zig/test/compile_errors.zig

169 lines
5.0 KiB
Zig
Raw Normal View History

separate std.Target and std.zig.CrossTarget Zig now supports a more fine-grained sense of what is native and what is not. Some examples: This is now allowed: -target native Different OS but native CPU, default Windows C ABI: -target native-windows This could be useful for example when running in Wine. Different CPU but native OS, native C ABI. -target x86_64-native -mcpu=skylake Different C ABI but otherwise native target: -target native-native-musl -target native-native-gnu Lots of breaking changes to related std lib APIs. Calls to getOs() will need to be changed to getOsTag(). Calls to getArch() will need to be changed to getCpuArch(). Usage of Target.Cross and Target.Native need to be updated to use CrossTarget API. `std.build.Builder.standardTargetOptions` is changed to accept its parameters as a struct with default values. It now has the ability to specify a whitelist of targets allowed, as well as the default target. Rather than two different ways of collecting the target, it's now always a string that is validated, and prints helpful diagnostics for invalid targets. This feature should now be actually useful, and contributions welcome to further improve the user experience. `std.build.LibExeObjStep.setTheTarget` is removed. `std.build.LibExeObjStep.setTarget` is updated to take a CrossTarget parameter. `std.build.LibExeObjStep.setTargetGLibC` is removed. glibc versions are handled in the CrossTarget API and can be specified with the `-target` triple. `std.builtin.Version` gains a `format` method.
2020-02-26 06:18:23 +00:00
const std = @import("std");
const builtin = @import("builtin");
avoid calling into stage1 backend when AstGen fails The motivation for this commit is that there exists source files which produce ast-check errors, but crash stage1 or otherwise trigger stage1 bugs. Previously to this commit, Zig would run AstGen, collect the compile errors, run stage1, report stage1 compile errors and exit if any, and then report AstGen compile errors. The main change in this commit is to report AstGen errors prior to invoking stage1, and in fact if any AstGen errors occur, do not invoke stage1 at all. This caused most of the compile error tests to fail due to things such as unused local variables and mismatched stage1/stage2 error messages. It was taking a long time to update the test cases one-by-one, so I took this opportunity to unify the stage1 and stage2 testing harness, specifically with regards to compile errors. In this way we can start keeping track of which tests pass for 1, 2, or both. `zig build test-compile-errors` no longer works; it is now integrated into `zig build test-stage2`. This is one step closer to executing compile error tests in parallel; in fact the ThreadPool object is already in scope. There are some cases where the stage1 compile errors were actually better; those are left failing in this commit, to be addressed in a follow-up commit. Other changes in this commit: * build.zig: improve support for -Dstage1 used with the test step. * AstGen: minor cosmetic changes to error messages. * stage2: add -fstage1 and -fno-stage1 flags. This now allows one to download a binary of the zig compiler and use the llvm backend of self-hosted. This was also needed for hooking up the test harness. However, I realized that stage1 calls exit() and also has memory leaks, so had to complicate the test harness by not using this flag after all and instead invoking as a child process. - These CLI flags will disappear once we start shipping the self-hosted compiler as the main compiler. Until then, they can be used to try out the work-in-progress stage2. * stage2: select the LLVM backend by default for release modes, as long as the target architecture is supported by LLVM. * test harness: support setting the optimize mode
2021-06-30 19:27:39 +01:00
const TestContext = @import("../src/test.zig").TestContext;
avoid calling into stage1 backend when AstGen fails The motivation for this commit is that there exists source files which produce ast-check errors, but crash stage1 or otherwise trigger stage1 bugs. Previously to this commit, Zig would run AstGen, collect the compile errors, run stage1, report stage1 compile errors and exit if any, and then report AstGen compile errors. The main change in this commit is to report AstGen errors prior to invoking stage1, and in fact if any AstGen errors occur, do not invoke stage1 at all. This caused most of the compile error tests to fail due to things such as unused local variables and mismatched stage1/stage2 error messages. It was taking a long time to update the test cases one-by-one, so I took this opportunity to unify the stage1 and stage2 testing harness, specifically with regards to compile errors. In this way we can start keeping track of which tests pass for 1, 2, or both. `zig build test-compile-errors` no longer works; it is now integrated into `zig build test-stage2`. This is one step closer to executing compile error tests in parallel; in fact the ThreadPool object is already in scope. There are some cases where the stage1 compile errors were actually better; those are left failing in this commit, to be addressed in a follow-up commit. Other changes in this commit: * build.zig: improve support for -Dstage1 used with the test step. * AstGen: minor cosmetic changes to error messages. * stage2: add -fstage1 and -fno-stage1 flags. This now allows one to download a binary of the zig compiler and use the llvm backend of self-hosted. This was also needed for hooking up the test harness. However, I realized that stage1 calls exit() and also has memory leaks, so had to complicate the test harness by not using this flag after all and instead invoking as a child process. - These CLI flags will disappear once we start shipping the self-hosted compiler as the main compiler. Until then, they can be used to try out the work-in-progress stage2. * stage2: select the LLVM backend by default for release modes, as long as the target architecture is supported by LLVM. * test harness: support setting the optimize mode
2021-06-30 19:27:39 +01:00
pub fn addCases(ctx: *TestContext) !void {
{
const case = ctx.obj("wrong same named struct", .{});
case.backend = .stage1;
case.addSourceFile("a.zig",
\\pub const Foo = struct {
\\ x: i32,
\\};
);
case.addSourceFile("b.zig",
\\pub const Foo = struct {
\\ z: f64,
\\};
);
case.addError(
\\const a = @import("a.zig");
\\const b = @import("b.zig");
\\
\\export fn entry() void {
\\ var a1: a.Foo = undefined;
\\ bar(&a1);
\\}
\\
\\fn bar(x: *b.Foo) void {_ = x;}
, &[_][]const u8{
"tmp.zig:6:10: error: expected type '*b.Foo', found '*a.Foo'",
"tmp.zig:6:10: note: pointer type child 'a.Foo' cannot cast into pointer type child 'b.Foo'",
"a.zig:1:17: note: a.Foo declared here",
"b.zig:1:17: note: b.Foo declared here",
});
}
{
const case = ctx.obj("multiple files with private function error", .{});
case.backend = .stage1;
case.addSourceFile("foo.zig",
\\fn privateFunction() void { }
);
2020-08-27 20:34:02 +01:00
case.addError(
\\const foo = @import("foo.zig",);
\\
\\export fn callPrivFunction() void {
\\ foo.privateFunction();
\\}
, &[_][]const u8{
"tmp.zig:4:8: error: 'privateFunction' is private",
"foo.zig:1:1: note: declared here",
});
}
{
const case = ctx.obj("multiple files with private member instance function (canonical invocation) error", .{});
case.backend = .stage1;
case.addSourceFile("foo.zig",
\\pub const Foo = struct {
\\ fn privateFunction(self: *Foo) void { _ = self; }
\\};
);
2020-08-27 20:34:02 +01:00
case.addError(
\\const Foo = @import("foo.zig",).Foo;
\\
\\export fn callPrivFunction() void {
\\ var foo = Foo{};
\\ Foo.privateFunction(foo);
\\}
, &[_][]const u8{
"tmp.zig:5:8: error: 'privateFunction' is private",
"foo.zig:2:5: note: declared here",
});
}
{
const case = ctx.obj("multiple files with private member instance function error", .{});
case.backend = .stage1;
case.addSourceFile("foo.zig",
\\pub const Foo = struct {
\\ fn privateFunction(self: *Foo) void { _ = self; }
\\};
);
case.addError(
\\const Foo = @import("foo.zig",).Foo;
\\
\\export fn callPrivFunction() void {
\\ var foo = Foo{};
\\ foo.privateFunction();
\\}
, &[_][]const u8{
"tmp.zig:5:8: error: 'privateFunction' is private",
"foo.zig:2:5: note: declared here",
});
}
{
const case = ctx.obj("export collision", .{});
case.backend = .stage1;
case.addSourceFile("foo.zig",
\\export fn bar() void {}
\\pub const baz = 1234;
);
case.addError(
\\const foo = @import("foo.zig",);
\\
\\export fn bar() usize {
\\ return foo.baz;
\\}
, &[_][]const u8{
"foo.zig:1:1: error: exported symbol collision: 'bar'",
"tmp.zig:3:1: note: other symbol here",
});
}
ctx.objErrStage1("non-printable invalid character", "\xff\xfe" ++
"fn foo() bool {\r\n" ++
" return true;\r\n" ++
"}\r\n", &[_][]const u8{
"tmp.zig:1:1: error: expected test, comptime, var decl, or container field, found 'invalid bytes'",
"tmp.zig:1:1: note: invalid byte: '\\xff'",
});
ctx.objErrStage1("non-printable invalid character with escape alternative", "fn foo() bool {\n" ++
"\treturn true;\n" ++
"}\n", &[_][]const u8{
"tmp.zig:2:1: error: invalid character: '\\t'",
});
// TODO test this in stage2, but we won't even try in stage1
//ctx.objErrStage1("inline fn calls itself indirectly",
// \\export fn foo() void {
// \\ bar();
// \\}
// \\fn bar() callconv(.Inline) void {
// \\ baz();
// \\ quux();
// \\}
// \\fn baz() callconv(.Inline) void {
// \\ bar();
// \\ quux();
// \\}
// \\extern fn quux() void;
//, &[_][]const u8{
// "tmp.zig:4:1: error: unable to inline function",
//});
//ctx.objErrStage1("save reference to inline function",
// \\export fn foo() void {
// \\ quux(@ptrToInt(bar));
// \\}
// \\fn bar() callconv(.Inline) void { }
// \\extern fn quux(usize) void;
//, &[_][]const u8{
// "tmp.zig:4:1: error: unable to inline function",
//});
}