mirror of
https://github.com/freebsd/freebsd-src.git
synced 2024-12-01 21:33:04 +00:00
778 lines
22 KiB
C
778 lines
22 KiB
C
/*
|
|
* Copyright (c) 1982, 1986, 1991, 1993, 1995
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)in_pcb.c 8.4 (Berkeley) 5/24/95
|
|
* $Id: in_pcb.c,v 1.34 1997/08/16 19:15:36 wollman Exp $
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/route.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip_var.h>
|
|
|
|
struct in_addr zeroin_addr;
|
|
|
|
static void in_pcbinshash __P((struct inpcb *));
|
|
static void in_rtchange __P((struct inpcb *, int));
|
|
|
|
/*
|
|
* These configure the range of local port addresses assigned to
|
|
* "unspecified" outgoing connections/packets/whatever.
|
|
*/
|
|
static int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */
|
|
static int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */
|
|
static int ipport_firstauto = IPPORT_RESERVED; /* 1024 */
|
|
static int ipport_lastauto = IPPORT_USERRESERVED; /* 5000 */
|
|
static int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 40000 */
|
|
static int ipport_hilastauto = IPPORT_HILASTAUTO; /* 44999 */
|
|
|
|
#define RANGECHK(var, min, max) \
|
|
if ((var) < (min)) { (var) = (min); } \
|
|
else if ((var) > (max)) { (var) = (max); }
|
|
|
|
static int
|
|
sysctl_net_ipport_check SYSCTL_HANDLER_ARGS
|
|
{
|
|
int error = sysctl_handle_int(oidp,
|
|
oidp->oid_arg1, oidp->oid_arg2, req);
|
|
if (!error) {
|
|
RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
|
|
RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
|
|
RANGECHK(ipport_firstauto, IPPORT_RESERVED, USHRT_MAX);
|
|
RANGECHK(ipport_lastauto, IPPORT_RESERVED, USHRT_MAX);
|
|
RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, USHRT_MAX);
|
|
RANGECHK(ipport_hilastauto, IPPORT_RESERVED, USHRT_MAX);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
#undef RANGECHK
|
|
|
|
SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
|
|
|
|
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW,
|
|
&ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW,
|
|
&ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW,
|
|
&ipport_firstauto, 0, &sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW,
|
|
&ipport_lastauto, 0, &sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW,
|
|
&ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW,
|
|
&ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", "");
|
|
|
|
int
|
|
in_pcballoc(so, pcbinfo, p)
|
|
struct socket *so;
|
|
struct inpcbinfo *pcbinfo;
|
|
struct proc *p;
|
|
{
|
|
register struct inpcb *inp;
|
|
int s;
|
|
|
|
MALLOC(inp, struct inpcb *, sizeof(*inp), M_PCB,
|
|
p ? M_WAITOK : M_NOWAIT);
|
|
if (inp == NULL)
|
|
return (ENOBUFS);
|
|
bzero((caddr_t)inp, sizeof(*inp));
|
|
inp->inp_pcbinfo = pcbinfo;
|
|
inp->inp_socket = so;
|
|
s = splnet();
|
|
LIST_INSERT_HEAD(pcbinfo->listhead, inp, inp_list);
|
|
in_pcbinshash(inp);
|
|
splx(s);
|
|
so->so_pcb = (caddr_t)inp;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
in_pcbbind(inp, nam, p)
|
|
register struct inpcb *inp;
|
|
struct sockaddr *nam;
|
|
struct proc *p;
|
|
{
|
|
register struct socket *so = inp->inp_socket;
|
|
unsigned short *lastport;
|
|
struct sockaddr_in *sin;
|
|
u_short lport = 0;
|
|
int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
|
|
int error;
|
|
|
|
if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */
|
|
return (EADDRNOTAVAIL);
|
|
if (inp->inp_lport || inp->inp_laddr.s_addr != INADDR_ANY)
|
|
return (EINVAL);
|
|
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0 &&
|
|
((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0 ||
|
|
(so->so_options & SO_ACCEPTCONN) == 0))
|
|
wild = 1;
|
|
if (nam) {
|
|
sin = (struct sockaddr_in *)nam;
|
|
if (nam->sa_len != sizeof (*sin))
|
|
return (EINVAL);
|
|
#ifdef notdef
|
|
/*
|
|
* We should check the family, but old programs
|
|
* incorrectly fail to initialize it.
|
|
*/
|
|
if (sin->sin_family != AF_INET)
|
|
return (EAFNOSUPPORT);
|
|
#endif
|
|
lport = sin->sin_port;
|
|
if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
|
|
/*
|
|
* Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
|
|
* allow complete duplication of binding if
|
|
* SO_REUSEPORT is set, or if SO_REUSEADDR is set
|
|
* and a multicast address is bound on both
|
|
* new and duplicated sockets.
|
|
*/
|
|
if (so->so_options & SO_REUSEADDR)
|
|
reuseport = SO_REUSEADDR|SO_REUSEPORT;
|
|
} else if (sin->sin_addr.s_addr != INADDR_ANY) {
|
|
sin->sin_port = 0; /* yech... */
|
|
if (ifa_ifwithaddr((struct sockaddr *)sin) == 0)
|
|
return (EADDRNOTAVAIL);
|
|
}
|
|
if (lport) {
|
|
struct inpcb *t;
|
|
|
|
/* GROSS */
|
|
if (ntohs(lport) < IPPORT_RESERVED && p &&
|
|
(error = suser(p->p_ucred, &p->p_acflag)))
|
|
return (EACCES);
|
|
t = in_pcblookup(inp->inp_pcbinfo, zeroin_addr, 0,
|
|
sin->sin_addr, lport, wild);
|
|
if (t && (reuseport & t->inp_socket->so_options) == 0)
|
|
return (EADDRINUSE);
|
|
}
|
|
inp->inp_laddr = sin->sin_addr;
|
|
}
|
|
if (lport == 0) {
|
|
ushort first, last;
|
|
int count;
|
|
|
|
inp->inp_flags |= INP_ANONPORT;
|
|
|
|
if (inp->inp_flags & INP_HIGHPORT) {
|
|
first = ipport_hifirstauto; /* sysctl */
|
|
last = ipport_hilastauto;
|
|
lastport = &inp->inp_pcbinfo->lasthi;
|
|
} else if (inp->inp_flags & INP_LOWPORT) {
|
|
if (p && (error = suser(p->p_ucred, &p->p_acflag)))
|
|
return error;
|
|
first = ipport_lowfirstauto; /* 1023 */
|
|
last = ipport_lowlastauto; /* 600 */
|
|
lastport = &inp->inp_pcbinfo->lastlow;
|
|
} else {
|
|
first = ipport_firstauto; /* sysctl */
|
|
last = ipport_lastauto;
|
|
lastport = &inp->inp_pcbinfo->lastport;
|
|
}
|
|
/*
|
|
* Simple check to ensure all ports are not used up causing
|
|
* a deadlock here.
|
|
*
|
|
* We split the two cases (up and down) so that the direction
|
|
* is not being tested on each round of the loop.
|
|
*/
|
|
if (first > last) {
|
|
/*
|
|
* counting down
|
|
*/
|
|
count = first - last;
|
|
|
|
do {
|
|
if (count-- <= 0) /* completely used? */
|
|
return (EADDRNOTAVAIL);
|
|
--*lastport;
|
|
if (*lastport > first || *lastport < last)
|
|
*lastport = first;
|
|
lport = htons(*lastport);
|
|
} while (in_pcblookup(inp->inp_pcbinfo,
|
|
zeroin_addr, 0, inp->inp_laddr, lport, wild));
|
|
} else {
|
|
/*
|
|
* counting up
|
|
*/
|
|
count = last - first;
|
|
|
|
do {
|
|
if (count-- <= 0) /* completely used? */
|
|
return (EADDRNOTAVAIL);
|
|
++*lastport;
|
|
if (*lastport < first || *lastport > last)
|
|
*lastport = first;
|
|
lport = htons(*lastport);
|
|
} while (in_pcblookup(inp->inp_pcbinfo,
|
|
zeroin_addr, 0, inp->inp_laddr, lport, wild));
|
|
}
|
|
}
|
|
inp->inp_lport = lport;
|
|
in_pcbrehash(inp);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Transform old in_pcbconnect() into an inner subroutine for new
|
|
* in_pcbconnect(): Do some validity-checking on the remote
|
|
* address (in mbuf 'nam') and then determine local host address
|
|
* (i.e., which interface) to use to access that remote host.
|
|
*
|
|
* This preserves definition of in_pcbconnect(), while supporting a
|
|
* slightly different version for T/TCP. (This is more than
|
|
* a bit of a kludge, but cleaning up the internal interfaces would
|
|
* have forced minor changes in every protocol).
|
|
*/
|
|
|
|
int
|
|
in_pcbladdr(inp, nam, plocal_sin)
|
|
register struct inpcb *inp;
|
|
struct sockaddr *nam;
|
|
struct sockaddr_in **plocal_sin;
|
|
{
|
|
struct in_ifaddr *ia;
|
|
register struct sockaddr_in *sin = (struct sockaddr_in *)nam;
|
|
|
|
if (nam->sa_len != sizeof (*sin))
|
|
return (EINVAL);
|
|
if (sin->sin_family != AF_INET)
|
|
return (EAFNOSUPPORT);
|
|
if (sin->sin_port == 0)
|
|
return (EADDRNOTAVAIL);
|
|
if (!TAILQ_EMPTY(&in_ifaddrhead)) {
|
|
/*
|
|
* If the destination address is INADDR_ANY,
|
|
* use the primary local address.
|
|
* If the supplied address is INADDR_BROADCAST,
|
|
* and the primary interface supports broadcast,
|
|
* choose the broadcast address for that interface.
|
|
*/
|
|
#define satosin(sa) ((struct sockaddr_in *)(sa))
|
|
#define sintosa(sin) ((struct sockaddr *)(sin))
|
|
#define ifatoia(ifa) ((struct in_ifaddr *)(ifa))
|
|
if (sin->sin_addr.s_addr == INADDR_ANY)
|
|
sin->sin_addr = IA_SIN(in_ifaddrhead.tqh_first)->sin_addr;
|
|
else if (sin->sin_addr.s_addr == (u_long)INADDR_BROADCAST &&
|
|
(in_ifaddrhead.tqh_first->ia_ifp->if_flags & IFF_BROADCAST))
|
|
sin->sin_addr = satosin(&in_ifaddrhead.tqh_first->ia_broadaddr)->sin_addr;
|
|
}
|
|
if (inp->inp_laddr.s_addr == INADDR_ANY) {
|
|
register struct route *ro;
|
|
|
|
ia = (struct in_ifaddr *)0;
|
|
/*
|
|
* If route is known or can be allocated now,
|
|
* our src addr is taken from the i/f, else punt.
|
|
*/
|
|
ro = &inp->inp_route;
|
|
if (ro->ro_rt &&
|
|
(satosin(&ro->ro_dst)->sin_addr.s_addr !=
|
|
sin->sin_addr.s_addr ||
|
|
inp->inp_socket->so_options & SO_DONTROUTE)) {
|
|
RTFREE(ro->ro_rt);
|
|
ro->ro_rt = (struct rtentry *)0;
|
|
}
|
|
if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0 && /*XXX*/
|
|
(ro->ro_rt == (struct rtentry *)0 ||
|
|
ro->ro_rt->rt_ifp == (struct ifnet *)0)) {
|
|
/* No route yet, so try to acquire one */
|
|
ro->ro_dst.sa_family = AF_INET;
|
|
ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
|
|
((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
|
|
sin->sin_addr;
|
|
rtalloc(ro);
|
|
}
|
|
/*
|
|
* If we found a route, use the address
|
|
* corresponding to the outgoing interface
|
|
* unless it is the loopback (in case a route
|
|
* to our address on another net goes to loopback).
|
|
*/
|
|
if (ro->ro_rt && !(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK))
|
|
ia = ifatoia(ro->ro_rt->rt_ifa);
|
|
if (ia == 0) {
|
|
u_short fport = sin->sin_port;
|
|
|
|
sin->sin_port = 0;
|
|
ia = ifatoia(ifa_ifwithdstaddr(sintosa(sin)));
|
|
if (ia == 0)
|
|
ia = ifatoia(ifa_ifwithnet(sintosa(sin)));
|
|
sin->sin_port = fport;
|
|
if (ia == 0)
|
|
ia = in_ifaddrhead.tqh_first;
|
|
if (ia == 0)
|
|
return (EADDRNOTAVAIL);
|
|
}
|
|
/*
|
|
* If the destination address is multicast and an outgoing
|
|
* interface has been set as a multicast option, use the
|
|
* address of that interface as our source address.
|
|
*/
|
|
if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
|
|
inp->inp_moptions != NULL) {
|
|
struct ip_moptions *imo;
|
|
struct ifnet *ifp;
|
|
|
|
imo = inp->inp_moptions;
|
|
if (imo->imo_multicast_ifp != NULL) {
|
|
ifp = imo->imo_multicast_ifp;
|
|
for (ia = in_ifaddrhead.tqh_first; ia;
|
|
ia = ia->ia_link.tqe_next)
|
|
if (ia->ia_ifp == ifp)
|
|
break;
|
|
if (ia == 0)
|
|
return (EADDRNOTAVAIL);
|
|
}
|
|
}
|
|
/*
|
|
* Don't do pcblookup call here; return interface in plocal_sin
|
|
* and exit to caller, that will do the lookup.
|
|
*/
|
|
*plocal_sin = &ia->ia_addr;
|
|
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Outer subroutine:
|
|
* Connect from a socket to a specified address.
|
|
* Both address and port must be specified in argument sin.
|
|
* If don't have a local address for this socket yet,
|
|
* then pick one.
|
|
*/
|
|
int
|
|
in_pcbconnect(inp, nam, p)
|
|
register struct inpcb *inp;
|
|
struct sockaddr *nam;
|
|
struct proc *p;
|
|
{
|
|
struct sockaddr_in *ifaddr;
|
|
register struct sockaddr_in *sin = (struct sockaddr_in *)nam;
|
|
int error;
|
|
|
|
/*
|
|
* Call inner routine, to assign local interface address.
|
|
*/
|
|
if (error = in_pcbladdr(inp, nam, &ifaddr))
|
|
return(error);
|
|
|
|
if (in_pcblookuphash(inp->inp_pcbinfo, sin->sin_addr, sin->sin_port,
|
|
inp->inp_laddr.s_addr ? inp->inp_laddr : ifaddr->sin_addr,
|
|
inp->inp_lport, 0) != NULL)
|
|
return (EADDRINUSE);
|
|
if (inp->inp_laddr.s_addr == INADDR_ANY) {
|
|
if (inp->inp_lport == 0)
|
|
(void)in_pcbbind(inp, (struct sockaddr *)0, p);
|
|
inp->inp_laddr = ifaddr->sin_addr;
|
|
}
|
|
inp->inp_faddr = sin->sin_addr;
|
|
inp->inp_fport = sin->sin_port;
|
|
in_pcbrehash(inp);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
in_pcbdisconnect(inp)
|
|
struct inpcb *inp;
|
|
{
|
|
|
|
inp->inp_faddr.s_addr = INADDR_ANY;
|
|
inp->inp_fport = 0;
|
|
in_pcbrehash(inp);
|
|
if (inp->inp_socket->so_state & SS_NOFDREF)
|
|
in_pcbdetach(inp);
|
|
}
|
|
|
|
void
|
|
in_pcbdetach(inp)
|
|
struct inpcb *inp;
|
|
{
|
|
struct socket *so = inp->inp_socket;
|
|
int s;
|
|
|
|
so->so_pcb = 0;
|
|
sofree(so);
|
|
if (inp->inp_options)
|
|
(void)m_free(inp->inp_options);
|
|
if (inp->inp_route.ro_rt)
|
|
rtfree(inp->inp_route.ro_rt);
|
|
ip_freemoptions(inp->inp_moptions);
|
|
s = splnet();
|
|
LIST_REMOVE(inp, inp_hash);
|
|
LIST_REMOVE(inp, inp_list);
|
|
splx(s);
|
|
FREE(inp, M_PCB);
|
|
}
|
|
|
|
/*
|
|
* The calling convention of in_setsockaddr() and in_setpeeraddr() was
|
|
* modified to match the pru_sockaddr() and pru_peeraddr() entry points
|
|
* in struct pr_usrreqs, so that protocols can just reference then directly
|
|
* without the need for a wrapper function. The socket must have a valid
|
|
* (i.e., non-nil) PCB, but it should be impossible to get an invalid one
|
|
* except through a kernel programming error, so it is acceptable to panic
|
|
* (or in this case trap) if the PCB is invalid. (Actually, we don't trap
|
|
* because there actually /is/ a programming error somewhere... XXX)
|
|
*/
|
|
int
|
|
in_setsockaddr(so, nam)
|
|
struct socket *so;
|
|
struct sockaddr **nam;
|
|
{
|
|
int s;
|
|
register struct inpcb *inp;
|
|
register struct sockaddr_in *sin;
|
|
|
|
s = splnet();
|
|
inp = sotoinpcb(so);
|
|
if (!inp) {
|
|
splx(s);
|
|
return EINVAL;
|
|
}
|
|
MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, M_WAITOK);
|
|
*nam = (struct sockaddr *)sin;
|
|
bzero(sin, sizeof *sin);
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_len = sizeof(*sin);
|
|
sin->sin_port = inp->inp_lport;
|
|
sin->sin_addr = inp->inp_laddr;
|
|
splx(s);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
in_setpeeraddr(so, nam)
|
|
struct socket *so;
|
|
struct sockaddr **nam;
|
|
{
|
|
int s;
|
|
struct inpcb *inp;
|
|
register struct sockaddr_in *sin;
|
|
|
|
s = splnet();
|
|
inp = sotoinpcb(so);
|
|
if (!inp) {
|
|
splx(s);
|
|
return EINVAL;
|
|
}
|
|
MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, M_WAITOK);
|
|
*nam = (struct sockaddr *)sin;
|
|
bzero((caddr_t)sin, sizeof (*sin));
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_len = sizeof(*sin);
|
|
sin->sin_port = inp->inp_fport;
|
|
sin->sin_addr = inp->inp_faddr;
|
|
splx(s);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Pass some notification to all connections of a protocol
|
|
* associated with address dst. The local address and/or port numbers
|
|
* may be specified to limit the search. The "usual action" will be
|
|
* taken, depending on the ctlinput cmd. The caller must filter any
|
|
* cmds that are uninteresting (e.g., no error in the map).
|
|
* Call the protocol specific routine (if any) to report
|
|
* any errors for each matching socket.
|
|
*
|
|
* Must be called at splnet.
|
|
*/
|
|
void
|
|
in_pcbnotify(head, dst, fport_arg, laddr, lport_arg, cmd, notify)
|
|
struct inpcbhead *head;
|
|
struct sockaddr *dst;
|
|
u_int fport_arg, lport_arg;
|
|
struct in_addr laddr;
|
|
int cmd;
|
|
void (*notify) __P((struct inpcb *, int));
|
|
{
|
|
register struct inpcb *inp, *oinp;
|
|
struct in_addr faddr;
|
|
u_short fport = fport_arg, lport = lport_arg;
|
|
int errno, s;
|
|
|
|
if ((unsigned)cmd > PRC_NCMDS || dst->sa_family != AF_INET)
|
|
return;
|
|
faddr = ((struct sockaddr_in *)dst)->sin_addr;
|
|
if (faddr.s_addr == INADDR_ANY)
|
|
return;
|
|
|
|
/*
|
|
* Redirects go to all references to the destination,
|
|
* and use in_rtchange to invalidate the route cache.
|
|
* Dead host indications: notify all references to the destination.
|
|
* Otherwise, if we have knowledge of the local port and address,
|
|
* deliver only to that socket.
|
|
*/
|
|
if (PRC_IS_REDIRECT(cmd) || cmd == PRC_HOSTDEAD) {
|
|
fport = 0;
|
|
lport = 0;
|
|
laddr.s_addr = 0;
|
|
if (cmd != PRC_HOSTDEAD)
|
|
notify = in_rtchange;
|
|
}
|
|
errno = inetctlerrmap[cmd];
|
|
s = splnet();
|
|
for (inp = head->lh_first; inp != NULL;) {
|
|
if (inp->inp_faddr.s_addr != faddr.s_addr ||
|
|
inp->inp_socket == 0 ||
|
|
(lport && inp->inp_lport != lport) ||
|
|
(laddr.s_addr && inp->inp_laddr.s_addr != laddr.s_addr) ||
|
|
(fport && inp->inp_fport != fport)) {
|
|
inp = inp->inp_list.le_next;
|
|
continue;
|
|
}
|
|
oinp = inp;
|
|
inp = inp->inp_list.le_next;
|
|
if (notify)
|
|
(*notify)(oinp, errno);
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Check for alternatives when higher level complains
|
|
* about service problems. For now, invalidate cached
|
|
* routing information. If the route was created dynamically
|
|
* (by a redirect), time to try a default gateway again.
|
|
*/
|
|
void
|
|
in_losing(inp)
|
|
struct inpcb *inp;
|
|
{
|
|
register struct rtentry *rt;
|
|
struct rt_addrinfo info;
|
|
|
|
if ((rt = inp->inp_route.ro_rt)) {
|
|
inp->inp_route.ro_rt = 0;
|
|
bzero((caddr_t)&info, sizeof(info));
|
|
info.rti_info[RTAX_DST] =
|
|
(struct sockaddr *)&inp->inp_route.ro_dst;
|
|
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
|
|
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
|
|
rt_missmsg(RTM_LOSING, &info, rt->rt_flags, 0);
|
|
if (rt->rt_flags & RTF_DYNAMIC)
|
|
(void) rtrequest(RTM_DELETE, rt_key(rt),
|
|
rt->rt_gateway, rt_mask(rt), rt->rt_flags,
|
|
(struct rtentry **)0);
|
|
else
|
|
/*
|
|
* A new route can be allocated
|
|
* the next time output is attempted.
|
|
*/
|
|
rtfree(rt);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* After a routing change, flush old routing
|
|
* and allocate a (hopefully) better one.
|
|
*/
|
|
static void
|
|
in_rtchange(inp, errno)
|
|
register struct inpcb *inp;
|
|
int errno;
|
|
{
|
|
if (inp->inp_route.ro_rt) {
|
|
rtfree(inp->inp_route.ro_rt);
|
|
inp->inp_route.ro_rt = 0;
|
|
/*
|
|
* A new route can be allocated the next time
|
|
* output is attempted.
|
|
*/
|
|
}
|
|
}
|
|
|
|
struct inpcb *
|
|
in_pcblookup(pcbinfo, faddr, fport_arg, laddr, lport_arg, wild_okay)
|
|
struct inpcbinfo *pcbinfo;
|
|
struct in_addr faddr, laddr;
|
|
u_int fport_arg, lport_arg;
|
|
int wild_okay;
|
|
{
|
|
register struct inpcb *inp, *match = NULL;
|
|
int matchwild = 3, wildcard;
|
|
u_short fport = fport_arg, lport = lport_arg;
|
|
int s;
|
|
|
|
s = splnet();
|
|
|
|
for (inp = pcbinfo->listhead->lh_first; inp != NULL; inp = inp->inp_list.le_next) {
|
|
if (inp->inp_lport != lport)
|
|
continue;
|
|
wildcard = 0;
|
|
if (inp->inp_faddr.s_addr != INADDR_ANY) {
|
|
if (faddr.s_addr == INADDR_ANY)
|
|
wildcard++;
|
|
else if (inp->inp_faddr.s_addr != faddr.s_addr ||
|
|
inp->inp_fport != fport)
|
|
continue;
|
|
} else {
|
|
if (faddr.s_addr != INADDR_ANY)
|
|
wildcard++;
|
|
}
|
|
if (inp->inp_laddr.s_addr != INADDR_ANY) {
|
|
if (laddr.s_addr == INADDR_ANY)
|
|
wildcard++;
|
|
else if (inp->inp_laddr.s_addr != laddr.s_addr)
|
|
continue;
|
|
} else {
|
|
if (laddr.s_addr != INADDR_ANY)
|
|
wildcard++;
|
|
}
|
|
if (wildcard && wild_okay == 0)
|
|
continue;
|
|
if (wildcard < matchwild) {
|
|
match = inp;
|
|
matchwild = wildcard;
|
|
if (matchwild == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
splx(s);
|
|
return (match);
|
|
}
|
|
|
|
/*
|
|
* Lookup PCB in hash list.
|
|
*/
|
|
struct inpcb *
|
|
in_pcblookuphash(pcbinfo, faddr, fport_arg, laddr, lport_arg, wildcard)
|
|
struct inpcbinfo *pcbinfo;
|
|
struct in_addr faddr, laddr;
|
|
u_int fport_arg, lport_arg;
|
|
int wildcard;
|
|
{
|
|
struct inpcbhead *head;
|
|
register struct inpcb *inp;
|
|
u_short fport = fport_arg, lport = lport_arg;
|
|
int s;
|
|
|
|
s = splnet();
|
|
/*
|
|
* First look for an exact match.
|
|
*/
|
|
head = &pcbinfo->hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->hashmask)];
|
|
for (inp = head->lh_first; inp != NULL; inp = inp->inp_hash.le_next) {
|
|
if (inp->inp_faddr.s_addr == faddr.s_addr &&
|
|
inp->inp_laddr.s_addr == laddr.s_addr &&
|
|
inp->inp_fport == fport &&
|
|
inp->inp_lport == lport)
|
|
goto found;
|
|
}
|
|
if (wildcard) {
|
|
struct inpcb *local_wild = NULL;
|
|
|
|
head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)];
|
|
for (inp = head->lh_first; inp != NULL; inp = inp->inp_hash.le_next) {
|
|
if (inp->inp_faddr.s_addr == INADDR_ANY &&
|
|
inp->inp_fport == 0 && inp->inp_lport == lport) {
|
|
if (inp->inp_laddr.s_addr == laddr.s_addr)
|
|
goto found;
|
|
else if (inp->inp_laddr.s_addr == INADDR_ANY)
|
|
local_wild = inp;
|
|
}
|
|
}
|
|
if (local_wild != NULL) {
|
|
inp = local_wild;
|
|
goto found;
|
|
}
|
|
}
|
|
splx(s);
|
|
return (NULL);
|
|
|
|
found:
|
|
/*
|
|
* Move PCB to head of this hash chain so that it can be
|
|
* found more quickly in the future.
|
|
* XXX - this is a pessimization on machines with few
|
|
* concurrent connections.
|
|
*/
|
|
if (inp != head->lh_first) {
|
|
LIST_REMOVE(inp, inp_hash);
|
|
LIST_INSERT_HEAD(head, inp, inp_hash);
|
|
}
|
|
splx(s);
|
|
return (inp);
|
|
}
|
|
|
|
/*
|
|
* Insert PCB into hash chain. Must be called at splnet.
|
|
*/
|
|
static void
|
|
in_pcbinshash(inp)
|
|
struct inpcb *inp;
|
|
{
|
|
struct inpcbhead *head;
|
|
|
|
head = &inp->inp_pcbinfo->hashbase[INP_PCBHASH(inp->inp_faddr.s_addr,
|
|
inp->inp_lport, inp->inp_fport, inp->inp_pcbinfo->hashmask)];
|
|
|
|
LIST_INSERT_HEAD(head, inp, inp_hash);
|
|
}
|
|
|
|
void
|
|
in_pcbrehash(inp)
|
|
struct inpcb *inp;
|
|
{
|
|
struct inpcbhead *head;
|
|
int s;
|
|
|
|
s = splnet();
|
|
LIST_REMOVE(inp, inp_hash);
|
|
|
|
head = &inp->inp_pcbinfo->hashbase[INP_PCBHASH(inp->inp_faddr.s_addr,
|
|
inp->inp_lport, inp->inp_fport, inp->inp_pcbinfo->hashmask)];
|
|
|
|
LIST_INSERT_HEAD(head, inp, inp_hash);
|
|
splx(s);
|
|
}
|