zig/lib/std/RingBuffer.zig

231 lines
9.6 KiB
Zig
Raw Normal View History

//! This ring buffer stores read and write indices while being able to utilise
//! the full backing slice by incrementing the indices modulo twice the slice's
//! length and reducing indices modulo the slice's length on slice access. This
Improvements to docs and text * docs(std.math): elaborate on difference between absCast and absInt * docs(std.rand.Random.weightedIndex): elaborate on likelihood I think this makes it easier to understand. * langref: add small reminder * docs(std.fs.path.extension): brevity * docs(std.bit_set.StaticBitSet): mention the specific types * std.debug.TTY: explain what purpose this struct serves This should also make it clearer that this struct is not supposed to provide unrelated terminal manipulation functionality such as setting the cursor position or something because terminals are complicated and we should keep this struct simple and focused on debugging. * langref(package listing): brevity * langref: explain what exactly `threadlocal` causes to happen * std.array_list: link between swapRemove and orderedRemove Maybe this can serve as a TLDR and make it easier to decide. * PrefetchOptions.locality: clarify docs that this is a range This confused me previously and I thought I can only use either 0 or 3. * fix typos and more * std.builtin.CallingConvention: document some CCs * langref: explain possibly cryptic names I think it helps knowing what exactly these acronyms (@clz and @ctz) and abbreviations (@popCount) mean. * variadic function error: add missing preposition * std.fmt.format docs: nicely hyphenate * help menu: say what to optimize for I think this is slightly more specific than just calling it "optimizations". These are speed optimizations. I used the word "performance" here.
2023-04-23 19:06:21 +01:00
//! means that whether the ring buffer is full or empty can be distinguished by
//! looking at the difference between the read and write indices without adding
//! an extra boolean flag or having to reserve a slot in the buffer.
//!
//! This ring buffer has not been implemented with thread safety in mind, and
//! therefore should not be assumed to be suitable for use cases involving
//! separate reader and writer threads.
const Allocator = @import("std").mem.Allocator;
const assert = @import("std").debug.assert;
const copyForwards = @import("std").mem.copyForwards;
const RingBuffer = @This();
data: []u8,
read_index: usize,
write_index: usize,
pub const Error = error{ Full, ReadLengthInvalid };
/// Allocate a new `RingBuffer`; `deinit()` should be called to free the buffer.
pub fn init(allocator: Allocator, capacity: usize) Allocator.Error!RingBuffer {
const bytes = try allocator.alloc(u8, capacity);
return RingBuffer{
.data = bytes,
.write_index = 0,
.read_index = 0,
};
}
/// Free the data backing a `RingBuffer`; must be passed the same `Allocator` as
/// `init()`.
pub fn deinit(self: *RingBuffer, allocator: Allocator) void {
allocator.free(self.data);
self.* = undefined;
}
/// Returns `index` modulo the length of the backing slice.
pub fn mask(self: RingBuffer, index: usize) usize {
return index % self.data.len;
}
/// Returns `index` modulo twice the length of the backing slice.
pub fn mask2(self: RingBuffer, index: usize) usize {
return index % (2 * self.data.len);
}
/// Write `byte` into the ring buffer. Returns `error.Full` if the ring
/// buffer is full.
pub fn write(self: *RingBuffer, byte: u8) Error!void {
if (self.isFull()) return error.Full;
self.writeAssumeCapacity(byte);
}
/// Write `byte` into the ring buffer. If the ring buffer is full, the
/// oldest byte is overwritten.
pub fn writeAssumeCapacity(self: *RingBuffer, byte: u8) void {
self.data[self.mask(self.write_index)] = byte;
self.write_index = self.mask2(self.write_index + 1);
}
/// Write `bytes` into the ring buffer. Returns `error.Full` if the ring
/// buffer does not have enough space, without writing any data.
/// Uses memcpy and so `bytes` must not overlap ring buffer data.
pub fn writeSlice(self: *RingBuffer, bytes: []const u8) Error!void {
if (self.len() + bytes.len > self.data.len) return error.Full;
self.writeSliceAssumeCapacity(bytes);
}
/// Write `bytes` into the ring buffer. If there is not enough space, older
/// bytes will be overwritten.
/// Uses memcpy and so `bytes` must not overlap ring buffer data.
pub fn writeSliceAssumeCapacity(self: *RingBuffer, bytes: []const u8) void {
assert(bytes.len <= self.data.len);
const data_start = self.mask(self.write_index);
const part1_data_end = @min(data_start + bytes.len, self.data.len);
const part1_len = part1_data_end - data_start;
@memcpy(self.data[data_start..part1_data_end], bytes[0..part1_len]);
const remaining = bytes.len - part1_len;
const to_write = @min(remaining, remaining % self.data.len + self.data.len);
const part2_bytes_start = bytes.len - to_write;
const part2_bytes_end = @min(part2_bytes_start + self.data.len, bytes.len);
const part2_len = part2_bytes_end - part2_bytes_start;
@memcpy(self.data[0..part2_len], bytes[part2_bytes_start..part2_bytes_end]);
if (part2_bytes_end != bytes.len) {
const part3_len = bytes.len - part2_bytes_end;
@memcpy(self.data[0..part3_len], bytes[part2_bytes_end..bytes.len]);
}
self.write_index = self.mask2(self.write_index + bytes.len);
}
/// Write `bytes` into the ring buffer. Returns `error.Full` if the ring
/// buffer does not have enough space, without writing any data.
/// Uses copyForwards and can write slices from this RingBuffer into itself.
pub fn writeSliceForwards(self: *RingBuffer, bytes: []const u8) Error!void {
if (self.len() + bytes.len > self.data.len) return error.Full;
self.writeSliceForwardsAssumeCapacity(bytes);
}
/// Write `bytes` into the ring buffer. If there is not enough space, older
/// bytes will be overwritten.
/// Uses copyForwards and can write slices from this RingBuffer into itself.
pub fn writeSliceForwardsAssumeCapacity(self: *RingBuffer, bytes: []const u8) void {
assert(bytes.len <= self.data.len);
const data_start = self.mask(self.write_index);
const part1_data_end = @min(data_start + bytes.len, self.data.len);
const part1_len = part1_data_end - data_start;
copyForwards(u8, self.data[data_start..], bytes[0..part1_len]);
const remaining = bytes.len - part1_len;
const to_write = @min(remaining, remaining % self.data.len + self.data.len);
const part2_bytes_start = bytes.len - to_write;
const part2_bytes_end = @min(part2_bytes_start + self.data.len, bytes.len);
copyForwards(u8, self.data[0..], bytes[part2_bytes_start..part2_bytes_end]);
if (part2_bytes_end != bytes.len)
copyForwards(u8, self.data[0..], bytes[part2_bytes_end..bytes.len]);
self.write_index = self.mask2(self.write_index + bytes.len);
}
/// Consume a byte from the ring buffer and return it. Returns `null` if the
/// ring buffer is empty.
pub fn read(self: *RingBuffer) ?u8 {
if (self.isEmpty()) return null;
return self.readAssumeLength();
}
/// Consume a byte from the ring buffer and return it; asserts that the buffer
/// is not empty.
pub fn readAssumeLength(self: *RingBuffer) u8 {
assert(!self.isEmpty());
const byte = self.data[self.mask(self.read_index)];
self.read_index = self.mask2(self.read_index + 1);
return byte;
}
/// Reads first `length` bytes written to the ring buffer into `dest`; Returns
/// Error.ReadLengthInvalid if length greater than ring or dest length
/// Uses memcpy and so `dest` must not overlap ring buffer data.
pub fn readFirst(self: *RingBuffer, dest: []u8, length: usize) Error!void {
if (length > self.len() or length > dest.len) return error.ReadLengthInvalid;
self.readFirstAssumeLength(dest, length);
}
/// Reads first `length` bytes written to the ring buffer into `dest`;
/// Asserts that length not greater than ring buffer or dest length
/// Uses memcpy and so `dest` must not overlap ring buffer data.
pub fn readFirstAssumeLength(self: *RingBuffer, dest: []u8, length: usize) void {
assert(length <= self.len() and length <= dest.len);
const slice = self.sliceAt(self.read_index, length);
slice.copyTo(dest);
self.read_index = self.mask2(self.read_index + length);
}
/// Reads last `length` bytes written to the ring buffer into `dest`; Returns
/// Error.ReadLengthInvalid if length greater than ring or dest length
/// Uses memcpy and so `dest` must not overlap ring buffer data.
/// Reduces write index by `length`.
pub fn readLast(self: *RingBuffer, dest: []u8, length: usize) Error!void {
if (length > self.len() or length > dest.len) return error.ReadLengthInvalid;
self.readLastAssumeLength(dest, length);
}
/// Reads last `length` bytes written to the ring buffer into `dest`;
/// Asserts that length not greater than ring buffer or dest length
/// Uses memcpy and so `dest` must not overlap ring buffer data.
/// Reduces write index by `length`.
pub fn readLastAssumeLength(self: *RingBuffer, dest: []u8, length: usize) void {
assert(length <= self.len() and length <= dest.len);
const slice = self.sliceLast(length);
slice.copyTo(dest);
self.write_index = if (self.write_index >= self.data.len)
self.write_index - length
else
self.mask(self.write_index + self.data.len - length);
}
/// Returns `true` if the ring buffer is empty and `false` otherwise.
pub fn isEmpty(self: RingBuffer) bool {
return self.write_index == self.read_index;
}
/// Returns `true` if the ring buffer is full and `false` otherwise.
pub fn isFull(self: RingBuffer) bool {
return self.mask2(self.write_index + self.data.len) == self.read_index;
}
/// Returns the length of data available for reading
pub fn len(self: RingBuffer) usize {
const wrap_offset = 2 * self.data.len * @intFromBool(self.write_index < self.read_index);
const adjusted_write_index = self.write_index + wrap_offset;
return adjusted_write_index - self.read_index;
}
/// A `Slice` represents a region of a ring buffer. The region is split into two
/// sections as the ring buffer data will not be contiguous if the desired
/// region wraps to the start of the backing slice.
pub const Slice = struct {
first: []u8,
second: []u8,
/// Copy data from `self` into `dest`
pub fn copyTo(self: Slice, dest: []u8) void {
@memcpy(dest[0..self.first.len], self.first);
@memcpy(dest[self.first.len..][0..self.second.len], self.second);
}
};
/// Returns a `Slice` for the region of the ring buffer starting at
/// `self.mask(start_unmasked)` with the specified length.
pub fn sliceAt(self: RingBuffer, start_unmasked: usize, length: usize) Slice {
assert(length <= self.data.len);
const slice1_start = self.mask(start_unmasked);
const slice1_end = @min(self.data.len, slice1_start + length);
const slice1 = self.data[slice1_start..slice1_end];
const slice2 = self.data[0 .. length - slice1.len];
return Slice{
.first = slice1,
.second = slice2,
};
}
/// Returns a `Slice` for the last `length` bytes written to the ring buffer.
/// Does not check that any bytes have been written into the region.
pub fn sliceLast(self: RingBuffer, length: usize) Slice {
return self.sliceAt(self.write_index + self.data.len - length, length);
}