freebsd-src/sys/i386/isa/labpc.c
1996-10-13 14:36:06 +00:00

1094 lines
22 KiB
C

/*
* Copyright (c) 1995 HD Associates, Inc.
* All rights reserved.
*
* HD Associates, Inc.
* PO Box 276
* Pepperell, MA 01463-0276
* dufault@hda.com
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by HD Associates, Inc.
* 4. The name of HD Associates, Inc.
* may not be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY HD ASSOCIATES ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Written by:
* Peter Dufault
* dufault@hda.com
*/
#include "labpc.h"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/errno.h>
#include <sys/buf.h>
#define b_actf b_act.tqe_next
#include <sys/dataacq.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#ifdef DEVFS
#include <sys/devfsext.h>
#endif /*DEVFS*/
#include <machine/clock.h>
#include <i386/isa/isa_device.h>
/* Miniumum timeout:
*/
#ifndef LABPC_MIN_TMO
#define LABPC_MIN_TMO (hz)
#endif
#ifndef LABPC_DEFAULT_HERZ
#define LABPC_DEFAULT_HERZ 500
#endif
/* Minor number:
* UUSIDCCC
* UU: Board unit.
* S: SCAN bit for scan enable.
* I: INTERVAL for interval support
* D: 1: Digital I/O, 0: Analog I/O
* CCC: Channel.
* Analog (D==0):
* input: channel must be 0 to 7.
* output: channel must be 0 to 2
* 0: D-A 0
* 1: D-A 1
* 2: Alternate channel 0 then 1
*
* Digital (D==1):
* input: Channel must be 0 to 2.
* output: Channel must be 0 to 2.
*/
/* Up to four boards:
*/
#define MAX_UNITS 4
#define UNIT(dev) (((minor(dev) & 0xB0) >> 6) & 0x3)
#define SCAN(dev) ((minor(dev) & 0x20) >> 5)
#define INTERVAL(dev) ((minor(dev) & 0x10) >> 4)
#define DIGITAL(dev) ((minor(dev) & 0x08) >> 3)
/* Eight channels:
*/
#define CHAN(dev) (minor(dev) & 0x7)
/* History: Derived from "dt2811.c" March 1995
*/
struct ctlr
{
int err;
#define DROPPED_INPUT 0x100
int base;
int unit;
unsigned long flags;
#define BUSY 0x00000001
u_char cr_image[4];
u_short sample_us;
struct buf start_queue; /* Start queue */
struct buf *last; /* End of start queue */
u_char *data;
u_char *data_end;
long tmo; /* Timeout in Herz */
long min_tmo; /* Timeout in Herz */
int cleared_intr;
int gains[8];
dev_t dev; /* Copy of device */
void (*starter)(struct ctlr *ctlr, long count);
void (*stop)(struct ctlr *ctlr);
void (*intr)(struct ctlr *ctlr);
/* Digital I/O support. Copy of Data Control Register for 8255:
*/
u_char dcr_val, dcr_is;
/* Device configuration structure:
*/
#ifdef DEVFS
void *devfs_token;
#endif
};
#ifdef LOUTB
/* loutb is a slow outb for debugging. The overrun test may fail
* with this for some slower processors.
*/
static inline void loutb(int port, u_char val)
{
outb(port, val);
DELAY(1);
}
#else
#define loutb(port, val) outb(port, val)
#endif
static struct ctlr **labpcs; /* XXX: Should be dynamic */
/* CR_EXPR: A macro that sets the shadow register in addition to
* sending out the data.
*/
#define CR_EXPR(LABPC, CR, EXPR) do { \
(LABPC)->cr_image[CR - 1] EXPR ; \
loutb(((LABPC)->base + ( (CR == 4) ? (0x0F) : (CR - 1))), ((LABPC)->cr_image[(CR - 1)])); \
} while (0)
#define CR_CLR(LABPC, CR) CR_EXPR(LABPC, CR, &=0)
#define CR_REFRESH(LABPC, CR) CR_EXPR(LABPC, CR, &=0xff)
#define CR_SET(LABPC, CR, EXPR) CR_EXPR(LABPC, CR, = EXPR)
/* Configuration and Status Register Group.
*/
#define CR1(LABPC) ((LABPC)->base + 0x00) /* Page 4-5 */
#define SCANEN 0x80
#define GAINMASK 0x70
#define GAIN(LABPC, SEL) do { \
(LABPC)->cr_image[1 - 1] &= ~GAINMASK; \
(LABPC)->cr_image[1 - 1] |= (SEL << 4); \
loutb((LABPC)->base + (1 - 1), (LABPC)->cr_image[(1 - 1)]); \
} while (0)
#define TWOSCMP 0x08
#define MAMASK 0x07
#define MA(LABPC, SEL) do { \
(LABPC)->cr_image[1 - 1] &= ~MAMASK; \
(LABPC)->cr_image[1 - 1] |= SEL; \
loutb((LABPC)->base + (1 - 1), (LABPC)->cr_image[(1 - 1)]); \
} while (0)
#define STATUS(LABPC) ((LABPC)->base + 0x00) /* Page 4-7 */
#define LABPCPLUS 0x80
#define EXTGATA0 0x40
#define GATA0 0x20
#define DMATC 0x10
#define CNTINT 0x08
#define OVERFLOW 0x04
#define OVERRUN 0x02
#define DAVAIL 0x01
#define CR2(LABPC) ((LABPC)->base + 0x01) /* Page 4-9 */
#define LDAC1 0x80
#define LDAC0 0x40
#define _2SDAC1 0x20
#define _2SDAC0 0x10
#define TBSEL 0x08
#define SWTRIG 0x04
#define HWTRIG 0x02
#define PRETRIG 0x01
#define SWTRIGGERRED(LABPC) ((LABPC->cr_image[1]) & SWTRIG)
#define CR3(LABPC) ((LABPC)->base + 0x02) /* Page 4-11 */
#define FIFOINTEN 0x20
#define ERRINTEN 0x10
#define CNTINTEN 0x08
#define TCINTEN 0x04
#define DIOINTEN 0x02
#define DMAEN 0x01
#define ALLINTEN 0x3E
#define FIFOINTENABLED(LABPC) ((LABPC->cr_image[2]) & FIFOINTEN)
#define CR4(LABPC) ((LABPC)->base + 0x0F) /* Page 4-13 */
#define ECLKRCV 0x10
#define SE_D 0x08
#define ECKDRV 0x04
#define EOIRCV 0x02
#define INTSCAN 0x01
/* Analog Input Register Group
*/
#define ADFIFO(LABPC) ((LABPC)->base + 0x0A) /* Page 4-16 */
#define ADCLEAR(LABPC) ((LABPC)->base + 0x08) /* Page 4-18 */
#define ADSTART(LABPC) ((LABPC)->base + 0x03) /* Page 4-19 */
#define DMATCICLR(LABPC) ((LABPC)->base + 0x0A) /* Page 4-20 */
/* Analog Output Register Group
*/
#define DAC0L(LABPC) ((LABPC)->base + 0x04) /* Page 4-22 */
#define DAC0H(LABPC) ((LABPC)->base + 0x05) /* Page 4-22 */
#define DAC1L(LABPC) ((LABPC)->base + 0x06) /* Page 4-22 */
#define DAC1H(LABPC) ((LABPC)->base + 0x07) /* Page 4-22 */
/* 8253 registers:
*/
#define A0DATA(LABPC) ((LABPC)->base + 0x14)
#define A1DATA(LABPC) ((LABPC)->base + 0x15)
#define A2DATA(LABPC) ((LABPC)->base + 0x16)
#define AMODE(LABPC) ((LABPC)->base + 0x17)
#define TICR(LABPC) ((LABPC)->base + 0x0c)
#define B0DATA(LABPC) ((LABPC)->base + 0x18)
#define B1DATA(LABPC) ((LABPC)->base + 0x19)
#define B2DATA(LABPC) ((LABPC)->base + 0x1A)
#define BMODE(LABPC) ((LABPC)->base + 0x1B)
/* 8255 registers:
*/
#define PORTX(LABPC, X) ((LABPC)->base + 0x10 + X)
#define PORTA(LABPC) PORTX(LABPC, 0)
#define PORTB(LABPC) PORTX(LABPC, 1)
#define PORTC(LABPC) PORTX(LABPC, 2)
#define DCR(LABPC) ((LABPC)->base + 0x13)
static int labpcattach(struct isa_device *dev);
static int labpcprobe(struct isa_device *dev);
struct isa_driver labpcdriver =
{ labpcprobe, labpcattach, "labpc", 0 };
static d_open_t labpcopen;
static d_close_t labpcclose;
static d_ioctl_t labpcioctl;
static d_strategy_t labpcstrategy;
#define CDEV_MAJOR 66
static struct cdevsw labpc_cdevsw =
{ labpcopen, labpcclose, rawread, rawwrite, /*66*/
labpcioctl, nostop, nullreset, nodevtotty,/* labpc */
seltrue, nommap, labpcstrategy, "labpc", NULL, -1 };
static void start(struct ctlr *ctlr);
static void
bp_done(struct buf *bp, int err)
{
bp->b_error = err;
if (err || bp->b_resid)
{
bp->b_flags |= B_ERROR;
}
biodone(bp);
}
static void tmo_stop(void *p);
static void
done_and_start_next(struct ctlr *ctlr, struct buf *bp, int err)
{
bp->b_resid = ctlr->data_end - ctlr->data;
ctlr->data = 0;
ctlr->start_queue.b_actf = bp->b_actf;
bp_done(bp, err);
untimeout(tmo_stop, ctlr);
start(ctlr);
}
static inline void
ad_clear(struct ctlr *ctlr)
{
int i;
loutb(ADCLEAR(ctlr), 0);
for (i = 0; i < 10000 && (inb(STATUS(ctlr)) & GATA0); i++)
;
(void)inb(ADFIFO(ctlr));
(void)inb(ADFIFO(ctlr));
}
/* reset: Reset the board following the sequence on page 5-1
*/
static inline void
reset(struct ctlr *ctlr)
{
int s = splhigh();
CR_CLR(ctlr, 3); /* Turn off interrupts first */
splx(s);
CR_CLR(ctlr, 1);
CR_CLR(ctlr, 2);
CR_CLR(ctlr, 4);
loutb(AMODE(ctlr), 0x34);
loutb(A0DATA(ctlr),0x0A);
loutb(A0DATA(ctlr),0x00);
loutb(DMATCICLR(ctlr), 0x00);
loutb(TICR(ctlr), 0x00);
ad_clear(ctlr);
loutb(DAC0L(ctlr), 0);
loutb(DAC0H(ctlr), 0);
loutb(DAC1L(ctlr), 0);
loutb(DAC1H(ctlr), 0);
ad_clear(ctlr);
}
/* overrun: slam the start convert register and OVERRUN should get set:
*/
static u_char
overrun(struct ctlr *ctlr)
{
int i;
u_char status = inb(STATUS(ctlr));
for (i = 0; ((status & OVERRUN) == 0) && i < 100; i++)
{
loutb(ADSTART(ctlr), 1);
status = inb(STATUS(ctlr));
}
return status;
}
static int
labpcinit(void)
{
if (NLABPC > MAX_UNITS)
return 0;
labpcs = malloc(NLABPC * sizeof(struct ctlr *), M_DEVBUF, M_NOWAIT);
if (labpcs)
{
bzero(labpcs, NLABPC * sizeof(struct cltr *));
return 1;
}
return 0;
}
static int
labpcprobe(struct isa_device *dev)
{
static unit;
struct ctlr scratch, *ctlr;
u_char status;
if (!labpcs)
{
if (labpcinit() == 0)
{
printf("labpcprobe: init failed\n");
return 0;
}
}
if (unit > NLABPC)
{
printf("Too many LAB-PCs. Reconfigure O/S.\n");
return 0;
}
ctlr = &scratch; /* Need somebody with the right base for the macros */
ctlr->base = dev->id_iobase;
/* XXX: There really isn't a perfect way to probe this board.
* Here is my best attempt:
*/
reset(ctlr);
/* After reset none of these bits should be set:
*/
status = inb(STATUS(ctlr));
if (status & (GATA0 | OVERFLOW | DAVAIL | OVERRUN))
return 0;
/* Now try to overrun the board FIFO and get the overrun bit set:
*/
status = overrun(ctlr);
if ((status & OVERRUN) == 0) /* No overrun bit set? */
return 0;
/* Assume we have a board.
*/
reset(ctlr);
if ( (labpcs[unit] = malloc(sizeof(struct ctlr), M_DEVBUF, M_NOWAIT)) )
{
struct ctlr *l = labpcs[unit];
bzero(l, sizeof(struct ctlr));
l->base = ctlr->base;
dev->id_unit = l->unit = unit;
unit++;
return 0x20;
}
else
{
printf("labpc%d: Can't malloc.\n", unit);
return 0;
}
}
/* attach: Set things in a normal state.
*/
static int
labpcattach(struct isa_device *dev)
{
struct ctlr *ctlr = labpcs[dev->id_unit];
ctlr->sample_us = (1000000.0 / (double)LABPC_DEFAULT_HERZ) + .50;
reset(ctlr);
ctlr->min_tmo = LABPC_MIN_TMO;
ctlr->dcr_val = 0x80;
ctlr->dcr_is = 0x80;
loutb(DCR(ctlr), ctlr->dcr_val);
#ifdef DEVFS
ctlr->devfs_token =
devfs_add_devswf(&labpc_cdevsw, 0, DV_CHR,
/* what UID GID PERM */
0, 0, 0600,
"labpc%d", dev->id_unit);
#endif
return 1;
}
/* Null handlers:
*/
static void null_intr (struct ctlr *ctlr) { }
static void null_start(struct ctlr *ctlr, long count) { }
static void null_stop (struct ctlr *ctlr) { }
static inline void
trigger(struct ctlr *ctlr)
{
CR_EXPR(ctlr, 2, |= SWTRIG);
}
static void
ad_start(struct ctlr *ctlr, long count)
{
if (!SWTRIGGERRED(ctlr)) {
int chan = CHAN(ctlr->dev);
CR_EXPR(ctlr, 1, &= ~SCANEN);
CR_EXPR(ctlr, 2, &= ~TBSEL);
MA(ctlr, chan);
GAIN(ctlr, ctlr->gains[chan]);
if (SCAN(ctlr->dev))
CR_EXPR(ctlr, 1, |= SCANEN);
loutb(AMODE(ctlr), 0x34);
loutb(A0DATA(ctlr), (u_char)((ctlr->sample_us & 0xff)));
loutb(A0DATA(ctlr), (u_char)((ctlr->sample_us >> 8)&0xff));
loutb(AMODE(ctlr), 0x70);
ad_clear(ctlr);
trigger(ctlr);
}
ctlr->tmo = ((count + 16) * (long)ctlr->sample_us * hz) / 1000000 +
ctlr->min_tmo;
}
static void
ad_interval_start(struct ctlr *ctlr, long count)
{
int chan = CHAN(ctlr->dev);
int n_frames = count / (chan + 1);
if (!SWTRIGGERRED(ctlr)) {
CR_EXPR(ctlr, 1, &= ~SCANEN);
CR_EXPR(ctlr, 2, &= ~TBSEL);
MA(ctlr, chan);
GAIN(ctlr, ctlr->gains[chan]);
/* XXX: Is it really possible that you clear INTSCAN as
* the documentation says? That seems pretty unlikely.
*/
CR_EXPR(ctlr, 4, &= ~INTSCAN); /* XXX: Is this possible? */
/* Program the sample interval counter to run as fast as
* possible.
*/
loutb(AMODE(ctlr), 0x34);
loutb(A0DATA(ctlr), (u_char)(0x02));
loutb(A0DATA(ctlr), (u_char)(0x00));
loutb(AMODE(ctlr), 0x70);
/* Program the interval scanning counter to run at the sample
* frequency.
*/
loutb(BMODE(ctlr), 0x74);
loutb(B1DATA(ctlr), (u_char)((ctlr->sample_us & 0xff)));
loutb(B1DATA(ctlr), (u_char)((ctlr->sample_us >> 8)&0xff));
CR_EXPR(ctlr, 1, |= SCANEN);
ad_clear(ctlr);
trigger(ctlr);
}
/* Each frame time takes two microseconds per channel times
* the number of channels being sampled plus the sample period.
*/
ctlr->tmo = ((n_frames + 16) *
((long)ctlr->sample_us + (chan + 1 ) * 2 ) * hz) / 1000000 +
ctlr->min_tmo;
}
static void
all_stop(struct ctlr *ctlr)
{
reset(ctlr);
}
static void
tmo_stop(void *p)
{
struct ctlr *ctlr = (struct ctlr *)p;
struct buf *bp;
int s = spltty();
if (ctlr == 0)
{
printf("labpc?: Null ctlr struct?\n");
splx(s);
return;
}
printf("labpc%d: timeout", ctlr->unit);
(*ctlr->stop)(ctlr);
bp = ctlr->start_queue.b_actf;
if (bp == 0) {
printf(", Null bp.\n");
splx(s);
return;
}
printf("\n");
done_and_start_next(ctlr, bp, ETIMEDOUT);
splx(s);
}
static void ad_intr(struct ctlr *ctlr)
{
u_char status;
if (ctlr->cr_image[2] == 0)
{
if (ctlr->cleared_intr)
{
ctlr->cleared_intr = 0;
return;
}
printf("ad_intr (should not happen) interrupt with interrupts off\n");
printf("status %x, cr3 %x\n", inb(STATUS(ctlr)), ctlr->cr_image[2]);
return;
}
while ( (status = (inb(STATUS(ctlr)) & (DAVAIL|OVERRUN|OVERFLOW)) ) )
{
if ((status & (OVERRUN|OVERFLOW)))
{
struct buf *bp = ctlr->start_queue.b_actf;
printf("ad_intr: error: bp %0p, data %0p, status %x",
bp, ctlr->data, status);
if (status & OVERRUN)
printf(" Conversion overrun (multiple A-D trigger)");
if (status & OVERFLOW)
printf(" FIFO overflow");
printf("\n");
if (bp)
{
done_and_start_next(ctlr, bp, EIO);
return;
}
else
{
printf("ad_intr: (should not happen) error between records\n");
ctlr->err = status; /* Set overrun condition */
return;
}
}
else /* FIFO interrupt */
{
struct buf *bp = ctlr->start_queue.b_actf;
if (ctlr->data)
{
*ctlr->data++ = inb(ADFIFO(ctlr));
if (ctlr->data == ctlr->data_end) /* Normal completion */
{
done_and_start_next(ctlr, bp, 0);
return;
}
}
else /* Interrupt with no where to put the data. */
{
printf("ad_intr: (should not happen) dropped input.\n");
(void)inb(ADFIFO(ctlr));
printf("bp %0p, status %x, cr3 %x\n", bp, status,
ctlr->cr_image[2]);
ctlr->err = DROPPED_INPUT;
return;
}
}
}
}
void labpcintr(int unit)
{
struct ctlr *ctlr = labpcs[unit];
(*ctlr->intr)(ctlr);
}
/* lockout_multiple_opens: Return whether or not we can open again, or
* if the new mode is inconsistent with an already opened mode.
* We only permit multiple opens for digital I/O now.
*/
static int
lockout_multiple_open(dev_t current, dev_t next)
{
return ! (DIGITAL(current) && DIGITAL(next));
}
static int
labpcopen(dev_t dev, int flags, int fmt, struct proc *p)
{
u_short unit = UNIT(dev);
struct ctlr *ctlr;
if (unit >= MAX_UNITS)
return ENXIO;
ctlr = labpcs[unit];
if (ctlr == 0)
return ENXIO;
/* Don't allow another open if we have to change modes.
*/
if ( (ctlr->flags & BUSY) == 0)
{
ctlr->flags |= BUSY;
reset(ctlr);
ctlr->err = 0;
ctlr->dev = dev;
ctlr->intr = null_intr;
ctlr->starter = null_start;
ctlr->stop = null_stop;
}
else if (lockout_multiple_open(ctlr->dev, dev))
return EBUSY;
return 0;
}
static int
labpcclose(dev_t dev, int flags, int fmt, struct proc *p)
{
struct ctlr *ctlr = labpcs[UNIT(dev)];
(*ctlr->stop)(ctlr);
ctlr->flags &= ~BUSY;
return 0;
}
/* Start: Start a frame going in or out.
*/
static void
start(struct ctlr *ctlr)
{
struct buf *bp;
if ((bp = ctlr->start_queue.b_actf) == 0)
{
/* We must turn off FIFO interrupts when there is no
* place to put the data. We have to get back to
* reading before the FIFO overflows.
*/
CR_EXPR(ctlr, 3, &= ~(FIFOINTEN|ERRINTEN));
ctlr->cleared_intr = 1;
ctlr->start_queue.b_bcount = 0;
return;
}
ctlr->data = (u_char *)bp->b_un.b_addr;
ctlr->data_end = ctlr->data + bp->b_bcount;
if (ctlr->err)
{
printf("labpc start: (should not happen) error between records.\n");
done_and_start_next(ctlr, bp, EIO);
return;
}
if (ctlr->data == 0)
{
printf("labpc start: (should not happen) NULL data pointer.\n");
done_and_start_next(ctlr, bp, EIO);
return;
}
(*ctlr->starter)(ctlr, bp->b_bcount);
if (!FIFOINTENABLED(ctlr)) /* We can store the data again */
{
CR_EXPR(ctlr, 3, |= (FIFOINTEN|ERRINTEN));
/* Don't wait for the interrupts to fill things up.
*/
(*ctlr->intr)(ctlr);
}
timeout(tmo_stop, ctlr, ctlr->tmo);
}
static void
ad_strategy(struct buf *bp, struct ctlr *ctlr)
{
int s;
s = spltty();
bp->b_actf = NULL;
if (ctlr->start_queue.b_bcount)
{
ctlr->last->b_actf = bp;
ctlr->last = bp;
}
else
{
ctlr->start_queue.b_bcount = 1;
ctlr->start_queue.b_actf = bp;
ctlr->last = bp;
start(ctlr);
}
splx(s);
}
/* da_strategy: Send data to the D-A. The CHAN field should be
* 0: D-A port 0
* 1: D-A port 1
* 2: Alternate port 0 then port 1
*
* XXX:
*
* 1. There is no state for CHAN field 2:
* the first sample in each buffer goes to channel 0.
*
* 2. No interrupt support yet.
*/
static void
da_strategy(struct buf *bp, struct ctlr *ctlr)
{
int len;
u_char *data;
int port;
int i;
switch(CHAN(bp->b_dev))
{
case 0:
port = DAC0L(ctlr);
break;
case 1:
port = DAC1L(ctlr);
break;
case 2: /* Device 2 handles both ports interleaved. */
if (bp->b_bcount <= 2)
{
port = DAC0L(ctlr);
break;
}
len = bp->b_bcount / 2;
data = (u_char *)bp->b_un.b_addr;
for (i = 0; i < len; i++)
{
loutb(DAC0H(ctlr), *data++);
loutb(DAC0L(ctlr), *data++);
loutb(DAC1H(ctlr), *data++);
loutb(DAC1L(ctlr), *data++);
}
bp->b_resid = bp->b_bcount & 3;
bp_done(bp, 0);
return;
default:
bp_done(bp, ENXIO);
return;
}
/* Port 0 or 1 falls through to here.
*/
if (bp->b_bcount & 1) /* Odd transfers are illegal */
bp_done(bp, EIO);
len = bp->b_bcount;
data = (u_char *)bp->b_un.b_addr;
for (i = 0; i < len; i++)
{
loutb(port + 1, *data++);
loutb(port, *data++);
}
bp->b_resid = 0;
bp_done(bp, 0);
}
/* Input masks for MODE 0 of the ports treating PC as a single
* 8 bit port. Set these bits to set the port to input.
*/
/* A B lowc highc combined */
static u_char set_input[] = { 0x10, 0x02, 0x01, 0x08, 0x09 };
static void flush_dcr(struct ctlr *ctlr)
{
if (ctlr->dcr_is != ctlr->dcr_val)
{
loutb(DCR(ctlr), ctlr->dcr_val);
ctlr->dcr_is = ctlr->dcr_val;
}
}
/* do: Digital output
*/
static void
digital_out_strategy(struct buf *bp, struct ctlr *ctlr)
{
int len;
u_char *data;
int port;
int i;
int chan = CHAN(bp->b_dev);
ctlr->dcr_val &= ~set_input[chan]; /* Digital out: Clear bit */
flush_dcr(ctlr);
port = PORTX(ctlr, chan);
len = bp->b_bcount;
data = (u_char *)bp->b_un.b_addr;
for (i = 0; i < len; i++)
{
loutb(port, *data++);
}
bp->b_resid = 0;
bp_done(bp, 0);
}
/* digital_in_strategy: Digital input
*/
static void
digital_in_strategy(struct buf *bp, struct ctlr *ctlr)
{
int len;
u_char *data;
int port;
int i;
int chan = CHAN(bp->b_dev);
ctlr->dcr_val |= set_input[chan]; /* Digital in: Set bit */
flush_dcr(ctlr);
port = PORTX(ctlr, chan);
len = bp->b_bcount;
data = (u_char *)bp->b_un.b_addr;
for (i = 0; i < len; i++)
{
*data++ = inb(port);
}
bp->b_resid = 0;
bp_done(bp, 0);
}
static void
labpcstrategy(struct buf *bp)
{
struct ctlr *ctlr = labpcs[UNIT(bp->b_dev)];
if (DIGITAL(bp->b_dev)) {
if (bp->b_flags & B_READ) {
ctlr->starter = null_start;
ctlr->stop = all_stop;
ctlr->intr = null_intr;
digital_in_strategy(bp, ctlr);
}
else
{
ctlr->starter = null_start;
ctlr->stop = all_stop;
ctlr->intr = null_intr;
digital_out_strategy(bp, ctlr);
}
}
else {
if (bp->b_flags & B_READ) {
ctlr->starter = INTERVAL(ctlr->dev) ? ad_interval_start : ad_start;
ctlr->stop = all_stop;
ctlr->intr = ad_intr;
ad_strategy(bp, ctlr);
}
else
{
ctlr->starter = null_start;
ctlr->stop = all_stop;
ctlr->intr = null_intr;
da_strategy(bp, ctlr);
}
}
}
static int
labpcioctl(dev_t dev, int cmd, caddr_t arg, int mode, struct proc *p)
{
struct ctlr *ctlr = labpcs[UNIT(dev)];
switch(cmd)
{
case AD_MICRO_PERIOD_SET:
{
/* XXX I'm only supporting what I have to, which is
* no slow periods. You can't get any slower than 15 Hz
* with the current setup. To go slower you'll need to
* support TCINTEN in CR3.
*/
long sample_us = *(long *)arg;
if (sample_us > 65535)
return EIO;
ctlr->sample_us = sample_us;
return 0;
}
case AD_MICRO_PERIOD_GET:
*(long *)arg = ctlr->sample_us;
return 0;
case AD_NGAINS_GET:
*(int *)arg = 8;
return 0;
case AD_NCHANS_GET:
*(int *)arg = 8;
return 0;
case AD_SUPPORTED_GAINS:
{
static double gains[] = {1., 1.25, 2., 5., 10., 20., 50., 100.};
copyout(gains, *(caddr_t *)arg, sizeof(gains));
return 0;
}
case AD_GAINS_SET:
{
copyin(*(caddr_t *)arg, ctlr->gains, sizeof(ctlr->gains));
return 0;
}
case AD_GAINS_GET:
{
copyout(ctlr->gains, *(caddr_t *)arg, sizeof(ctlr->gains));
return 0;
}
default:
return ENOTTY;
}
}
static labpc_devsw_installed = 0;
static void labpc_drvinit(void *unused)
{
dev_t dev;
if( ! labpc_devsw_installed ) {
dev = makedev(CDEV_MAJOR,0);
cdevsw_add(&dev,&labpc_cdevsw,NULL);
labpc_devsw_installed = 1;
}
}
SYSINIT(labpcdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,labpc_drvinit,NULL)