openafs/src/vol/salvsync-server.c
Andrew Deason e86cb488b3 SALVSYNC_com initialization typo
The size of sres_hdr is sizeof(sres_hdr), not sizeof(sres).

Reviewed-on: http://gerrit.openafs.org/393
Tested-by: Derrick Brashear <shadow@dementia.org>
Reviewed-by: Derrick Brashear <shadow@dementia.org>
2009-09-02 10:03:08 -07:00

1371 lines
34 KiB
C

/*
* Copyright 2006-2008, Sine Nomine Associates and others.
* All Rights Reserved.
*
* This software has been released under the terms of the IBM Public
* License. For details, see the LICENSE file in the top-level source
* directory or online at http://www.openafs.org/dl/license10.html
*/
/*
* salvsync-server.c
*
* OpenAFS demand attach fileserver
* Salvage server synchronization with fileserver.
*/
/* This controls the size of an fd_set; it must be defined early before
* the system headers define that type and the macros that operate on it.
* Its value should be as large as the maximum file descriptor limit we
* are likely to run into on any platform. Right now, that is 65536
* which is the default hard fd limit on Solaris 9 */
#ifndef _WIN32
#define FD_SETSIZE 65536
#endif
#include <afsconfig.h>
#include <afs/param.h>
#include <sys/types.h>
#include <stdio.h>
#ifdef AFS_NT40_ENV
#include <winsock2.h>
#include <time.h>
#else
#include <sys/param.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <sys/time.h>
#endif
#include <errno.h>
#include <assert.h>
#include <signal.h>
#include <string.h>
#include <rx/xdr.h>
#include <afs/afsint.h>
#include "nfs.h"
#include <afs/errors.h>
#include "salvsync.h"
#include "lwp.h"
#include "lock.h"
#include <afs/afssyscalls.h>
#include "ihandle.h"
#include "vnode.h"
#include "volume.h"
#include "partition.h"
#include <rx/rx_queue.h>
#include <afs/procmgmt.h>
#if !defined(offsetof)
#include <stddef.h>
#endif
#ifdef USE_UNIX_SOCKETS
#include <afs/afsutil.h>
#include <sys/un.h>
#endif
/*@printflike@*/ extern void Log(const char *format, ...);
#define MAXHANDLERS 4 /* Up to 4 clients; must be at least 2, so that
* move = dump+restore can run on single server */
/*
* This lock controls access to the handler array.
*/
struct Lock SALVSYNC_handler_lock;
#ifdef AFS_DEMAND_ATTACH_FS
/*
* SALVSYNC is a feature specific to the demand attach fileserver
*/
/* Forward declarations */
static void * SALVSYNC_syncThread(void *);
static void SALVSYNC_newconnection(osi_socket fd);
static void SALVSYNC_com(osi_socket fd);
static void SALVSYNC_Drop(osi_socket fd);
static void AcceptOn(void);
static void AcceptOff(void);
static void InitHandler(void);
static void CallHandler(fd_set * fdsetp);
static int AddHandler(osi_socket afd, void (*aproc) (int));
static int FindHandler(register osi_socket afd);
static int FindHandler_r(register osi_socket afd);
static int RemoveHandler(register osi_socket afd);
static void GetHandler(fd_set * fdsetp, int *maxfdp);
static int AllocNode(struct SalvageQueueNode ** node);
static int AddToSalvageQueue(struct SalvageQueueNode * node);
static void DeleteFromSalvageQueue(struct SalvageQueueNode * node);
static void AddToPendingQueue(struct SalvageQueueNode * node);
static void DeleteFromPendingQueue(struct SalvageQueueNode * node);
static struct SalvageQueueNode * LookupPendingCommand(SALVSYNC_command_hdr * qry);
static struct SalvageQueueNode * LookupPendingCommandByPid(int pid);
static void UpdateCommandPrio(struct SalvageQueueNode * node);
static void HandlePrio(struct SalvageQueueNode * clone,
struct SalvageQueueNode * parent,
afs_uint32 new_prio);
static int LinkNode(struct SalvageQueueNode * parent,
struct SalvageQueueNode * clone);
static struct SalvageQueueNode * LookupNode(VolumeId vid, char * partName,
struct SalvageQueueNode ** parent);
static struct SalvageQueueNode * LookupNodeByCommand(SALVSYNC_command_hdr * qry,
struct SalvageQueueNode ** parent);
static void AddNodeToHash(struct SalvageQueueNode * node);
static void DeleteNodeFromHash(struct SalvageQueueNode * node);
static afs_int32 SALVSYNC_com_Salvage(SALVSYNC_command * com, SALVSYNC_response * res);
static afs_int32 SALVSYNC_com_Cancel(SALVSYNC_command * com, SALVSYNC_response * res);
static afs_int32 SALVSYNC_com_Query(SALVSYNC_command * com, SALVSYNC_response * res);
static afs_int32 SALVSYNC_com_CancelAll(SALVSYNC_command * com, SALVSYNC_response * res);
static afs_int32 SALVSYNC_com_Link(SALVSYNC_command * com, SALVSYNC_response * res);
extern int LogLevel;
extern int VInit;
extern pthread_mutex_t vol_salvsync_mutex;
/**
* salvsync server socket handle.
*/
static SYNC_server_state_t salvsync_server_state =
{ -1, /* file descriptor */
SALVSYNC_ENDPOINT_DECL, /* server endpoint */
SALVSYNC_PROTO_VERSION, /* protocol version */
5, /* bind() retry limit */
100, /* listen() queue depth */
"SALVSYNC", /* protocol name string */
};
/**
* queue of all volumes waiting to be salvaged.
*/
struct SalvageQueue {
volatile int total_len;
volatile afs_int32 last_insert; /**< id of last partition to have a salvage node inserted */
volatile int len[VOLMAXPARTS+1];
volatile struct rx_queue part[VOLMAXPARTS+1]; /**< per-partition queues of pending salvages */
pthread_cond_t cv;
};
static struct SalvageQueue salvageQueue; /* volumes waiting to be salvaged */
/**
* queue of all volumes currently being salvaged.
*/
struct QueueHead {
volatile struct rx_queue q; /**< queue of salvages in progress */
volatile int len; /**< length of in-progress queue */
pthread_cond_t queue_change_cv;
};
static struct QueueHead pendingQueue; /* volumes being salvaged */
/* XXX
* whether a partition has a salvage in progress
*
* the salvager code only permits one salvage per partition at a time
*
* the following hack tries to keep salvaged parallelism high by
* only permitting one salvage dispatch per partition at a time
*
* unfortunately, the parallel salvager currently
* has a rather braindead routine that won't permit
* multiple salvages on the same "device". this
* function happens to break pretty badly on lvm, raid luns, etc.
*
* this hack isn't good enough to stop the device limiting code from
* crippling performance. someday that code needs to be rewritten
*/
static int partition_salvaging[VOLMAXPARTS+1];
static int HandlerFD[MAXHANDLERS];
static void (*HandlerProc[MAXHANDLERS]) (int);
#define VSHASH_SIZE 64
#define VSHASH_MASK (VSHASH_SIZE-1)
#define VSHASH(vid) ((vid)&VSHASH_MASK)
static struct QueueHead SalvageHashTable[VSHASH_SIZE];
static struct SalvageQueueNode *
LookupNode(afs_uint32 vid, char * partName,
struct SalvageQueueNode ** parent)
{
struct rx_queue *qp, *nqp;
struct SalvageQueueNode *vsp;
int idx = VSHASH(vid);
for (queue_Scan(&SalvageHashTable[idx], qp, nqp, rx_queue)) {
vsp = (struct SalvageQueueNode *)((char *)qp - offsetof(struct SalvageQueueNode, hash_chain));
if ((vsp->command.sop.volume == vid) &&
!strncmp(vsp->command.sop.partName, partName, sizeof(vsp->command.sop.partName))) {
break;
}
}
if (queue_IsEnd(&SalvageHashTable[idx], qp)) {
vsp = NULL;
}
if (parent) {
if (vsp) {
*parent = (vsp->type == SALVSYNC_VOLGROUP_CLONE) ?
vsp->volgroup.parent : vsp;
} else {
*parent = NULL;
}
}
return vsp;
}
static struct SalvageQueueNode *
LookupNodeByCommand(SALVSYNC_command_hdr * qry,
struct SalvageQueueNode ** parent)
{
return LookupNode(qry->volume, qry->partName, parent);
}
static void
AddNodeToHash(struct SalvageQueueNode * node)
{
int idx = VSHASH(node->command.sop.volume);
if (queue_IsOnQueue(&node->hash_chain)) {
return;
}
queue_Append(&SalvageHashTable[idx], &node->hash_chain);
SalvageHashTable[idx].len++;
}
static void
DeleteNodeFromHash(struct SalvageQueueNode * node)
{
int idx = VSHASH(node->command.sop.volume);
if (queue_IsNotOnQueue(&node->hash_chain)) {
return;
}
queue_Remove(&node->hash_chain);
SalvageHashTable[idx].len--;
}
void
SALVSYNC_salvInit(void)
{
int i;
pthread_t tid;
pthread_attr_t tattr;
/* initialize the queues */
Lock_Init(&SALVSYNC_handler_lock);
assert(pthread_cond_init(&salvageQueue.cv, NULL) == 0);
for (i = 0; i <= VOLMAXPARTS; i++) {
queue_Init(&salvageQueue.part[i]);
salvageQueue.len[i] = 0;
}
assert(pthread_cond_init(&pendingQueue.queue_change_cv, NULL) == 0);
queue_Init(&pendingQueue);
salvageQueue.total_len = pendingQueue.len = 0;
salvageQueue.last_insert = -1;
memset(partition_salvaging, 0, sizeof(partition_salvaging));
for (i = 0; i < VSHASH_SIZE; i++) {
assert(pthread_cond_init(&SalvageHashTable[i].queue_change_cv, NULL) == 0);
SalvageHashTable[i].len = 0;
queue_Init(&SalvageHashTable[i]);
}
/* start the salvsync thread */
assert(pthread_attr_init(&tattr) == 0);
assert(pthread_attr_setdetachstate(&tattr, PTHREAD_CREATE_DETACHED) == 0);
assert(pthread_create(&tid, &tattr, SALVSYNC_syncThread, NULL) == 0);
}
static void
CleanFDs(void)
{
int i;
for (i = 0; i < MAXHANDLERS; ++i) {
if (HandlerFD[i] >= 0) {
SALVSYNC_Drop(HandlerFD[i]);
}
}
/* just in case we were in AcceptOff mode, and thus this fd wouldn't
* have a handler */
close(salvsync_server_state.fd);
salvsync_server_state.fd = -1;
}
static fd_set SALVSYNC_readfds;
static void *
SALVSYNC_syncThread(void * args)
{
int on = 1;
int code;
int numTries;
int tid;
SYNC_server_state_t * state = &salvsync_server_state;
/* when we fork, the child needs to close the salvsync server sockets,
* otherwise, it may get salvsync requests, instead of the parent
* salvageserver */
assert(pthread_atfork(NULL, NULL, CleanFDs) == 0);
SYNC_getAddr(&state->endpoint, &state->addr);
SYNC_cleanupSock(state);
#ifndef AFS_NT40_ENV
(void)signal(SIGPIPE, SIG_IGN);
#endif
state->fd = SYNC_getSock(&state->endpoint);
code = SYNC_bindSock(state);
assert(!code);
InitHandler();
AcceptOn();
for (;;) {
int maxfd;
GetHandler(&SALVSYNC_readfds, &maxfd);
/* Note: check for >= 1 below is essential since IOMGR_select
* doesn't have exactly same semantics as select.
*/
if (select(maxfd + 1, &SALVSYNC_readfds, NULL, NULL, NULL) >= 1)
CallHandler(&SALVSYNC_readfds);
}
return NULL;
}
static void
SALVSYNC_newconnection(int afd)
{
#ifdef USE_UNIX_SOCKETS
struct sockaddr_un other;
#else /* USE_UNIX_SOCKETS */
struct sockaddr_in other;
#endif
int junk, fd;
junk = sizeof(other);
fd = accept(afd, (struct sockaddr *)&other, &junk);
if (fd == -1) {
Log("SALVSYNC_newconnection: accept failed, errno==%d\n", errno);
assert(1 == 2);
} else if (!AddHandler(fd, SALVSYNC_com)) {
AcceptOff();
assert(AddHandler(fd, SALVSYNC_com));
}
}
/* this function processes commands from an salvsync file descriptor (fd) */
static afs_int32 SALV_cnt = 0;
static void
SALVSYNC_com(osi_socket fd)
{
SYNC_command com;
SYNC_response res;
SALVSYNC_response_hdr sres_hdr;
SALVSYNC_command scom;
SALVSYNC_response sres;
SYNC_PROTO_BUF_DECL(buf);
memset(&com, 0, sizeof(com));
memset(&res, 0, sizeof(res));
memset(&scom, 0, sizeof(scom));
memset(&sres, 0, sizeof(sres));
memset(&sres_hdr, 0, sizeof(sres_hdr));
com.payload.buf = (void *)buf;
com.payload.len = SYNC_PROTO_MAX_LEN;
res.payload.buf = (void *) &sres_hdr;
res.payload.len = sizeof(sres_hdr);
res.hdr.response_len = sizeof(res.hdr) + sizeof(sres_hdr);
res.hdr.proto_version = SALVSYNC_PROTO_VERSION;
scom.hdr = &com.hdr;
scom.sop = (SALVSYNC_command_hdr *) buf;
scom.com = &com;
sres.hdr = &res.hdr;
sres.sop = &sres_hdr;
sres.res = &res;
SALV_cnt++;
if (SYNC_getCom(&salvsync_server_state, fd, &com)) {
Log("SALVSYNC_com: read failed; dropping connection (cnt=%d)\n", SALV_cnt);
SALVSYNC_Drop(fd);
return;
}
if (com.recv_len < sizeof(com.hdr)) {
Log("SALVSYNC_com: invalid protocol message length (%u)\n", com.recv_len);
res.hdr.response = SYNC_COM_ERROR;
res.hdr.reason = SYNC_REASON_MALFORMED_PACKET;
res.hdr.flags |= SYNC_FLAG_CHANNEL_SHUTDOWN;
goto respond;
}
if (com.hdr.proto_version != SALVSYNC_PROTO_VERSION) {
Log("SALVSYNC_com: invalid protocol version (%u)\n", com.hdr.proto_version);
res.hdr.response = SYNC_COM_ERROR;
res.hdr.flags |= SYNC_FLAG_CHANNEL_SHUTDOWN;
goto respond;
}
if (com.hdr.command == SYNC_COM_CHANNEL_CLOSE) {
res.hdr.response = SYNC_OK;
res.hdr.flags |= SYNC_FLAG_CHANNEL_SHUTDOWN;
goto respond;
}
if (com.recv_len != (sizeof(com.hdr) + sizeof(SALVSYNC_command_hdr))) {
Log("SALVSYNC_com: invalid protocol message length (%u)\n", com.recv_len);
res.hdr.response = SYNC_COM_ERROR;
res.hdr.reason = SYNC_REASON_MALFORMED_PACKET;
res.hdr.flags |= SYNC_FLAG_CHANNEL_SHUTDOWN;
goto respond;
}
res.hdr.com_seq = com.hdr.com_seq;
VOL_LOCK;
switch (com.hdr.command) {
case SALVSYNC_NOP:
break;
case SALVSYNC_SALVAGE:
case SALVSYNC_RAISEPRIO:
res.hdr.response = SALVSYNC_com_Salvage(&scom, &sres);
break;
case SALVSYNC_CANCEL:
/* cancel a salvage */
res.hdr.response = SALVSYNC_com_Cancel(&scom, &sres);
break;
case SALVSYNC_CANCELALL:
/* cancel all queued salvages */
res.hdr.response = SALVSYNC_com_CancelAll(&scom, &sres);
break;
case SALVSYNC_QUERY:
/* query whether a volume is done salvaging */
res.hdr.response = SALVSYNC_com_Query(&scom, &sres);
break;
case SALVSYNC_OP_LINK:
/* link a clone to its parent in the scheduler */
res.hdr.response = SALVSYNC_com_Link(&scom, &sres);
break;
default:
res.hdr.response = SYNC_BAD_COMMAND;
break;
}
sres_hdr.sq_len = salvageQueue.total_len;
sres_hdr.pq_len = pendingQueue.len;
VOL_UNLOCK;
respond:
SYNC_putRes(&salvsync_server_state, fd, &res);
if (res.hdr.flags & SYNC_FLAG_CHANNEL_SHUTDOWN) {
SALVSYNC_Drop(fd);
}
}
/**
* request that a volume be salvaged.
*
* @param[in] com inbound command object
* @param[out] res outbound response object
*
* @return operation status
* @retval SYNC_OK success
* @retval SYNC_DENIED failed to enqueue request
* @retval SYNC_FAILED malformed command packet
*
* @note this is a SALVSYNC protocol rpc handler
*
* @internal
*
* @post the volume is enqueued in the to-be-salvaged queue.
* if the volume was already in the salvage queue, its
* priority (and thus its location in the queue) are
* updated.
*/
static afs_int32
SALVSYNC_com_Salvage(SALVSYNC_command * com, SALVSYNC_response * res)
{
afs_int32 code = SYNC_OK;
struct SalvageQueueNode * node, * clone;
int hash = 0;
if (SYNC_verifyProtocolString(com->sop->partName, sizeof(com->sop->partName))) {
code = SYNC_FAILED;
res->hdr->reason = SYNC_REASON_MALFORMED_PACKET;
goto done;
}
clone = LookupNodeByCommand(com->sop, &node);
if (node == NULL) {
if (AllocNode(&node)) {
code = SYNC_DENIED;
res->hdr->reason = SYNC_REASON_NOMEM;
goto done;
}
clone = node;
hash = 1;
}
HandlePrio(clone, node, com->sop->prio);
switch (node->state) {
case SALVSYNC_STATE_QUEUED:
UpdateCommandPrio(node);
break;
case SALVSYNC_STATE_ERROR:
case SALVSYNC_STATE_DONE:
case SALVSYNC_STATE_UNKNOWN:
memcpy(&clone->command.com, com->hdr, sizeof(SYNC_command_hdr));
memcpy(&clone->command.sop, com->sop, sizeof(SALVSYNC_command_hdr));
/*
* make sure volgroup parent partition path is kept coherent
*
* If we ever want to support non-COW clones on a machine holding
* the RW site, please note that this code does not work under the
* conditions where someone zaps a COW clone on partition X, and
* subsequently creates a full clone on partition Y -- we'd need
* an inverse to SALVSYNC_com_Link.
* -- tkeiser 11/28/2007
*/
strcpy(node->command.sop.partName, com->sop->partName);
if (AddToSalvageQueue(node)) {
code = SYNC_DENIED;
}
break;
default:
break;
}
if (hash) {
AddNodeToHash(node);
}
res->hdr->flags |= SALVSYNC_FLAG_VOL_STATS_VALID;
res->sop->state = node->state;
res->sop->prio = node->command.sop.prio;
done:
return code;
}
/**
* cancel a pending salvage request.
*
* @param[in] com inbound command object
* @param[out] res outbound response object
*
* @return operation status
* @retval SYNC_OK success
* @retval SYNC_FAILED malformed command packet
*
* @note this is a SALVSYNC protocol rpc handler
*
* @internal
*/
static afs_int32
SALVSYNC_com_Cancel(SALVSYNC_command * com, SALVSYNC_response * res)
{
afs_int32 code = SYNC_OK;
struct SalvageQueueNode * node;
if (SYNC_verifyProtocolString(com->sop->partName, sizeof(com->sop->partName))) {
code = SYNC_FAILED;
res->hdr->reason = SYNC_REASON_MALFORMED_PACKET;
goto done;
}
node = LookupNodeByCommand(com->sop, NULL);
if (node == NULL) {
res->sop->state = SALVSYNC_STATE_UNKNOWN;
res->sop->prio = 0;
} else {
res->hdr->flags |= SALVSYNC_FLAG_VOL_STATS_VALID;
res->sop->prio = node->command.sop.prio;
res->sop->state = node->state;
if ((node->type == SALVSYNC_VOLGROUP_PARENT) &&
(node->state == SALVSYNC_STATE_QUEUED)) {
DeleteFromSalvageQueue(node);
}
}
done:
return code;
}
/**
* cancel all pending salvage requests.
*
* @param[in] com incoming command object
* @param[out] res outbound response object
*
* @return operation status
* @retval SYNC_OK success
*
* @note this is a SALVSYNC protocol rpc handler
*
* @internal
*/
static afs_int32
SALVSYNC_com_CancelAll(SALVSYNC_command * com, SALVSYNC_response * res)
{
struct SalvageQueueNode * np, *nnp;
struct DiskPartition64 * dp;
for (dp = DiskPartitionList ; dp ; dp = dp->next) {
for (queue_Scan(&salvageQueue.part[dp->index], np, nnp, SalvageQueueNode)) {
DeleteFromSalvageQueue(np);
}
}
return SYNC_OK;
}
/**
* link a queue node for a clone to its parent volume.
*
* @param[in] com inbound command object
* @param[out] res outbound response object
*
* @return operation status
* @retval SYNC_OK success
* @retval SYNC_FAILED malformed command packet
* @retval SYNC_DENIED the request could not be completed
*
* @note this is a SALVSYNC protocol rpc handler
*
* @post the requested volume is marked as a child of another volume.
* thus, future salvage requests for this volume will result in the
* parent of the volume group being scheduled for salvage instead
* of this clone.
*
* @internal
*/
static afs_int32
SALVSYNC_com_Link(SALVSYNC_command * com, SALVSYNC_response * res)
{
afs_int32 code = SYNC_OK;
struct SalvageQueueNode * clone, * parent;
if (SYNC_verifyProtocolString(com->sop->partName, sizeof(com->sop->partName))) {
code = SYNC_FAILED;
res->hdr->reason = SYNC_REASON_MALFORMED_PACKET;
goto done;
}
/* lookup clone's salvage scheduling node */
clone = LookupNodeByCommand(com->sop, NULL);
if (clone == NULL) {
code = SYNC_DENIED;
res->hdr->reason = SALVSYNC_REASON_ERROR;
goto done;
}
/* lookup parent's salvage scheduling node */
parent = LookupNode(com->sop->parent, com->sop->partName, NULL);
if (parent == NULL) {
if (AllocNode(&parent)) {
code = SYNC_DENIED;
res->hdr->reason = SYNC_REASON_NOMEM;
goto done;
}
memcpy(&parent->command.com, com->hdr, sizeof(SYNC_command_hdr));
memcpy(&parent->command.sop, com->sop, sizeof(SALVSYNC_command_hdr));
parent->command.sop.volume = parent->command.sop.parent = com->sop->parent;
AddNodeToHash(parent);
}
if (LinkNode(parent, clone)) {
code = SYNC_DENIED;
goto done;
}
done:
return code;
}
/**
* query the status of a volume salvage request.
*
* @param[in] com inbound command object
* @param[out] res outbound response object
*
* @return operation status
* @retval SYNC_OK success
* @retval SYNC_FAILED malformed command packet
*
* @note this is a SALVSYNC protocol rpc handler
*
* @internal
*/
static afs_int32
SALVSYNC_com_Query(SALVSYNC_command * com, SALVSYNC_response * res)
{
afs_int32 code = SYNC_OK;
struct SalvageQueueNode * node;
if (SYNC_verifyProtocolString(com->sop->partName, sizeof(com->sop->partName))) {
code = SYNC_FAILED;
res->hdr->reason = SYNC_REASON_MALFORMED_PACKET;
goto done;
}
LookupNodeByCommand(com->sop, &node);
/* query whether a volume is done salvaging */
if (node == NULL) {
res->sop->state = SALVSYNC_STATE_UNKNOWN;
res->sop->prio = 0;
} else {
res->hdr->flags |= SALVSYNC_FLAG_VOL_STATS_VALID;
res->sop->state = node->state;
res->sop->prio = node->command.sop.prio;
}
done:
return code;
}
static void
SALVSYNC_Drop(osi_socket fd)
{
RemoveHandler(fd);
#ifdef AFS_NT40_ENV
closesocket(fd);
#else
close(fd);
#endif
AcceptOn();
}
static int AcceptHandler = -1; /* handler id for accept, if turned on */
static void
AcceptOn(void)
{
if (AcceptHandler == -1) {
assert(AddHandler(salvsync_server_state.fd, SALVSYNC_newconnection));
AcceptHandler = FindHandler(salvsync_server_state.fd);
}
}
static void
AcceptOff(void)
{
if (AcceptHandler != -1) {
assert(RemoveHandler(salvsync_server_state.fd));
AcceptHandler = -1;
}
}
/* The multiple FD handling code. */
static void
InitHandler(void)
{
register int i;
ObtainWriteLock(&SALVSYNC_handler_lock);
for (i = 0; i < MAXHANDLERS; i++) {
HandlerFD[i] = -1;
HandlerProc[i] = NULL;
}
ReleaseWriteLock(&SALVSYNC_handler_lock);
}
static void
CallHandler(fd_set * fdsetp)
{
register int i;
ObtainReadLock(&SALVSYNC_handler_lock);
for (i = 0; i < MAXHANDLERS; i++) {
if (HandlerFD[i] >= 0 && FD_ISSET(HandlerFD[i], fdsetp)) {
ReleaseReadLock(&SALVSYNC_handler_lock);
(*HandlerProc[i]) (HandlerFD[i]);
ObtainReadLock(&SALVSYNC_handler_lock);
}
}
ReleaseReadLock(&SALVSYNC_handler_lock);
}
static int
AddHandler(osi_socket afd, void (*aproc) (int))
{
register int i;
ObtainWriteLock(&SALVSYNC_handler_lock);
for (i = 0; i < MAXHANDLERS; i++)
if (HandlerFD[i] == -1)
break;
if (i >= MAXHANDLERS) {
ReleaseWriteLock(&SALVSYNC_handler_lock);
return 0;
}
HandlerFD[i] = afd;
HandlerProc[i] = aproc;
ReleaseWriteLock(&SALVSYNC_handler_lock);
return 1;
}
static int
FindHandler(register osi_socket afd)
{
register int i;
ObtainReadLock(&SALVSYNC_handler_lock);
for (i = 0; i < MAXHANDLERS; i++)
if (HandlerFD[i] == afd) {
ReleaseReadLock(&SALVSYNC_handler_lock);
return i;
}
ReleaseReadLock(&SALVSYNC_handler_lock); /* just in case */
assert(1 == 2);
return -1; /* satisfy compiler */
}
static int
FindHandler_r(register osi_socket afd)
{
register int i;
for (i = 0; i < MAXHANDLERS; i++)
if (HandlerFD[i] == afd) {
return i;
}
assert(1 == 2);
return -1; /* satisfy compiler */
}
static int
RemoveHandler(register osi_socket afd)
{
ObtainWriteLock(&SALVSYNC_handler_lock);
HandlerFD[FindHandler_r(afd)] = -1;
ReleaseWriteLock(&SALVSYNC_handler_lock);
return 1;
}
static void
GetHandler(fd_set * fdsetp, int *maxfdp)
{
register int i;
register int maxfd = -1;
FD_ZERO(fdsetp);
ObtainReadLock(&SALVSYNC_handler_lock); /* just in case */
for (i = 0; i < MAXHANDLERS; i++)
if (HandlerFD[i] != -1) {
FD_SET(HandlerFD[i], fdsetp);
if (maxfd < HandlerFD[i])
maxfd = HandlerFD[i];
}
*maxfdp = maxfd;
ReleaseReadLock(&SALVSYNC_handler_lock); /* just in case */
}
/**
* allocate a salvage queue node.
*
* @param[out] node_out address in which to store new node pointer
*
* @return operation status
* @retval 0 success
* @retval 1 failed to allocate node
*
* @internal
*/
static int
AllocNode(struct SalvageQueueNode ** node_out)
{
int code = 0;
struct SalvageQueueNode * node;
*node_out = node = (struct SalvageQueueNode *)
malloc(sizeof(struct SalvageQueueNode));
if (node == NULL) {
code = 1;
goto done;
}
memset(node, 0, sizeof(struct SalvageQueueNode));
node->type = SALVSYNC_VOLGROUP_PARENT;
node->state = SALVSYNC_STATE_UNKNOWN;
done:
return code;
}
/**
* link a salvage queue node to its parent.
*
* @param[in] parent pointer to queue node for parent of volume group
* @param[in] clone pointer to queue node for a clone
*
* @return operation status
* @retval 0 success
* @retval 1 failure
*
* @internal
*/
static int
LinkNode(struct SalvageQueueNode * parent,
struct SalvageQueueNode * clone)
{
int code = 0;
int idx;
/* check for attaching a clone to a clone */
if (parent->type != SALVSYNC_VOLGROUP_PARENT) {
code = 1;
goto done;
}
/* check for pre-existing registration and openings */
for (idx = 0; idx < VOLMAXTYPES; idx++) {
if (parent->volgroup.children[idx] == clone) {
goto linked;
}
if (parent->volgroup.children[idx] == NULL) {
break;
}
}
if (idx == VOLMAXTYPES) {
code = 1;
goto done;
}
/* link parent and child */
parent->volgroup.children[idx] = clone;
clone->type = SALVSYNC_VOLGROUP_CLONE;
clone->volgroup.parent = parent;
linked:
switch (clone->state) {
case SALVSYNC_STATE_QUEUED:
DeleteFromSalvageQueue(clone);
case SALVSYNC_STATE_SALVAGING:
switch (parent->state) {
case SALVSYNC_STATE_UNKNOWN:
case SALVSYNC_STATE_ERROR:
case SALVSYNC_STATE_DONE:
parent->command.sop.prio = clone->command.sop.prio;
AddToSalvageQueue(parent);
break;
case SALVSYNC_STATE_QUEUED:
if (clone->command.sop.prio) {
parent->command.sop.prio += clone->command.sop.prio;
UpdateCommandPrio(parent);
}
break;
default:
break;
}
break;
default:
break;
}
done:
return code;
}
static void
HandlePrio(struct SalvageQueueNode * clone,
struct SalvageQueueNode * node,
afs_uint32 new_prio)
{
afs_uint32 delta;
switch (node->state) {
case SALVSYNC_STATE_ERROR:
case SALVSYNC_STATE_DONE:
case SALVSYNC_STATE_UNKNOWN:
node->command.sop.prio = 0;
break;
}
if (new_prio < clone->command.sop.prio) {
/* strange. let's just set our delta to 1 */
delta = 1;
} else {
delta = new_prio - clone->command.sop.prio;
}
if (clone->type == SALVSYNC_VOLGROUP_CLONE) {
clone->command.sop.prio = new_prio;
}
node->command.sop.prio += delta;
}
static int
AddToSalvageQueue(struct SalvageQueueNode * node)
{
afs_int32 id;
struct SalvageQueueNode * last = NULL;
id = volutil_GetPartitionID(node->command.sop.partName);
if (id < 0 || id > VOLMAXPARTS) {
return 1;
}
if (!VGetPartitionById_r(id, 0)) {
/* don't enqueue salvage requests for unmounted partitions */
return 1;
}
if (queue_IsOnQueue(node)) {
return 0;
}
if (queue_IsNotEmpty(&salvageQueue.part[id])) {
last = queue_Last(&salvageQueue.part[id], SalvageQueueNode);
}
queue_Append(&salvageQueue.part[id], node);
salvageQueue.len[id]++;
salvageQueue.total_len++;
salvageQueue.last_insert = id;
node->partition_id = id;
node->state = SALVSYNC_STATE_QUEUED;
/* reorder, if necessary */
if (last && last->command.sop.prio < node->command.sop.prio) {
UpdateCommandPrio(node);
}
assert(pthread_cond_broadcast(&salvageQueue.cv) == 0);
return 0;
}
static void
DeleteFromSalvageQueue(struct SalvageQueueNode * node)
{
if (queue_IsOnQueue(node)) {
queue_Remove(node);
salvageQueue.len[node->partition_id]--;
salvageQueue.total_len--;
node->state = SALVSYNC_STATE_UNKNOWN;
assert(pthread_cond_broadcast(&salvageQueue.cv) == 0);
}
}
static void
AddToPendingQueue(struct SalvageQueueNode * node)
{
queue_Append(&pendingQueue, node);
pendingQueue.len++;
node->state = SALVSYNC_STATE_SALVAGING;
assert(pthread_cond_broadcast(&pendingQueue.queue_change_cv) == 0);
}
static void
DeleteFromPendingQueue(struct SalvageQueueNode * node)
{
if (queue_IsOnQueue(node)) {
queue_Remove(node);
pendingQueue.len--;
node->state = SALVSYNC_STATE_UNKNOWN;
assert(pthread_cond_broadcast(&pendingQueue.queue_change_cv) == 0);
}
}
static struct SalvageQueueNode *
LookupPendingCommand(SALVSYNC_command_hdr * qry)
{
struct SalvageQueueNode * np, * nnp;
for (queue_Scan(&pendingQueue, np, nnp, SalvageQueueNode)) {
if ((np->command.sop.volume == qry->volume) &&
!strncmp(np->command.sop.partName, qry->partName,
sizeof(qry->partName)))
break;
}
if (queue_IsEnd(&pendingQueue, np))
np = NULL;
return np;
}
static struct SalvageQueueNode *
LookupPendingCommandByPid(int pid)
{
struct SalvageQueueNode * np, * nnp;
for (queue_Scan(&pendingQueue, np, nnp, SalvageQueueNode)) {
if (np->pid == pid)
break;
}
if (queue_IsEnd(&pendingQueue, np))
np = NULL;
return np;
}
/* raise the priority of a previously scheduled salvage */
static void
UpdateCommandPrio(struct SalvageQueueNode * node)
{
struct SalvageQueueNode *np, *nnp;
afs_int32 id;
afs_uint32 prio;
assert(queue_IsOnQueue(node));
prio = node->command.sop.prio;
id = node->partition_id;
if (queue_First(&salvageQueue.part[id], SalvageQueueNode)->command.sop.prio < prio) {
queue_Remove(node);
queue_Prepend(&salvageQueue.part[id], node);
} else {
for (queue_ScanBackwardsFrom(&salvageQueue.part[id], node, np, nnp, SalvageQueueNode)) {
if (np->command.sop.prio > prio)
break;
}
if (queue_IsEnd(&salvageQueue.part[id], np)) {
queue_Remove(node);
queue_Prepend(&salvageQueue.part[id], node);
} else if (node != np) {
queue_Remove(node);
queue_InsertAfter(np, node);
}
}
}
/* this will need to be rearchitected if we ever want more than one thread
* to wait for new salvage nodes */
struct SalvageQueueNode *
SALVSYNC_getWork(void)
{
int i, ret;
struct DiskPartition64 * dp = NULL, * fdp;
static afs_int32 next_part_sched = 0;
struct SalvageQueueNode *node = NULL, *np;
VOL_LOCK;
/*
* wait for work to be scheduled
* if there are no disk partitions, just sit in this wait loop forever
*/
while (!salvageQueue.total_len || !DiskPartitionList) {
VOL_CV_WAIT(&salvageQueue.cv);
}
/*
* short circuit for simple case where only one partition has
* scheduled salvages
*/
if (salvageQueue.last_insert >= 0 && salvageQueue.last_insert <= VOLMAXPARTS &&
(salvageQueue.total_len == salvageQueue.len[salvageQueue.last_insert])) {
node = queue_First(&salvageQueue.part[salvageQueue.last_insert], SalvageQueueNode);
goto have_node;
}
/*
* ok, more than one partition has scheduled salvages.
* now search for partitions with scheduled salvages, but no pending salvages.
*/
dp = VGetPartitionById_r(next_part_sched, 0);
if (!dp) {
dp = DiskPartitionList;
}
fdp = dp;
for (i=0 ;
!i || dp != fdp ;
dp = (dp->next) ? dp->next : DiskPartitionList, i++ ) {
if (!partition_salvaging[dp->index] && salvageQueue.len[dp->index]) {
node = queue_First(&salvageQueue.part[dp->index], SalvageQueueNode);
goto have_node;
}
}
/*
* all partitions with scheduled salvages have at least one pending.
* now do an exhaustive search for a scheduled salvage.
*/
dp = fdp;
for (i=0 ;
!i || dp != fdp ;
dp = (dp->next) ? dp->next : DiskPartitionList, i++ ) {
if (salvageQueue.len[dp->index]) {
node = queue_First(&salvageQueue.part[dp->index], SalvageQueueNode);
goto have_node;
}
}
/* we should never reach this line */
assert(1==2);
have_node:
assert(node != NULL);
node->pid = 0;
partition_salvaging[node->partition_id]++;
DeleteFromSalvageQueue(node);
AddToPendingQueue(node);
if (dp) {
/* update next_part_sched field */
if (dp->next) {
next_part_sched = dp->next->index;
} else if (DiskPartitionList) {
next_part_sched = DiskPartitionList->index;
} else {
next_part_sched = -1;
}
}
bail:
VOL_UNLOCK;
return node;
}
/**
* update internal scheduler state to reflect completion of a work unit.
*
* @param[in] node salvage queue node object pointer
* @param[in] result worker process result code
*
* @post scheduler state is updated.
*
* @internal
*/
static void
SALVSYNC_doneWork_r(struct SalvageQueueNode * node, int result)
{
afs_int32 partid;
int idx;
DeleteFromPendingQueue(node);
partid = node->partition_id;
if (partid >=0 && partid <= VOLMAXPARTS) {
partition_salvaging[partid]--;
}
if (result == 0) {
node->state = SALVSYNC_STATE_DONE;
} else if (result != SALSRV_EXIT_VOLGROUP_LINK) {
node->state = SALVSYNC_STATE_ERROR;
}
if (node->type == SALVSYNC_VOLGROUP_PARENT) {
for (idx = 0; idx < VOLMAXTYPES; idx++) {
if (node->volgroup.children[idx]) {
node->volgroup.children[idx]->state = node->state;
}
}
}
}
/**
* check whether worker child failed.
*
* @param[in] status status bitfield return by wait()
*
* @return boolean failure code
* @retval 0 child succeeded
* @retval 1 child failed
*
* @internal
*/
static int
ChildFailed(int status)
{
return (WCOREDUMP(status) ||
WIFSIGNALED(status) ||
((WEXITSTATUS(status) != 0) &&
(WEXITSTATUS(status) != SALSRV_EXIT_VOLGROUP_LINK)));
}
/**
* notify salvsync scheduler of node completion, by child pid.
*
* @param[in] pid pid of worker child
* @param[in] status worker status bitfield from wait()
*
* @post scheduler state is updated.
* if status code is a failure, fileserver notification was attempted
*
* @see SALVSYNC_doneWork_r
*/
void
SALVSYNC_doneWorkByPid(int pid, int status)
{
struct SalvageQueueNode * node;
char partName[16];
afs_uint32 volids[VOLMAXTYPES+1];
unsigned int idx;
memset(volids, 0, sizeof(volids));
VOL_LOCK;
node = LookupPendingCommandByPid(pid);
if (node != NULL) {
SALVSYNC_doneWork_r(node, status);
if (ChildFailed(status)) {
/* populate volume id list for later processing outside the glock */
volids[0] = node->command.sop.volume;
strcpy(partName, node->command.sop.partName);
if (node->type == SALVSYNC_VOLGROUP_PARENT) {
for (idx = 0; idx < VOLMAXTYPES; idx++) {
if (node->volgroup.children[idx]) {
volids[idx+1] = node->volgroup.children[idx]->command.sop.volume;
}
}
}
}
}
VOL_UNLOCK;
/*
* if necessary, notify fileserver of
* failure to salvage volume group
* [we cannot guarantee that the child made the
* appropriate notifications (e.g. SIGSEGV)]
* -- tkeiser 11/28/2007
*/
if (ChildFailed(status)) {
for (idx = 0; idx <= VOLMAXTYPES; idx++) {
if (volids[idx]) {
FSYNC_VolOp(volids[idx],
partName,
FSYNC_VOL_FORCE_ERROR,
FSYNC_WHATEVER,
NULL);
}
}
}
}
#endif /* AFS_DEMAND_ATTACH_FS */