openafs/tests/rx/event-t.c

179 lines
4.1 KiB
C
Raw Normal View History

/* A simple test of the rx event layer */
#include <afsconfig.h>
#include <afs/param.h>
#include <roken.h>
#include <pthread.h>
#include <tap/basic.h>
#include "rx/rx_event.h"
#include "rx/rx_clock.h"
#define NUMEVENTS 10000
/* Mutexes and condvars for the scheduler */
static int rescheduled = 0;
static pthread_mutex_t eventMutex;
static pthread_cond_t eventCond;
/* Mutexes and condvars for the event list */
static pthread_mutex_t eventListMutex;
struct testEvent {
struct rxevent *event;
int fired;
int cancelled;
};
static struct testEvent events[NUMEVENTS];
static void
reschedule(void)
{
pthread_mutex_lock(&eventMutex);
pthread_cond_signal(&eventCond);
rescheduled = 1;
pthread_mutex_unlock(&eventMutex);
return;
}
static void
eventSub(struct rxevent *event, void *arg, void *arg1, int arg2)
{
struct testEvent *evrecord = arg;
pthread_mutex_lock(&eventListMutex);
rxevent_Put(evrecord->event);
evrecord->event = NULL;
evrecord->fired = 1;
pthread_mutex_unlock(&eventListMutex);
return;
}
static void
reportSub(struct rxevent *event, void *arg, void *arg1, int arg2)
{
printf("Event fired\n");
}
static void *
eventHandler(void *dummy) {
struct timespec nextEvent;
struct clock cv;
struct clock next;
pthread_mutex_lock(&eventMutex);
while (1) {
pthread_mutex_unlock(&eventMutex);
next.sec = 30;
next.usec = 0;
clock_GetTime(&cv);
rxevent_RaiseEvents(&next);
pthread_mutex_lock(&eventMutex);
/* If we were rescheduled whilst running the event queue,
* process the queue again */
if (rescheduled) {
rescheduled = 0;
continue;
}
clock_Add(&cv, &next);
nextEvent.tv_sec = cv.sec;
nextEvent.tv_nsec = cv.usec * 1000;
pthread_cond_timedwait(&eventCond, &eventMutex, &nextEvent);
}
pthread_mutex_unlock(&eventMutex);
return NULL;
}
int
main(void)
{
int when, counter, fail, fired, cancelled;
struct clock now, eventTime;
struct rxevent *event;
pthread_t handler;
plan(8);
pthread_mutex_init(&eventMutex, NULL);
pthread_cond_init(&eventCond, NULL);
memset(events, sizeof(events), 0);
pthread_mutex_init(&eventListMutex, NULL);
/* Start up the event system */
rxevent_Init(20, reschedule);
ok(1, "Started event subsystem");
clock_GetTime(&now);
/* Test for a problem when there is only a single event in the tree */
event = rxevent_Post(&now, &now, reportSub, NULL, NULL, 0);
ok(event != NULL, "Created a single event");
rxevent_Cancel(&event, NULL, 0);
ok(1, "Cancelled a single event");
rxevent_RaiseEvents(&now);
ok(1, "RaiseEvents happened without error");
ok(pthread_create(&handler, NULL, eventHandler, NULL) == 0,
"Created handler thread");
/* Add 1000 random events to fire over the next 3 seconds */
for (counter = 0; counter < NUMEVENTS; counter++) {
when = random() % 3000;
clock_GetTime(&now);
eventTime = now;
clock_Addmsec(&eventTime, when);
pthread_mutex_lock(&eventListMutex);
events[counter].event
= rxevent_Post(&eventTime, &now, eventSub, &events[counter], NULL, 0);
/* A 10% chance that we will schedule another event at the same time */
if (counter!=999 && random() % 10 == 0) {
counter++;
events[counter].event
= rxevent_Post(&eventTime, &now, eventSub, &events[counter],
NULL, 0);
}
/* A 25% chance that we will cancel a random event */
if (random() % 4 == 0) {
int victim = random() % counter;
if (events[victim].event != NULL) {
rxevent_Cancel(&events[victim].event, NULL, 0);
events[victim].cancelled = 1;
}
}
pthread_mutex_unlock(&eventListMutex);
}
ok(1, "Added %d events", NUMEVENTS);
sleep(3);
fired = 0;
cancelled = 0;
fail = 0;
for (counter = 0; counter < NUMEVENTS; counter++) {
if (events[counter].fired)
fired++;
if (events[counter].cancelled)
cancelled++;
if (events[counter].cancelled && events[counter].fired)
fail = 1;
}
ok(!fail, "Didn't fire any cancelled events");
ok(fired+cancelled == NUMEVENTS,
"Number of fired and cancelled events sum to correct total");
return 0;
}