|
|
* If the accumulator is a known constant, we can compute the
|
|
* comparison result.
|
|
*/
|
|
val = b->val[A_ATOM];
|
|
if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
|
|
bpf_u_int32 v = opt_state->vmap[val].const_val;
|
|
switch (BPF_OP(b->s.code)) {
|
|
|
|
case BPF_JEQ:
|
|
v = v == b->s.k;
|
|
break;
|
|
|
|
case BPF_JGT:
|
|
v = v > b->s.k;
|
|
break;
|
|
|
|
case BPF_JGE:
|
|
v = v >= b->s.k;
|
|
break;
|
|
|
|
case BPF_JSET:
|
|
v &= b->s.k;
|
|
break;
|
|
|
|
default:
|
|
abort();
|
|
}
|
|
if (JF(b) != JT(b)) {
|
|
/*
|
|
* XXX - optimizer loop detection.
|
|
*/
|
|
opt_state->non_branch_movement_performed = 1;
|
|
opt_state->done = 0;
|
|
}
|
|
if (v)
|
|
JF(b) = JT(b);
|
|
else
|
|
JT(b) = JF(b);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute the symbolic value of expression of 's', and update
|
|
* anything it defines in the value table 'val'. If 'alter' is true,
|
|
* do various optimizations. This code would be cleaner if symbolic
|
|
* evaluation and code transformations weren't folded together.
|
|
*/
|
|
static void
|
|
opt_stmt(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 val[], int alter)
|
|
{
|
|
int op;
|
|
bpf_u_int32 v;
|
|
|
|
switch (s->code) {
|
|
|
|
case BPF_LD|BPF_ABS|BPF_W:
|
|
case BPF_LD|BPF_ABS|BPF_H:
|
|
case BPF_LD|BPF_ABS|BPF_B:
|
|
v = F(opt_state, s->code, s->k, 0L);
|
|
vstore(s, &val[A_ATOM], v, alter);
|
|
break;
|
|
|
|
case BPF_LD|BPF_IND|BPF_W:
|
|
case BPF_LD|BPF_IND|BPF_H:
|
|
case BPF_LD|BPF_IND|BPF_B:
|
|
v = val[X_ATOM];
|
|
if (alter && opt_state->vmap[v].is_const) {
|
|
s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
|
|
s->k += opt_state->vmap[v].const_val;
|
|
v = F(opt_state, s->code, s->k, 0L);
|
|
/*
|
|
* XXX - optimizer loop detection.
|
|
*/
|
|
opt_state->non_branch_movement_performed = 1;
|
|
opt_state->done = 0;
|
|
}
|
|
else
|
|
v = F(opt_state, s->code, s->k, v);
|
|
vstore(s, &val[A_ATOM], v, alter);
|
|
break;
|
|
|
|
case BPF_LD|BPF_LEN:
|
|
v = F(opt_state, s->code, 0L, 0L);
|
|
vstore(s, &val[A_ATOM], v, alter);
|
|
break;
|
|
|
|
case BPF_LD|BPF_IMM:
|
|
v = K(s->k);
|
|
vstore(s, &val[A_ATOM], v, alter);
|
|
break;
|
|
|
|
case BPF_LDX|BPF_IMM:
|
|
v = K(s->k);
|
|
vstore(s, &val[X_ATOM], v, alter);
|
|
break;
|
|
|
|
case BPF_LDX|BPF_MSH|BPF_B:
|
|
v = F(opt_state, s->code, s->k, 0L);
|
|
vstore(s, &val[X_ATOM], v, alter);
|
|
break;
|
|
|
|
case BPF_ALU|BPF_NEG:
|
|
if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
|
|
s->code = BPF_LD|BPF_IMM;
|
|
/*
|
|
* Do this negation as unsigned arithmetic; that's
|
|
* what modern BPF engines do, and it guarantees
|
|
* that all possible values can be negated. (Yeah,
|
|
* negating 0x80000000, the minimum signed 32-bit
|
|
* two's-complement value, results in 0x80000000,
|
|
* so it's still negative, but we *should* be doing
|
|
* all unsigned arithmetic here, to match what
|
|
* modern BPF engines do.)
|
|
*
|
|
* Express it as 0U - (unsigned value) so that we
|
|
* don't get compiler warnings about negating an
|
|
* unsigned value and don't get UBSan warnings
|
|
* about the result of negating 0x80000000 being
|
|
* undefined.
|
|
*/
|
|
s->k = 0U - opt_state->vmap[val[A_ATOM]].const_val;
|
|
val[A_ATOM] = K(s->k);
|
|
}
|
|
else
|
|
val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
|
|
break;
|
|
|
|
case BPF_ALU|BPF_ADD|BPF_K:
|
|
case BPF_ALU|BPF_SUB|BPF_K:
|
|
case BPF_ALU|BPF_MUL|BPF_K:
|
|
case BPF_ALU|BPF_DIV|BPF_K:
|
|
case BPF_ALU|BPF_MOD|BPF_K:
|
|
case BPF_ALU|BPF_AND|BPF_K:
|
|
case BPF_ALU|BPF_OR|BPF_K:
|
|
case BPF_ALU|BPF_XOR|BPF_K:
|
|
case BPF_ALU|BPF_LSH|BPF_K:
|
|
case BPF_ALU|BPF_RSH|BPF_K:
|
|
op = BPF_OP(s->code);
|
|
if (alter) {
|
|
if (s->k == 0) {
|
|
/*
|
|
* Optimize operations where the constant
|
|
* is zero.
|
|
*
|
|
* Don't optimize away "sub #0"
|
|
* as it may be needed later to
|
|
* fixup the generated math code.
|
|
*
|
|
* Fail if we're dividing by zero or taking
|
|
* a modulus by zero.
|
|
*/
|
|
if (op == BPF_ADD ||
|
|
op == BPF_LSH || op == BPF_RSH ||
|
|
op == BPF_OR || op == BPF_XOR) {
|
|
s->code = NOP;
|
|
break;
|
|
}
|
|
if (op == BPF_MUL || op == BPF_AND) {
|
|
s->code = BPF_LD|BPF_IMM;
|
|
val[A_ATOM] = K(s->k);
|
|
break;
|
|
}
|
|
if (op == BPF_DIV)
|
|
opt_error(opt_state,
|
|
"division by zero");
|
|
if (op == BPF_MOD)
|
|
opt_error(opt_state,
|
|
"modulus by zero");
|
|
}
|
|
if (opt_state->vmap[val[A_ATOM]].is_const) {
|
|
fold_op(opt_state, s, val[A_ATOM], K(s->k));
|
|
val[A_ATOM] = K(s->k);
|
|
break;
|
|
}
|
|
}
|
|
val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
|
|
break;
|
|
|
|
case BPF_ALU|BPF_ADD|BPF_X:
|
|
case BPF_ALU|BPF_SUB|BPF_X:
|
|
case BPF_ALU|BPF_MUL|BPF_X:
|
|
case BPF_ALU|BPF_DIV|BPF_X:
|
|
case BPF_ALU|BPF_MOD|BPF_X:
|
|
case BPF_ALU|BPF_AND|BPF_X:
|
|
case BPF_ALU|BPF_OR|BPF_X:
|
|
case BPF_ALU|BPF_XOR|BPF_X:
|
|
case BPF_ALU|BPF_LSH|BPF_X:
|
|
case BPF_ALU|BPF_RSH|BPF_X:
|
|
op = BPF_OP(s->code);
|
|
if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
|
|
if (opt_state->vmap[val[A_ATOM]].is_const) {
|
|
fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]);
|
|
val[A_ATOM] = K(s->k);
|
|
}
|
|
else {
|
|
s->code = BPF_ALU|BPF_K|op;
|
|
s->k = opt_state->vmap[val[X_ATOM]].const_val;
|
|
if ((op == BPF_LSH || op == BPF_RSH) &&
|
|
s->k > 31)
|
|
opt_error(opt_state,
|
|
"shift by more than 31 bits");
|
|
/*
|
|
* XXX - optimizer loop detection.
|
|
*/
|
|
opt_state->non_branch_movement_performed = 1;
|
|
opt_state->done = 0;
|
|
val[A_ATOM] =
|
|
F(opt_state, s->code, val[A_ATOM], K(s->k));
|
|
}
|
|
break;
|
|
}
|
|
/*
|
|
* Check if we're doing something to an accumulator
|
|
* that is 0, and simplify. This may not seem like
|
|
* much of a simplification but it could open up further
|
|
* optimizations.
|
|
* XXX We could also check for mul by 1, etc.
|
|
*/
|
|
if (alter && opt_state->vmap[val[A_ATOM]].is_const
|
|
&& opt_state->vmap[val[A_ATOM]].const_val == 0) {
|
|
if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
|
|
s->code = BPF_MISC|BPF_TXA;
|
|
vstore(s, &val[A_ATOM], val[X_ATOM], alter);
|
|
break;
|
|
}
|
|
else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
|
|
op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
|
|
s->code = BPF_LD|BPF_IMM;
|
|
s->k = 0;
|
|
vstore(s, &val[A_ATOM], K(s->k), alter);
|
|
break;
|
|
}
|
|
else if (op == BPF_NEG) {
|
|
s->code = NOP;
|
|
break;
|
|
}
|
|
}
|
|
val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
|
|
break;
|
|
|
|
case BPF_MISC|BPF_TXA:
|
|
vstore(s, &val[A_ATOM], val[X_ATOM], alter);
|
|
break;
|
|
|
|
case BPF_LD|BPF_MEM:
|
|
v = val[s->k];
|
|
if (alter && opt_state->vmap[v].is_const) {
|
|
s->code = BPF_LD|BPF_IMM;
|
|
s->k = opt_state->vmap[v].const_val;
|
|
/*
|
|
* XXX - optimizer loop detection.
|
|
*/
|
|
opt_state->non_branch_movement_performed = 1;
|
|
opt_state->done = 0;
|
|
}
|
|
vstore(s, &val[A_ATOM], v, alter);
|
|
break;
|
|
|
|
case BPF_MISC|BPF_TAX:
|
|
vstore(s, &val[X_ATOM], val[A_ATOM], alter);
|
|
break;
|
|
|
|
case BPF_LDX|BPF_MEM:
|
|
v = val[s->k];
|
|
if (alter && opt_state->vmap[v].is_const) {
|
|
s->code = BPF_LDX|BPF_IMM;
|
|
s->k = opt_state->vmap[v].const_val;
|
|
/*
|
|
* XXX - optimizer loop detection.
|
|
*/
|
|
opt_state->non_branch_movement_performed = 1;
|
|
opt_state->done = 0;
|
|
}
|
|
vstore(s, &val[X_ATOM], v, alter);
|
|
break;
|
|
|
|
case BPF_ST:
|
|
vstore(s, &val[s->k], val[A_ATOM], alter);
|
|
break;
|
|
|
|
case BPF_STX:
|
|
vstore(s, &val[s->k], val[X_ATOM], alter);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
|
|
{
|
|
register int atom;
|
|
|
|
atom = atomuse(s);
|
|
if (atom >= 0) {
|
|
if (atom == AX_ATOM) {
|
|
last[X_ATOM] = 0;
|
|
last[A_ATOM] = 0;
|
|
}
|
|
else
|
|
last[atom] = 0;
|
|
}
|
|
atom = atomdef(s);
|
|
if (atom >= 0) {
|
|
if (last[atom]) {
|
|
/*
|
|
* XXX - optimizer loop detection.
|
|
*/
|
|
opt_state->non_branch_movement_performed = 1;
|
|
opt_state->done = 0;
|
|
last[atom]->code = NOP;
|
|
}
|
|
last[atom] = s;
|
|
}
|
|
}
|
|
|
|
static void
|
|
opt_deadstores(opt_state_t *opt_state, register struct block *b)
|
|
{
|
|
register struct slist *s;
|
|
register int atom;
|
|
struct stmt *last[N_ATOMS];
|
|
|
|
memset((char *)last, 0, sizeof last);
|
|
|
|
for (s = b->stmts; s != 0; s = s->next)
|
|
deadstmt(opt_state, &s->s, last);
|
|
deadstmt(opt_state, &b->s, last);
|
|
|
|
for (atom = 0; atom < N_ATOMS; ++atom)
|
|
if (last[atom] && !ATOMELEM(b->out_use, atom)) {
|
|
last[atom]->code = NOP;
|
|
/*
|
|
* XXX - optimizer loop detection.
|
|
*/
|
|
opt_state->non_branch_movement_performed = 1;
|
|
opt_state->done = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts)
|
|
{
|
|
struct slist *s;
|
|
struct edge *p;
|
|
int i;
|
|
bpf_u_int32 aval, xval;
|
|
|
|
#if 0
|
|
for (s = b->stmts; s && s->next; s = s->next)
|
|
if (BPF_CLASS(s->s.code) == BPF_JMP) {
|
|
do_stmts = 0;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the atom values.
|
|
*/
|
|
p = b->in_edges;
|
|
if (p == 0) {
|
|
/*
|
|
* We have no predecessors, so everything is undefined
|
|
* upon entry to this block.
|
|
*/
|
|
memset((char *)b->val, 0, sizeof(b->val));
|
|
} else {
|
|
/*
|
|
* Inherit values from our predecessors.
|
|
*
|
|
* First, get the values from the predecessor along the
|
|
* first edge leading to this node.
|
|
*/
|
|
memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
|
|
/*
|
|
* Now look at all the other nodes leading to this node.
|
|
* If, for the predecessor along that edge, a register
|
|
* has a different value from the one we have (i.e.,
|
|
* control paths are merging, and the merging paths
|
|
* assign different values to that register), give the
|
|
* register the undefined value of 0.
|
|
*/
|
|
while ((p = p->next) != NULL) {
|
|
for (i = 0; i < N_ATOMS; ++i)
|
|
if (b->val[i] != p->pred->val[i])
|
|
b->val[i] = 0;
|
|
}
|
|
}
|
|
aval = b->val[A_ATOM];
|
|
xval = b->val[X_ATOM];
|
|
for (s = b->stmts; s; s = s->next)
|
|
opt_stmt(opt_state, &s->s, b->val, do_stmts);
|
|
|
|
/*
|
|
* This is a special case: if we don't use anything from this
|
|
* block, and we load the accumulator or index register with a
|
|
* value that is already there, or if this block is a return,
|
|
* eliminate all the statements.
|
|
*
|
|
* XXX - what if it does a store? Presumably that falls under
|
|
* the heading of "if we don't use anything from this block",
|
|
* i.e., if we use any memory location set to a different
|
|
* value by this block, then we use something from this block.
|
|
*
|
|
* XXX - why does it matter whether we use anything from this
|
|
* block? If the accumulator or index register doesn't change
|
|
* its value, isn't that OK even if we use that value?
|
|
*
|
|
* XXX - if we load the accumulator with a different value,
|
|
* and the block ends with a conditional branch, we obviously
|
|
* can't eliminate it, as the branch depends on that value.
|
|
* For the index register, the conditional branch only depends
|
|
* on the index register value if the test is against the index
|
|
* register value rather than a constant; if nothing uses the
|
|
* value we put into the index register, and we're not testing
|
|
* against the index register's value, and there aren't any
|
|
* other problems that would keep us from eliminating this
|
|
* block, can we eliminate it?
|
|
*/
|
|
if (do_stmts &&
|
|
((b->out_use == 0 &&
|
|
aval != VAL_UNKNOWN && b->val[A_ATOM] == aval &&
|
|
xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) ||
|
|
BPF_CLASS(b->s.code) == BPF_RET)) {
|
|
if (b->stmts != 0) {
|
|
b->stmts = 0;
|
|
/*
|
|
* XXX - optimizer loop detection.
|
|
*/
|
|
opt_state->non_branch_movement_performed = 1;
|
|
opt_state->done = 0;
|
|
}
|
|
} else {
|
|
opt_peep(opt_state, b);
|
|
opt_deadstores(opt_state, b);
|
|
}
|
|
/*
|
|
* Set up values for branch optimizer.
|
|
*/
|
|
if (BPF_SRC(b->s.code) == BPF_K)
|
|
b->oval = K(b->s.k);
|
|
else
|
|
b->oval = b->val[X_ATOM];
|
|
b->et.code = b->s.code;
|
|
b->ef.code = -b->s.code;
|
|
}
|
|
|
|
/*
|
|
* Return true if any register that is used on exit from 'succ', has
|
|
* an exit value that is different from the corresponding exit value
|
|
* from 'b'.
|
|
*/
|
|
static int
|
|
use_conflict(struct block *b, struct block *succ)
|
|
{
|
|
int atom;
|
|
atomset use = succ->out_use;
|
|
|
|
if (use == 0)
|
|
return 0;
|
|
|
|
for (atom = 0; atom < N_ATOMS; ++atom)
|
|
if (ATOMELEM(use, atom))
|
|
if (b->val[atom] != succ->val[atom])
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Given a block that is the successor of an edge, and an edge that
|
|
* dominates that edge, return either a pointer to a child of that
|
|
* block (a block to which that block jumps) if that block is a
|
|
* candidate to replace the successor of the latter edge or NULL
|
|
* if neither of the children of the first block are candidates.
|
|
*/
|
|
static struct block *
|
|
fold_edge(struct block *child, struct edge *ep)
|
|
{
|
|
int sense;
|
|
bpf_u_int32 aval0, aval1, oval0, oval1;
|
|
int code = ep->code;
|
|
|
|
if (code < 0) {
|
|
/*
|
|
* This edge is a "branch if false" edge.
|
|
*/
|
|
code = -code;
|
|
sense = 0;
|
|
} else {
|
|
/*
|
|
* This edge is a "branch if true" edge.
|
|
*/
|
|
sense = 1;
|
|
}
|
|
|
|
/*
|
|
* If the opcode for the branch at the end of the block we
|
|
* were handed isn't the same as the opcode for the branch
|
|
* to which the edge we were handed corresponds, the tests
|
|
* for those branches aren't testing the same conditions,
|
|
* so the blocks to which the first block branches aren't
|
|
* candidates to replace the successor of the edge.
|
|
*/
|
|
if (child->s.code != code)
|
|
return 0;
|
|
|
|
aval0 = child->val[A_ATOM];
|
|
oval0 = child->oval;
|
|
aval1 = ep->pred->val[A_ATOM];
|
|
oval1 = ep->pred->oval;
|
|
|
|
/*
|
|
* If the A register value on exit from the successor block
|
|
* isn't the same as the A register value on exit from the
|
|
* predecessor of the edge, the blocks to which the first
|
|
* block branches aren't candidates to replace the successor
|
|
* of the edge.
|
|
*/
|
|
if (aval0 != aval1)
|
|
return 0;
|
|
|
|
if (oval0 == oval1)
|
|
/*
|
|
* The operands of the branch instructions are
|
|
* identical, so the branches are testing the
|
|
* same condition, and the result is true if a true
|
|
* branch was taken to get here, otherwise false.
|
|
*/
|
|
return sense ? JT(child) : JF(child);
|
|
|
|
if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
|
|
/*
|
|
* At this point, we only know the comparison if we
|
|
* came down the true branch, and it was an equality
|
|
* comparison with a constant.
|
|
*
|
|
* I.e., if we came down the true branch, and the branch
|
|
* was an equality comparison with a constant, we know the
|
|
* accumulator contains that constant. If we came down
|
|
* the false branch, or the comparison wasn't with a
|
|
* constant, we don't know what was in the accumulator.
|
|
*
|
|
* We rely on the fact that distinct constants have distinct
|
|
* value numbers.
|
|
*/
|
|
return JF(child);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If we can make this edge go directly to a child of the edge's current
|
|
* successor, do so.
|
|
*/
|
|
static void
|
|
opt_j(opt_state_t *opt_state, struct edge *ep)
|
|
{
|
|
register u_int i, k;
|
|
register struct block *target;
|
|
|
|
/*
|
|
* Does this edge go to a block where, if the test
|
|
* at the end of it succeeds, it goes to a block
|
|
* that's a leaf node of the DAG, i.e. a return
|
|
* statement?
|
|
* If so, there's nothing to optimize.
|
|
*/
|
|
if (JT(ep->succ) == 0)
|
|
return;
|
|
|
|
/*
|
|
* Does this edge go to a block that goes, in turn, to
|
|
* the same block regardless of whether the test at the
|
|
* end succeeds or fails?
|
|
*/
|
|
if (JT(ep->succ) == JF(ep->succ)) {
|
|
/*
|
|
* Common branch targets can be eliminated, provided
|
|
* there is no data dependency.
|
|
*
|
|
* Check whether any register used on exit from the
|
|
* block to which the successor of this edge goes
|
|
* has a value at that point that's different from
|
|
* the value it has on exit from the predecessor of
|
|
* this edge. If not, the predecessor of this edge
|
|
* can just go to the block to which the successor
|
|
* of this edge goes, bypassing the successor of this
|
|
* edge, as the successor of this edge isn't doing
|
|
* any calculations whose results are different
|
|
* from what the blocks before it did and isn't
|
|
* doing any tests the results of which matter.
|
|
*/
|
|
if (!use_conflict(ep->pred, JT(ep->succ))) {
|
|
/*
|
|
* No, there isn't.
|
|
* Make this edge go to the block to
|
|
* which the successor of that edge
|
|
* goes.
|
|
*
|
|
* XXX - optimizer loop detection.
|
|
*/
|
|
opt_state->non_branch_movement_performed = 1;
|
|
opt_state->done = 0;
|
|
ep->succ = JT(ep->succ);
|
|
}
|
|
}
|
|
/*
|
|
* For each edge dominator that matches the successor of this
|
|
* edge, promote the edge successor to the its grandchild.
|
|
*
|
|
* XXX We violate the set abstraction here in favor a reasonably
|
|
* efficient loop.
|
|
*/
|
|
top:
|
|
for (i = 0; i < opt_state->edgewords; ++i) {
|
|
/* i'th word in the bitset of dominators */
|
|
register bpf_u_int32 x = ep->edom[i];
|
|
|
|
while (x != 0) {
|
|
/* Find the next dominator in that word and mark it as found */
|
|
k = lowest_set_bit(x);
|
|
x &=~ ((bpf_u_int32)1 << k);
|
|
k += i * BITS_PER_WORD;
|
|
|
|
target = fold_edge(ep->succ, opt_state->edges[k]);
|
|
/*
|
|
* We have a candidate to replace the successor
|
|
* of ep.
|
|
*
|
|
* Check that there is no data dependency between
|
|
* nodes that will be violated if we move the edge;
|
|
* i.e., if any register used on exit from the
|
|
* candidate has a value at that point different
|
|
* from the value it has when we exit the
|
|
* predecessor of that edge, there's a data
|
|
* dependency that will be violated.
|
|
*/
|
|
if (target != 0 && !use_conflict(ep->pred, target)) {
|
|
/*
|
|
* It's safe to replace the successor of
|
|
* ep; do so, and note that we've made
|
|
* at least one change.
|
|
*
|
|
* XXX - this is one of the operations that
|
|
* happens when the optimizer gets into
|
|
* one of those infinite loops.
|
|
*/
|
|
opt_state->done = 0;
|
|
ep->succ = target;
|
|
if (JT(target) != 0)
|
|
/*
|
|
* Start over unless we hit a leaf.
|
|
*/
|
|
goto top;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* XXX - is this, and and_pullup(), what's described in section 6.1.2
|
|
* "Predicate Assertion Propagation" in the BPF+ paper?
|
|
*
|
|
* Note that this looks at block dominators, not edge dominators.
|
|
* Don't think so.
|
|
*
|
|
* "A or B" compiles into
|
|
*
|
|
* A
|
|
* t / \ f
|
|
* / B
|
|
* / t / \ f
|
|
* \ /
|
|
* \ /
|
|
* X
|
|
*
|
|
*
|
|
*/
|
|
static void
|
|
or_pullup(opt_state_t *opt_state, struct block *b)
|
|
{
|
|
bpf_u_int32 val;
|
|
int at_top;
|
|
struct block *pull;
|
|
struct block **diffp, **samep;
|
|
struct edge *ep;
|
|
|
|
ep = b->in_edges;
|
|
if (ep == 0)
|
|
return;
|
|
|
|
/*
|
|
* Make sure each predecessor loads the same value.
|
|
* XXX why?
|
|
*/
|
|
val = ep->pred->val[A_ATOM];
|
|
for (ep = ep->next; ep != 0; ep = ep->next)
|
|
if (val != ep->pred->val[A_ATOM])
|
|
return;
|
|
|
|
/*
|
|
* For the first edge in the list of edges coming into this block,
|
|
* see whether the predecessor of that edge comes here via a true
|
|
* branch or a false branch.
|
|
*/
|
|
if (JT(b->in_edges->pred) == b)
|
|
diffp = &JT(b->in_edges->pred); /* jt */
|
|
else
|
|
diffp = &JF(b->in_edges->pred); /* jf */
|
|
|
|
/*
|
|
* diffp is a pointer to a pointer to the block.
|
|
*
|
|
* Go down the false chain looking as far as you can,
|
|
* making sure that each jump-compare is doing the
|
|
* same as the original block.
|
|
*
|
|
* If you reach the bottom before you reach a
|
|
* different jump-compare, just exit. There's nothing
|
|
* to do here. XXX - no, this version is checking for
|
|
* the value leaving the block; that's from the BPF+
|
|
* pullup routine.
|
|
*/
|
|
at_top = 1;
|
|
for (;;) {
|
|
/*
|
|
* Done if that's not going anywhere XXX
|
|
*/
|
|
if (*diffp == 0)
|
|
return;
|
|
|
|
/*
|
|
* Done if that predecessor blah blah blah isn't
|
|
* going the same place we're going XXX
|
|
*
|
|
* Does the true edge of this block point to the same
|
|
* location as the true edge of b?
|
|
*/
|
|
if (JT(*diffp) != JT(b))
|
|
return;
|
|
|
|
/*
|
|
* Done if this node isn't a dominator of that
|
|
* node blah blah blah XXX
|
|
*
|
|
* Does b dominate diffp?
|
|
*/
|
|
if (!SET_MEMBER((*diffp)->dom, b->id))
|
|
return;
|
|
|
|
/*
|
|
* Break out of the loop if that node's value of A
|
|
* isn't the value of A above XXX
|
|
*/
|
|
if ((*diffp)->val[A_ATOM] != val)
|
|
break;
|
|
|
|
/*
|
|
* Get the JF for that node XXX
|
|
* Go down the false path.
|
|
*/
|
|
diffp = &JF(*diffp);
|
|
at_top = 0;
|
|
}
|
|
|
|
/*
|
|
* Now that we've found a different jump-compare in a chain
|
|
* below b, search further down until we find another
|
|
* jump-compare that looks at the original value. This
|
|
* jump-compare should get pulled up. XXX again we're
|
|
* comparing values not jump-compares.
|
|
*/
|
|
samep = &JF(*diffp);
|
|
for (;;) {
|
|
/*
|
|
* Done if that's not going anywhere XXX
|
|
*/
|
|
if (*samep == 0)
|
|
return;
|
|
|
|
/*
|
|
* Done if that predecessor blah blah blah isn't
|
|
* going the same place we're going XXX
|
|
*/
|
|
if (JT(*samep) != JT(b))
|
|
return;
|
|
|
|
/*
|
|
* Done if this node isn't a dominator of that
|
|
* node blah blah blah XXX
|
|
*
|
|
* Does b dominate samep?
|
|
*/
|
|
if (!SET_MEMBER((*samep)->dom, b->id))
|
|
return;
|
|
|
|
/*
|
|
* Break out of the loop if that node's value of A
|
|
* is the value of A above XXX
|
|
*/
|
|
if ((*samep)->val[A_ATOM] == val)
|
|
break;
|
|
|
|
/* XXX Need to check that there are no data dependencies
|
|
between dp0 and dp1. Currently, the code generator
|
|
will not produce such dependencies. */
|
|
samep = &JF(*samep);
|
|
}
|
|
#ifdef notdef
|
|
/* XXX This doesn't cover everything. */
|
|
for (i = 0; i < N_ATOMS; ++i)
|
|
if ((*samep)->val[i] != pred->val[i])
|
|
return;
|
|
#endif
|
|
/* Pull up the node. */
|
|
pull = *samep;
|
|
*samep = JF(pull);
|
|
JF(pull) = *diffp;
|
|
|
|
/*
|
|
* At the top of the chain, each predecessor needs to point at the
|
|
* pulled up node. Inside the chain, there is only one predecessor
|
|
* to worry about.
|
|
*/
|
|
if (at_top) {
|
|
for (ep = b->in_edges; ep != 0; ep = ep->next) {
|
|
if (JT(ep->pred) == b)
|
|
JT(ep->pred) = pull;
|
|
else
|
|
JF(ep->pred) = pull;
|
|
}
|
|
}
|
|
else
|
|
*diffp = pull;
|
|
|
|
/*
|
|
* XXX - this is one of the operations that happens when the
|
|
* optimizer gets into one of those infinite loops.
|
|
*/
|
|
opt_state->done = 0;
|
|
}
|
|
|
|
static void
|
|
and_pullup(opt_state_t *opt_state, struct block *b)
|
|
{
|
|
bpf_u_int32 val;
|
|
int at_top;
|
|
struct block *pull;
|
|
struct block **diffp, **samep;
|
|
struct edge *ep;
|
|
|
|
ep = b->in_edges;
|
|
if (ep == 0)
|
|
return;
|
|
|
|
/*
|
|
* Make sure each predecessor loads the same value.
|
|
*/
|
|
val = ep->pred->val[A_ATOM];
|
|
for (ep = ep->next; ep != 0; ep = ep->next)
|
|
if (val != ep->pred->val[A_ATOM])
|
|
return;
|
|
|
|
if (JT(b->in_edges->pred) == b)
|
|
diffp = &JT(b->in_edges->pred);
|
|
else
|
|
diffp = &JF(b->in_edges->pred);
|
|
|
|
at_top = 1;
|
|
for (;;) {
|
|
if (*diffp == 0)
|
|
return;
|
|
|
|
if (JF(*diffp) != JF(b))
|
|
return;
|
|
|
|
if (!SET_MEMBER((*diffp)->dom, b->id))
|
|
return;
|
|
|
|
if ((*diffp)->val[A_ATOM] != val)
|
|
break;
|
|
|
|
diffp = &JT(*diffp);
|
|
at_top = 0;
|
|
}
|
|
samep = &JT(*diffp);
|
|
for (;;) {
|
|
if (*samep == 0)
|
|
return;
|
|
|
|
if (JF(*samep) != JF(b))
|
|
return;
|
|
|
|
if (!SET_MEMBER((*samep)->dom, b->id))
|
|
return;
|
|
|
|
if ((*samep)->val[A_ATOM] == val)
|
|
break;
|
|
|
|
/* XXX Need to check that there are no data dependencies
|
|
between diffp and samep. Currently, the code generator
|
|
will not produce such dependencies. */
|
|
samep = &JT(*samep);
|
|
}
|
|
#ifdef notdef
|
|
/* XXX This doesn't cover everything. */
|
|
for (i = 0; i < N_ATOMS; ++i)
|
|
if ((*samep)->val[i] != pred->val[i])
|
|
return;
|
|
#endif
|
|
/* Pull up the node. */
|
|
pull = *samep;
|
|
*samep = JT(pull);
|
|
JT(pull) = *diffp;
|
|
|
|
/*
|
|
* At the top of the chain, each predecessor needs to point at the
|
|
* pulled up node. Inside the chain, there is only one predecessor
|
|
* to worry about.
|
|
*/
|
|
if (at_top) {
|
|
for (ep = b->in_edges; ep != 0; ep = ep->next) {
|
|
if (JT(ep->pred) == b)
|
|
JT(ep->pred) = pull;
|
|
else
|
|
JF(ep->pred) = pull;
|
|
}
|
|
}
|
|
else
|
|
*diffp = pull;
|
|
|
|
/*
|
|
* XXX - this is one of the operations that happens when the
|
|
* optimizer gets into one of those infinite loops.
|
|
*/
|
|
opt_state->done = 0;
|
|
}
|
|
|
|
static void
|
|
opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts)
|
|
{
|
|
int i, maxlevel;
|
|
struct block *p;
|
|
|
|
init_val(opt_state);
|
|
maxlevel = ic->root->level;
|
|
|
|
find_inedges(opt_state, ic->root);
|
|
for (i = maxlevel; i >= 0; --i)
|
|
for (p = opt_state->levels[i]; p; p = p->link)
|
|
opt_blk(opt_state, p, do_stmts);
|
|
|
|
if (do_stmts)
|
|
/*
|
|
* No point trying to move branches; it can't possibly
|
|
* make a difference at this point.
|
|
*
|
|
* XXX - this might be after we detect a loop where
|
|
* we were just looping infinitely moving branches
|
|
* in such a fashion that we went through two or more
|
|
* versions of the machine code, eventually returning
|
|
* to the first version. (We're really not doing a
|
|
* full loop detection, we're just testing for two
|
|
* passes in a row where we do nothing but
|
|
* move branches.)
|
|
*/
|
|
return;
|
|
|
|
/*
|
|
* Is this what the BPF+ paper describes in sections 6.1.1,
|
|
* 6.1.2, and 6.1.3?
|
|
*/
|
|
for (i = 1; i <= maxlevel; ++i) {
|
|
for (p = opt_state->levels[i]; p; p = p->link) {
|
|
opt_j(opt_state, &p->et);
|
|
opt_j(opt_state, &p->ef);
|
|
}
|
|
}
|
|
|
|
find_inedges(opt_state, ic->root);
|
|
for (i = 1; i <= maxlevel; ++i) {
|
|
for (p = opt_state->levels[i]; p; p = p->link) {
|
|
or_pullup(opt_state, p);
|
|
and_pullup(opt_state, p);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
link_inedge(struct edge *parent, struct block *child)
|
|
{
|
|
parent->next = child->in_edges;
|
|
child->in_edges = parent;
|
|
}
|
|
|
|
static void
|
|
find_inedges(opt_state_t *opt_state, struct block *root)
|
|
{
|
|
u_int i;
|
|
int level;
|
|
struct block *b;
|
|
|
|
for (i = 0; i < opt_state->n_blocks; ++i)
|
|
opt_state->blocks[i]->in_edges = 0;
|
|
|
|
/*
|
|
* Traverse the graph, adding each edge to the predecessor
|
|
* list of its successors. Skip the leaves (i.e. level 0).
|
|
*/
|
|
for (level = root->level; level > 0; --level) {
|
|
for (b = opt_state->levels[level]; b != 0; b = b->link) {
|
|
link_inedge(&b->et, JT(b));
|
|
link_inedge(&b->ef, JF(b));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
opt_root(struct block **b)
|
|
{
|
|
struct slist *tmp, *s;
|
|
|
|
s = (*b)->stmts;
|
|
(*b)->stmts = 0;
|
|
while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
|
|
*b = JT(*b);
|
|
|
|
tmp = (*b)->stmts;
|
|
if (tmp != 0)
|
|
sappend(s, tmp);
|
|
(*b)->stmts = s;
|
|
|
|
/*
|
|
* If the root node is a return, then there is no
|
|
* point executing any statements (since the bpf machine
|
|
* has no side effects).
|
|
*/
|
|
if (BPF_CLASS((*b)->s.code) == BPF_RET)
|
|
(*b)->stmts = 0;
|
|
}
|
|
|
|
static void
|
|
opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts)
|
|
{
|
|
|
|
#ifdef BDEBUG
|
|
if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
|
|
printf("opt_loop(root, %d) begin\n", do_stmts);
|
|
opt_dump(opt_state, ic);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* XXX - optimizer loop detection.
|
|
*/
|
|
int loop_count = 0;
|
|
for (;;) {
|
|
opt_state->done = 1;
|
|
/*
|
|
* XXX - optimizer loop detection.
|
|
*/
|
|
opt_state->non_branch_movement_performed = 0;
|
|
find_levels(opt_state, ic);
|
|
find_dom(opt_state, ic->root);
|
|
find_closure(opt_state, ic->root);
|
|
find_ud(opt_state, ic->root);
|
|
find_edom(opt_state, ic->root);
|
|
opt_blks(opt_state, ic, do_stmts);
|
|
#ifdef BDEBUG
|
|
if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
|
|
printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
|
|
opt_dump(opt_state, ic);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Was anything done in this optimizer pass?
|
|
*/
|
|
if (opt_state->done) {
|
|
/*
|
|
* No, so we've reached a fixed point.
|
|
* We're done.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* XXX - was anything done other than branch movement
|
|
* in this pass?
|
|
*/
|
|
if (opt_state->non_branch_movement_performed) {
|
|
/*
|
|
* Yes. Clear any loop-detection counter;
|
|
* we're making some form of progress (assuming
|
|
* we can't get into a cycle doing *other*
|
|
* optimizations...).
|
|
*/
|
|
loop_count = 0;
|
|
} else {
|
|
/*
|
|
* No - increment the counter, and quit if
|
|
* it's up to 100.
|
|
*/
|
|
loop_count++;
|
|
if (loop_count >= 100) {
|
|
/*
|
|
* We've done nothing but branch movement
|
|
* for 100 passes; we're probably
|
|
* in a cycle and will never reach a
|
|
* fixed point.
|
|
*
|
|
* XXX - yes, we really need a non-
|
|
* heuristic way of detecting a cycle.
|
|
*/
|
|
opt_state->done = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Optimize the filter code in its dag representation.
|
|
* Return 0 on success, -1 on error.
|
|
*/
|
|
int
|
|
bpf_optimize(struct icode *ic, char *errbuf)
|
|
{
|
|
opt_state_t opt_state;
|
|
|
|
memset(&opt_state, 0, sizeof(opt_state));
|
|
opt_state.errbuf = errbuf;
|
|
opt_state.non_branch_movement_performed = 0;
|
|
if (setjmp(opt_state.top_ctx)) {
|
|
opt_cleanup(&opt_state);
|
|
return -1;
|
|
}
|
|
opt_init(&opt_state, ic);
|
|
opt_loop(&opt_state, ic, 0);
|
|
opt_loop(&opt_state, ic, 1);
|
|
intern_blocks(&opt_state, ic);
|
|
#ifdef BDEBUG
|
|
if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
|
|
printf("after intern_blocks()\n");
|
|
opt_dump(&opt_state, ic);
|
|
}
|
|
#endif
|
|
opt_root(&ic->root);
|
|
#ifdef BDEBUG
|
|
if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
|
|
printf("after opt_root()\n");
|
|
opt_dump(&opt_state, ic);
|
|
}
|
|
#endif
|
|
opt_cleanup(&opt_state);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
make_marks(struct icode *ic, struct block *p)
|
|
{
|
|
if (!isMarked(ic, p)) {
|
|
Mark(ic, p);
|
|
if (BPF_CLASS(p->s.code) != BPF_RET) {
|
|
make_marks(ic, JT(p));
|
|
make_marks(ic, JF(p));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark code array such that isMarked(ic->cur_mark, i) is true
|
|
* only for nodes that are alive.
|
|
*/
|
|
static void
|
|
mark_code(struct icode *ic)
|
|
{
|
|
ic->cur_mark += 1;
|
|
make_marks(ic, ic->root);
|
|
}
|
|
|
|
/*
|
|
* True iff the two stmt lists load the same value from the packet into
|
|
* the accumulator.
|
|
*/
|
|
static int
|
|
eq_slist(struct slist *x, struct slist *y)
|
|
{
|
|
for (;;) {
|
|
while (x && x->s.code == NOP)
|
|
x = x->next;
|
|
while (y && y->s.code == NOP)
|
|
y = y->next;
|
|
if (x == 0)
|
|
return y == 0;
|
|
if (y == 0)
|
|
return x == 0;
|
|
if (x->s.code != y->s.code || x->s.k != y->s.k)
|
|
return 0;
|
|
x = x->next;
|
|
y = y->next;
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
eq_blk(struct block *b0, struct block *b1)
|
|
{
|
|
if (b0->s.code == b1->s.code &&
|
|
b0->s.k == b1->s.k &&
|
|
b0->et.succ == b1->et.succ &&
|
|
b0->ef.succ == b1->ef.succ)
|
|
return eq_slist(b0->stmts, b1->stmts);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
intern_blocks(opt_state_t *opt_state, struct icode *ic)
|
|
{
|
|
struct block *p;
|
|
u_int i, j;
|
|
int done1; /* don't shadow global */
|
|
top:
|
|
done1 = 1;
|
|
for (i = 0; i < opt_state->n_blocks; ++i)
|
|
opt_state->blocks[i]->link = 0;
|
|
|
|
mark_code(ic);
|
|
|
|
for (i = opt_state->n_blocks - 1; i != 0; ) {
|
|
--i;
|
|
if (!isMarked(ic, opt_state->blocks[i]))
|
|
continue;
|
|
for (j = i + 1; j < opt_state->n_blocks; ++j) {
|
|
if (!isMarked(ic, opt_state->blocks[j]))
|
|
continue;
|
|
if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
|
|
opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
|
|
opt_state->blocks[j]->link : opt_state->blocks[j];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < opt_state->n_blocks; ++i) {
|
|
p = opt_state->blocks[i];
|
|
if (JT(p) == 0)
|
|
continue;
|
|
if (JT(p)->link) {
|
|
done1 = 0;
|
|
JT(p) = JT(p)->link;
|
|
}
|
|
if (JF(p)->link) {
|
|
done1 = 0;
|
|
JF(p) = JF(p)->link;
|
|
}
|
|
}
|
|
if (!done1)
|
|
goto top;
|
|
}
|
|
|
|
static void
|
|
opt_cleanup(opt_state_t *opt_state)
|
|
{
|
|
free((void *)opt_state->vnode_base);
|
|
free((void *)opt_state->vmap);
|
|
free((void *)opt_state->edges);
|
|
free((void *)opt_state->space);
|
|
free((void *)opt_state->levels);
|
|
free((void *)opt_state->blocks);
|
|
}
|
|
|
|
/*
|
|
* For optimizer errors.
|
|
*/
|
|
static void PCAP_NORETURN
|
|
opt_error(opt_state_t *opt_state, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
if (opt_state->errbuf != NULL) {
|
|
va_start(ap, fmt);
|
|
(void)vsnprintf(opt_state->errbuf,
|
|
PCAP_ERRBUF_SIZE, fmt, ap);
|
|
va_end(ap);
|
|
}
|
|
longjmp(opt_state->top_ctx, 1);
|
|
/* NOTREACHED */
|
|
#ifdef _AIX
|
|
PCAP_UNREACHABLE
|
|
#endif /* _AIX */
|
|
}
|
|
|
|
/*
|
|
* Return the number of stmts in 's'.
|
|
*/
|
|
static u_int
|
|
slength(struct slist *s)
|
|
{
|
|
u_int n = 0;
|
|
|
|
for (; s; s = s->next)
|
|
if (s->s.code != NOP)
|
|
++n;
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* Return the number of nodes reachable by 'p'.
|
|
* All nodes should be initially unmarked.
|
|
*/
|
|
static int
|
|
count_blocks(struct icode *ic, struct block *p)
|
|
{
|
|
if (p == 0 || isMarked(ic, p))
|
|
return 0;
|
|
Mark(ic, p);
|
|
return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
|
|
}
|
|
|
|
/*
|
|
* Do a depth first search on the flow graph, numbering the
|
|
* the basic blocks, and entering them into the 'blocks' array.`
|
|
*/
|
|
static void
|
|
number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
|
|
{
|
|
u_int n;
|
|
|
|
if (p == 0 || isMarked(ic, p))
|
|
return;
|
|
|
|
Mark(ic, p);
|
|
n = opt_state->n_blocks++;
|
|
if (opt_state->n_blocks == 0) {
|
|
/*
|
|
* Overflow.
|
|
*/
|
|
opt_error(opt_state, "filter is too complex to optimize");
|
|
}
|
|
p->id = n;
|
|
opt_state->blocks[n] = p;
|
|
|
|
number_blks_r(opt_state, ic, JT(p));
|
|
number_blks_r(opt_state, ic, JF(p));
|
|
}
|
|
|
|
/*
|
|
* Return the number of stmts in the flowgraph reachable by 'p'.
|
|
* The nodes should be unmarked before calling.
|
|
*
|
|
* Note that "stmts" means "instructions", and that this includes
|
|
*
|
|
* side-effect statements in 'p' (slength(p->stmts));
|
|
*
|
|
* statements in the true branch from 'p' (count_stmts(JT(p)));
|
|
*
|
|
* statements in the false branch from 'p' (count_stmts(JF(p)));
|
|
*
|
|
* the conditional jump itself (1);
|
|
*
|
|
* an extra long jump if the true branch requires it (p->longjt);
|
|
*
|
|
* an extra long jump if the false branch requires it (p->longjf).
|
|
*/
|
|
static u_int
|
|
count_stmts(struct icode *ic, struct block *p)
|
|
{
|
|
u_int n;
|
|
|
|
if (p == 0 || isMarked(ic, p))
|
|
return 0;
|
|
Mark(ic, p);
|
|
n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
|
|
return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
|
|
}
|
|
|
|
/*
|
|
* Allocate memory. All allocation is done before optimization
|
|
* is begun. A linear bound on the size of all data structures is computed
|
|
* from the total number of blocks and/or statements.
|
|
*/
|
|
static void
|
|
opt_init(opt_state_t *opt_state, struct icode *ic)
|
|
{
|
|
bpf_u_int32 *p;
|
|
int i, n, max_stmts;
|
|
u_int product;
|
|
size_t block_memsize, edge_memsize;
|
|
|
|
/*
|
|
* First, count the blocks, so we can malloc an array to map
|
|
* block number to block. Then, put the blocks into the array.
|
|
*/
|
|
unMarkAll(ic);
|
|
n = count_blocks(ic, ic->root);
|
|
opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
|
|
if (opt_state->blocks == NULL)
|
|
opt_error(opt_state, "malloc");
|
|
unMarkAll(ic);
|
|
opt_state->n_blocks = 0;
|
|
number_blks_r(opt_state, ic, ic->root);
|
|
|
|
/*
|
|
* This "should not happen".
|
|
*/
|
|
if (opt_state->n_blocks == 0)
|
|
opt_error(opt_state, "filter has no instructions; please report this as a libpcap issue");
|
|
|
|
opt_state->n_edges = 2 * opt_state->n_blocks;
|
|
if ((opt_state->n_edges / 2) != opt_state->n_blocks) {
|
|
/*
|
|
* Overflow.
|
|
*/
|
|
opt_error(opt_state, "filter is too complex to optimize");
|
|
}
|
|
opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
|
|
if (opt_state->edges == NULL) {
|
|
opt_error(opt_state, "malloc");
|
|
}
|
|
|
|
/*
|
|
* The number of levels is bounded by the number of nodes.
|
|
*/
|
|
opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
|
|
if (opt_state->levels == NULL) {
|
|
opt_error(opt_state, "malloc");
|
|
}
|
|
|
|
opt_state->edgewords = opt_state->n_edges / BITS_PER_WORD + 1;
|
|
opt_state->nodewords = opt_state->n_blocks / BITS_PER_WORD + 1;
|
|
|
|
/*
|
|
* Make sure opt_state->n_blocks * opt_state->nodewords fits
|
|
* in a u_int; we use it as a u_int number-of-iterations
|
|
* value.
|
|
*/
|
|
product = opt_state->n_blocks * opt_state->nodewords;
|
|
if ((product / opt_state->n_blocks) != opt_state->nodewords) {
|
|
/*
|
|
* XXX - just punt and don't try to optimize?
|
|
* In practice, this is unlikely to happen with
|
|
* a normal filter.
|
|
*/
|
|
opt_error(opt_state, "filter is too complex to optimize");
|
|
}
|
|
|
|
/*
|
|
* Make sure the total memory required for that doesn't
|
|
* overflow.
|
|
*/
|
|
block_memsize = (size_t)2 * product * sizeof(*opt_state->space);
|
|
if ((block_memsize / product) != 2 * sizeof(*opt_state->space)) {
|
|
opt_error(opt_state, "filter is too complex to optimize");
|
|
}
|
|
|
|
/*
|
|
* Make sure opt_state->n_edges * opt_state->edgewords fits
|
|
* in a u_int; we use it as a u_int number-of-iterations
|
|
* value.
|
|
*/
|
|
product = opt_state->n_edges * opt_state->edgewords;
|
|
if ((product / opt_state->n_edges) != opt_state->edgewords) {
|
|
opt_error(opt_state, "filter is too complex to optimize");
|
|
}
|
|
|
|
/*
|
|
* Make sure the total memory required for that doesn't
|
|
* overflow.
|
|
*/
|
|
edge_memsize = (size_t)product * sizeof(*opt_state->space);
|
|
if (edge_memsize / product != sizeof(*opt_state->space)) {
|
|
opt_error(opt_state, "filter is too complex to optimize");
|
|
}
|
|
|
|
/*
|
|
* Make sure the total memory required for both of them doesn't
|
|
* overflow.
|
|
*/
|
|
if (block_memsize > SIZE_MAX - edge_memsize) {
|
|
opt_error(opt_state, "filter is too complex to optimize");
|
|
}
|
|
|
|
/* XXX */
|
|
opt_state->space = (bpf_u_int32 *)malloc(block_memsize + edge_memsize);
|
|
if (opt_state->space == NULL) {
|
|
opt_error(opt_state, "malloc");
|
|
}
|
|
p = opt_state->space;
|
|
opt_state->all_dom_sets = p;
|
|
for (i = 0; i < n; ++i) {
|
|
opt_state->blocks[i]->dom = p;
|
|
p += opt_state->nodewords;
|
|
}
|
|
opt_state->all_closure_sets = p;
|
|
for (i = 0; i < n; ++i) {
|
|
opt_state->blocks[i]->closure = p;
|
|
p += opt_state->nodewords;
|
|
}
|
|
opt_state->all_edge_sets = p;
|
|
for (i = 0; i < n; ++i) {
|
|
register struct block *b = opt_state->blocks[i];
|
|
|
|
b->et.edom = p;
|
|
p += opt_state->edgewords;
|
|
b->ef.edom = p;
|
|
p += opt_state->edgewords;
|
|
b->et.id = i;
|
|
opt_state->edges[i] = &b->et;
|
|
b->ef.id = opt_state->n_blocks + i;
|
|
opt_state->edges[opt_state->n_blocks + i] = &b->ef;
|
|
b->et.pred = b;
|
|
b->ef.pred = b;
|
|
}
|
|
max_stmts = 0;
|
|
for (i = 0; i < n; ++i)
|
|
max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
|
|
/*
|
|
* We allocate at most 3 value numbers per statement,
|
|
* so this is an upper bound on the number of valnodes
|
|
* we'll need.
|
|
*/
|
|
opt_state->maxval = 3 * max_stmts;
|
|
opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
|
|
if (opt_state->vmap == NULL) {
|
|
opt_error(opt_state, "malloc");
|
|
}
|
|
opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
|
|
if (opt_state->vnode_base == NULL) {
|
|
opt_error(opt_state, "malloc");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is only used when supporting optimizer debugging. It is
|
|
* global state, so do *not* do more than one compile in parallel
|
|
* and expect it to provide meaningful information.
|
|
*/
|
|
#ifdef BDEBUG
|
|
int bids[NBIDS];
|
|
#endif
|
|
|
|
static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...)
|
|
PCAP_PRINTFLIKE(2, 3);
|
|
|
|
/*
|
|
* Returns true if successful. Returns false if a branch has
|
|
* an offset that is too large. If so, we have marked that
|
|
* branch so that on a subsequent iteration, it will be treated
|
|
* properly.
|
|
*/
|
|
static int
|
|
convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p)
|
|
{
|
|
struct bpf_insn *dst;
|
|
struct slist *src;
|
|
u_int slen;
|
|
u_int off;
|
|
struct slist **offset = NULL;
|
|
|
|
if (p == 0 || isMarked(ic, p))
|
|
return (1);
|
|
Mark(ic, p);
|
|
|
|
if (convert_code_r(conv_state, ic, JF(p)) == 0)
|
|
return (0);
|
|
if (convert_code_r(conv_state, ic, JT(p)) == 0)
|
|
return (0);
|
|
|
|
slen = slength(p->stmts);
|
|
dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
|
|
/* inflate length by any extra jumps */
|
|
|
|
p->offset = (int)(dst - conv_state->fstart);
|
|
|
|
/* generate offset[] for convenience */
|
|
if (slen) {
|
|
offset = (struct slist **)calloc(slen, sizeof(struct slist *));
|
|
if (!offset) {
|
|
conv_error(conv_state, "not enough core");
|
|
/*NOTREACHED*/
|
|
}
|
|
}
|
|
src = p->stmts;
|
|
for (off = 0; off < slen && src; off++) {
|
|
#if 0
|
|
printf("off=%d src=%x\n", off, src);
|
|
#endif
|
|
offset[off] = src;
|
|
src = src->next;
|
|
}
|
|
|
|
off = 0;
|
|
for (src = p->stmts; src; src = src->next) {
|
|
if (src->s.code == NOP)
|
|
continue;
|
|
dst->code = (u_short)src->s.code;
|
|
dst->k = src->s.k;
|
|
|
|
/* fill block-local relative jump */
|
|
if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
|
|
#if 0
|
|
if (src->s.jt || src->s.jf) {
|
|
free(offset);
|
|
conv_error(conv_state, "illegal jmp destination");
|
|
/*NOTREACHED*/
|
|
}
|
|
#endif
|
|
goto filled;
|
|
}
|
|
if (off == slen - 2) /*???*/
|
|
goto filled;
|
|
|
|
{
|
|
u_int i;
|
|
int jt, jf;
|
|
const char ljerr[] = "%s for block-local relative jump: off=%d";
|
|
|
|
#if 0
|
|
printf("code=%x off=%d %x %x\n", src->s.code,
|
|
off, src->s.jt, src->s.jf);
|
|
#endif
|
|
|
|
if (!src->s.jt || !src->s.jf) {
|
|
free(offset);
|
|
conv_error(conv_state, ljerr, "no jmp destination", off);
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
jt = jf = 0;
|
|
for (i = 0; i < slen; i++) {
|
|
if (offset[i] == src->s.jt) {
|
|
if (jt) {
|
|
free(offset);
|
|
conv_error(conv_state, ljerr, "multiple matches", off);
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
if (i - off - 1 >= 256) {
|
|
free(offset);
|
|
conv_error(conv_state, ljerr, "out-of-range jump", off);
|
|
/*NOTREACHED*/
|
|
}
|
|
dst->jt = (u_char)(i - off - 1);
|
|
jt++;
|
|
}
|
|
if (offset[i] == src->s.jf) {
|
|
if (jf) {
|
|
free(offset);
|
|
conv_error(conv_state, ljerr, "multiple matches", off);
|
|
/*NOTREACHED*/
|
|
}
|
|
if (i - off - 1 >= 256) {
|
|
free(offset);
|
|
conv_error(conv_state, ljerr, "out-of-range jump", off);
|
|
/*NOTREACHED*/
|
|
}
|
|
dst->jf = (u_char)(i - off - 1);
|
|
jf++;
|
|
}
|
|
}
|
|
if (!jt || !jf) {
|
|
free(offset);
|
|
conv_error(conv_state, ljerr, "no destination found", off);
|
|
/*NOTREACHED*/
|
|
}
|
|
}
|
|
filled:
|
|
++dst;
|
|
++off;
|
|
}
|
|
if (offset)
|
|
free(offset);
|
|
|
|
#ifdef BDEBUG
|
|
if (dst - conv_state->fstart < NBIDS)
|
|
bids[dst - conv_state->fstart] = p->id + 1;
|
|
#endif
|
|
dst->code = (u_short)p->s.code;
|
|
dst->k = p->s.k;
|
|
if (JT(p)) {
|
|
/* number of extra jumps inserted */
|
|
u_char extrajmps = 0;
|
|
off = JT(p)->offset - (p->offset + slen) - 1;
|
|
if (off >= 256) {
|
|
/* offset too large for branch, must add a jump */
|
|
if (p->longjt == 0) {
|
|
/* mark this instruction and retry */
|
|
p->longjt++;
|
|
return(0);
|
|
}
|
|
dst->jt = extrajmps;
|
|
extrajmps++;
|
|
dst[extrajmps].code = BPF_JMP|BPF_JA;
|
|
dst[extrajmps].k = off - extrajmps;
|
|
}
|
|
else
|
|
dst->jt = (u_char)off;
|
|
off = JF(p)->offset - (p->offset + slen) - 1;
|
|
if (off >= 256) {
|
|
/* offset too large for branch, must add a jump */
|
|
if (p->longjf == 0) {
|
|
/* mark this instruction and retry */
|
|
p->longjf++;
|
|
return(0);
|
|
}
|
|
/* branch if F to following jump */
|
|
/* if two jumps are inserted, F goes to second one */
|
|
dst->jf = extrajmps;
|
|
extrajmps++;
|
|
dst[extrajmps].code = BPF_JMP|BPF_JA;
|
|
dst[extrajmps].k = off - extrajmps;
|
|
}
|
|
else
|
|
dst->jf = (u_char)off;
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
|
|
/*
|
|
* Convert flowgraph intermediate representation to the
|
|
* BPF array representation. Set *lenp to the number of instructions.
|
|
*
|
|
* This routine does *NOT* leak the memory pointed to by fp. It *must
|
|
* not* do free(fp) before returning fp; doing so would make no sense,
|
|
* as the BPF array pointed to by the return value of icode_to_fcode()
|
|
* must be valid - it's being returned for use in a bpf_program structure.
|
|
*
|
|
* If it appears that icode_to_fcode() is leaking, the problem is that
|
|
* the program using pcap_compile() is failing to free the memory in
|
|
* the BPF program when it's done - the leak is in the program, not in
|
|
* the routine that happens to be allocating the memory. (By analogy, if
|
|
* a program calls fopen() without ever calling fclose() on the FILE *,
|
|
* it will leak the FILE structure; the leak is not in fopen(), it's in
|
|
* the program.) Change the program to use pcap_freecode() when it's
|
|
* done with the filter program. See the pcap man page.
|
|
*/
|
|
struct bpf_insn *
|
|
icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp,
|
|
char *errbuf)
|
|
{
|
|
u_int n;
|
|
struct bpf_insn *fp;
|
|
conv_state_t conv_state;
|
|
|
|
conv_state.fstart = NULL;
|
|
conv_state.errbuf = errbuf;
|
|
if (setjmp(conv_state.top_ctx) != 0) {
|
|
free(conv_state.fstart);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Loop doing convert_code_r() until no branches remain
|
|
* with too-large offsets.
|
|
*/
|
|
for (;;) {
|
|
unMarkAll(ic);
|
|
n = *lenp = count_stmts(ic, root);
|
|
|
|
fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
|
|
if (fp == NULL) {
|
|
(void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
|
|
"malloc");
|
|
return NULL;
|
|
}
|
|
memset((char *)fp, 0, sizeof(*fp) * n);
|
|
conv_state.fstart = fp;
|
|
conv_state.ftail = fp + n;
|
|
|
|
unMarkAll(ic);
|
|
if (convert_code_r(&conv_state, ic, root))
|
|
break;
|
|
free(fp);
|
|
}
|
|
|
|
return fp;
|
|
}
|
|
|
|
/*
|
|
* For iconv_to_fconv() errors.
|
|
*/
|
|
static void PCAP_NORETURN
|
|
conv_error(conv_state_t *conv_state, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
(void)vsnprintf(conv_state->errbuf,
|
|
PCAP_ERRBUF_SIZE, fmt, ap);
|
|
va_end(ap);
|
|
longjmp(conv_state->top_ctx, 1);
|
|
/* NOTREACHED */
|
|
#ifdef _AIX
|
|
PCAP_UNREACHABLE
|
|
#endif /* _AIX */
|
|
}
|
|
|
|
/*
|
|
* Make a copy of a BPF program and put it in the "fcode" member of
|
|
* a "pcap_t".
|
|
*
|
|
* If we fail to allocate memory for the copy, fill in the "errbuf"
|
|
* member of the "pcap_t" with an error message, and return -1;
|
|
* otherwise, return 0.
|
|
*/
|
|
int
|
|
install_bpf_program(pcap_t *p, struct bpf_program *fp)
|
|
{
|
|
size_t prog_size;
|
|
|
|
/*
|
|
* Validate the program.
|
|
*/
|
|
if (!pcap_validate_filter(fp->bf_insns, fp->bf_len)) {
|
|
snprintf(p->errbuf, sizeof(p->errbuf),
|
|
"BPF program is not valid");
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Free up any already installed program.
|
|
*/
|
|
pcap_freecode(&p->fcode);
|
|
|
|
prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
|
|
p->fcode.bf_len = fp->bf_len;
|
|
p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
|
|
if (p->fcode.bf_insns == NULL) {
|
|
pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf),
|
|
errno, "malloc");
|
|
return (-1);
|
|
}
|
|
memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
|
|
return (0);
|
|
}
|
|
|
|
#ifdef BDEBUG
|
|
static void
|
|
dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
|
|
FILE *out)
|
|
{
|
|
int icount, noffset;
|
|
int i;
|
|
|
|
if (block == NULL || isMarked(ic, block))
|
|
return;
|
|
Mark(ic, block);
|
|
|
|
icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
|
|
noffset = min(block->offset + icount, (int)prog->bf_len);
|
|
|
|
fprintf(out, "\tblock%u [shape=ellipse, id=\"block-%u\" label=\"BLOCK%u\\n", block->id, block->id, block->id);
|
|
for (i = block->offset; i < noffset; i++) {
|
|
fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
|
|
}
|
|
fprintf(out, "\" tooltip=\"");
|
|
for (i = 0; i < BPF_MEMWORDS; i++)
|
|
if (block->val[i] != VAL_UNKNOWN)
|
|
fprintf(out, "val[%d]=%d ", i, block->val[i]);
|
|
fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
|
|
fprintf(out, "val[X]=%d", block->val[X_ATOM]);
|
|
fprintf(out, "\"");
|
|
if (JT(block) == NULL)
|
|
fprintf(out, ", peripheries=2");
|
|
fprintf(out, "];\n");
|
|
|
|
dot_dump_node(ic, JT(block), prog, out);
|
|
dot_dump_node(ic, JF(block), prog, out);
|
|
}
|
|
|
|
static void
|
|
dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
|
|
{
|
|
if (block == NULL || isMarked(ic, block))
|
|
return;
|
|
Mark(ic, block);
|
|
|
|
if (JT(block)) {
|
|
fprintf(out, "\t\"block%u\":se -> \"block%u\":n [label=\"T\"]; \n",
|
|
block->id, JT(block)->id);
|
|
fprintf(out, "\t\"block%u\":sw -> \"block%u\":n [label=\"F\"]; \n",
|
|
block->id, JF(block)->id);
|
|
}
|
|
dot_dump_edge(ic, JT(block), out);
|
|
dot_dump_edge(ic, JF(block), out);
|
|
}
|
|
|
|
/* Output the block CFG using graphviz/DOT language
|
|
* In the CFG, block's code, value index for each registers at EXIT,
|
|
* and the jump relationship is show.
|
|
*
|
|
* example DOT for BPF `ip src host 1.1.1.1' is:
|
|
digraph BPF {
|
|
block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"];
|
|
block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"];
|
|
block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
|
|
block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
|
|
"block0":se -> "block1":n [label="T"];
|
|
"block0":sw -> "block3":n [label="F"];
|
|
"block1":se -> "block2":n [label="T"];
|
|
"block1":sw -> "block3":n [label="F"];
|
|
}
|
|
*
|
|
* After install graphviz on https://www.graphviz.org/, save it as bpf.dot
|
|
* and run `dot -Tpng -O bpf.dot' to draw the graph.
|
|
*/
|
|
static int
|
|
dot_dump(struct icode *ic, char *errbuf)
|
|
{
|
|
struct bpf_program f;
|
|
FILE *out = stdout;
|
|
|
|
memset(bids, 0, sizeof bids);
|
|
f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
|
|
if (f.bf_insns == NULL)
|
|
return -1;
|
|
|
|
fprintf(out, "digraph BPF {\n");
|
|
unMarkAll(ic);
|
|
dot_dump_node(ic, ic->root, &f, out);
|
|
unMarkAll(ic);
|
|
dot_dump_edge(ic, ic->root, out);
|
|
fprintf(out, "}\n");
|
|
|
|
free((char *)f.bf_insns);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
plain_dump(struct icode *ic, char *errbuf)
|
|
{
|
|
struct bpf_program f;
|
|
|
|
memset(bids, 0, sizeof bids);
|
|
f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
|
|
if (f.bf_insns == NULL)
|
|
return -1;
|
|
bpf_dump(&f, 1);
|
|
putchar('\n');
|
|
free((char *)f.bf_insns);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
opt_dump(opt_state_t *opt_state, struct icode *ic)
|
|
{
|
|
int status;
|
|
char errbuf[PCAP_ERRBUF_SIZE];
|
|
|
|
/*
|
|
* If the CFG, in DOT format, is requested, output it rather than
|
|
* the code that would be generated from that graph.
|
|
*/
|
|
if (pcap_print_dot_graph)
|
|
status = dot_dump(ic, errbuf);
|
|
else
|
|
status = plain_dump(ic, errbuf);
|
|
if (status == -1)
|
|
opt_error(opt_state, "opt_dump: icode_to_fcode failed: %s", errbuf);
|
|
}
|
|
#endif
|