std.crypto.onetimeauth.Ghash: make GHASH 2 - 2.5x faster (#13374)

Rewrite GHASH to use 128-bit multiplication over non-reversed
integers, and up to 8 blocks aggregated reduction.

lib/std/crypto/benchmark.zig results:

Xeon E5:
  Before: 1604 MiB/s
   After: 4005 MiB/s

Apple M1:
  Before: 2769 MiB/s
   After: 6014 MiB/s

This also makes AES-GCM faster by the way.
This commit is contained in:
Frank Denis 2022-11-01 18:49:13 +01:00 committed by GitHub
parent 1780d7a348
commit 0d192ee9ef
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 182 additions and 179 deletions

View File

@ -3,6 +3,7 @@ const assert = std.debug.assert;
const crypto = std.crypto;
const debug = std.debug;
const Ghash = std.crypto.onetimeauth.Ghash;
const math = std.math;
const mem = std.mem;
const modes = crypto.core.modes;
const AuthenticationError = crypto.errors.AuthenticationError;
@ -34,7 +35,8 @@ fn AesGcm(comptime Aes: anytype) type {
mem.writeIntBig(u32, j[nonce_length..][0..4], 1);
aes.encrypt(&t, &j);
var mac = Ghash.init(&h);
const block_count = (math.divCeil(usize, ad.len, Ghash.block_length) catch unreachable) + (math.divCeil(usize, c.len, Ghash.block_length) catch unreachable);
var mac = Ghash.initForBlockCount(&h, block_count);
mac.update(ad);
mac.pad();
@ -66,7 +68,8 @@ fn AesGcm(comptime Aes: anytype) type {
mem.writeIntBig(u32, j[nonce_length..][0..4], 1);
aes.encrypt(&t, &j);
var mac = Ghash.init(&h);
const block_count = (math.divCeil(usize, ad.len, Ghash.block_length) catch unreachable) + (math.divCeil(usize, c.len, Ghash.block_length) catch unreachable) + 1;
var mac = Ghash.initForBlockCount(&h, block_count);
mac.update(ad);
mac.pad();

View File

@ -1,6 +1,3 @@
//
// Adapted from BearSSL's ctmul64 implementation originally written by Thomas Pornin <pornin@bolet.org>
const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
@ -8,6 +5,8 @@ const math = std.math;
const mem = std.mem;
const utils = std.crypto.utils;
const Precomp = u128;
/// GHASH is a universal hash function that features multiplication
/// by a fixed parameter within a Galois field.
///
@ -19,116 +18,132 @@ pub const Ghash = struct {
pub const mac_length = 16;
pub const key_length = 16;
y0: u64 = 0,
y1: u64 = 0,
h0: u64,
h1: u64,
h2: u64,
h0r: u64,
h1r: u64,
h2r: u64,
const pc_count = if (builtin.mode != .ReleaseSmall) 8 else 1;
hh0: u64 = undefined,
hh1: u64 = undefined,
hh2: u64 = undefined,
hh0r: u64 = undefined,
hh1r: u64 = undefined,
hh2r: u64 = undefined,
hx: [pc_count]Precomp,
acc: u128 = 0,
leftover: usize = 0,
buf: [block_length]u8 align(16) = undefined,
pub fn init(key: *const [key_length]u8) Ghash {
const h1 = mem.readIntBig(u64, key[0..8]);
const h0 = mem.readIntBig(u64, key[8..16]);
const h1r = @bitReverse(h1);
const h0r = @bitReverse(h0);
const h2 = h0 ^ h1;
const h2r = h0r ^ h1r;
/// Initialize the GHASH state with a key, and a minimum number of block count.
pub fn initForBlockCount(key: *const [key_length]u8, block_count: usize) Ghash {
const h0 = mem.readIntBig(u128, key[0..16]);
if (builtin.mode == .ReleaseSmall) {
return Ghash{
.h0 = h0,
.h1 = h1,
.h2 = h2,
.h0r = h0r,
.h1r = h1r,
.h2r = h2r,
};
} else {
// Precompute H^2
var hh = Ghash{
.h0 = h0,
.h1 = h1,
.h2 = h2,
.h0r = h0r,
.h1r = h1r,
.h2r = h2r,
};
hh.update(key);
const hh1 = hh.y1;
const hh0 = hh.y0;
const hh1r = @bitReverse(hh1);
const hh0r = @bitReverse(hh0);
const hh2 = hh0 ^ hh1;
const hh2r = hh0r ^ hh1r;
// We keep the values encoded as in GCM, not Polyval, i.e. without reversing the bits.
// This is fine, but the reversed result would be shifted by 1 bit. So, we shift h
// to compensate.
const carry = ((@as(u128, 0xc2) << 120) | 1) & (@as(u128, 0) -% (h0 >> 127));
const h = (h0 << 1) ^ carry;
return Ghash{
.h0 = h0,
.h1 = h1,
.h2 = h2,
.h0r = h0r,
.h1r = h1r,
.h2r = h2r,
.hh0 = hh0,
.hh1 = hh1,
.hh2 = hh2,
.hh0r = hh0r,
.hh1r = hh1r,
.hh2r = hh2r,
};
var hx: [pc_count]Precomp = undefined;
hx[0] = h;
if (builtin.mode != .ReleaseSmall) {
if (block_count > 2) {
hx[1] = gcm_reduce(clsq128(hx[0])); // h^2
}
if (block_count > 4) {
hx[2] = gcm_reduce(clmul128(hx[1], h)); // h^3
hx[3] = gcm_reduce(clsq128(hx[1])); // h^4
}
if (block_count > 8) {
hx[4] = gcm_reduce(clmul128(hx[3], h)); // h^5
hx[5] = gcm_reduce(clmul128(hx[4], h)); // h^6
hx[6] = gcm_reduce(clmul128(hx[5], h)); // h^7
hx[7] = gcm_reduce(clsq128(hx[3])); // h^8
}
}
return Ghash{ .hx = hx };
}
inline fn clmul_pclmul(x: u64, y: u64) u64 {
/// Initialize the GHASH state with a key.
pub fn init(key: *const [key_length]u8) Ghash {
return Ghash.initForBlockCount(key, math.maxInt(usize));
}
// Carryless multiplication of two 64-bit integers for x86_64.
inline fn clmul_pclmul(x: u64, y: u64) u128 {
const product = asm (
\\ vpclmulqdq $0x00, %[x], %[y], %[out]
: [out] "=x" (-> @Vector(2, u64)),
: [x] "x" (@bitCast(@Vector(2, u64), @as(u128, x))),
[y] "x" (@bitCast(@Vector(2, u64), @as(u128, y))),
);
return product[0];
return (@as(u128, product[1]) << 64) | product[0];
}
inline fn clmul_pmull(x: u64, y: u64) u64 {
// Carryless multiplication of two 64-bit integers for ARM crypto.
inline fn clmul_pmull(x: u64, y: u64) u128 {
const product = asm (
\\ pmull %[out].1q, %[x].1d, %[y].1d
: [out] "=w" (-> @Vector(2, u64)),
: [x] "w" (@bitCast(@Vector(2, u64), @as(u128, x))),
[y] "w" (@bitCast(@Vector(2, u64), @as(u128, y))),
);
return product[0];
return (@as(u128, product[1]) << 64) | product[0];
}
fn clmul_soft(x: u64, y: u64) u64 {
const x0 = x & 0x1111111111111111;
const x1 = x & 0x2222222222222222;
const x2 = x & 0x4444444444444444;
const x3 = x & 0x8888888888888888;
// Software carryless multiplication of two 64-bit integers.
fn clmul_soft(x: u64, y: u64) u128 {
const x0 = x & 0x1111111111111110;
const x1 = x & 0x2222222222222220;
const x2 = x & 0x4444444444444440;
const x3 = x & 0x8888888888888880;
const y0 = y & 0x1111111111111111;
const y1 = y & 0x2222222222222222;
const y2 = y & 0x4444444444444444;
const y3 = y & 0x8888888888888888;
var z0 = (x0 *% y0) ^ (x1 *% y3) ^ (x2 *% y2) ^ (x3 *% y1);
var z1 = (x0 *% y1) ^ (x1 *% y0) ^ (x2 *% y3) ^ (x3 *% y2);
var z2 = (x0 *% y2) ^ (x1 *% y1) ^ (x2 *% y0) ^ (x3 *% y3);
var z3 = (x0 *% y3) ^ (x1 *% y2) ^ (x2 *% y1) ^ (x3 *% y0);
z0 &= 0x1111111111111111;
z1 &= 0x2222222222222222;
z2 &= 0x4444444444444444;
z3 &= 0x8888888888888888;
return z0 | z1 | z2 | z3;
const z0 = (x0 * @as(u128, y0)) ^ (x1 * @as(u128, y3)) ^ (x2 * @as(u128, y2)) ^ (x3 * @as(u128, y1));
const z1 = (x0 * @as(u128, y1)) ^ (x1 * @as(u128, y0)) ^ (x2 * @as(u128, y3)) ^ (x3 * @as(u128, y2));
const z2 = (x0 * @as(u128, y2)) ^ (x1 * @as(u128, y1)) ^ (x2 * @as(u128, y0)) ^ (x3 * @as(u128, y3));
const z3 = (x0 * @as(u128, y3)) ^ (x1 * @as(u128, y2)) ^ (x2 * @as(u128, y1)) ^ (x3 * @as(u128, y0));
const x0_mask = @as(u64, 0) -% (x & 1);
const x1_mask = @as(u64, 0) -% ((x >> 1) & 1);
const x2_mask = @as(u64, 0) -% ((x >> 2) & 1);
const x3_mask = @as(u64, 0) -% ((x >> 3) & 1);
const extra = (x0_mask & y) ^ (@as(u128, x1_mask & y) << 1) ^
(@as(u128, x2_mask & y) << 2) ^ (@as(u128, x3_mask & y) << 3);
return (z0 & 0x11111111111111111111111111111111) ^
(z1 & 0x22222222222222222222222222222222) ^
(z2 & 0x44444444444444444444444444444444) ^
(z3 & 0x88888888888888888888888888888888) ^ extra;
}
// Square a 128-bit integer in GF(2^128).
fn clsq128(x: u128) u256 {
const lo = @truncate(u64, x);
const hi = @truncate(u64, x >> 64);
const mid = lo ^ hi;
const r_lo = clmul(lo, lo);
const r_hi = clmul(hi, hi);
const r_mid = clmul(mid, mid) ^ r_lo ^ r_hi;
return (@as(u256, r_hi) << 128) ^ (@as(u256, r_mid) << 64) ^ r_lo;
}
// Multiply two 128-bit integers in GF(2^128).
inline fn clmul128(x: u128, y: u128) u256 {
const x_lo = @truncate(u64, x);
const x_hi = @truncate(u64, x >> 64);
const y_lo = @truncate(u64, y);
const y_hi = @truncate(u64, y >> 64);
const r_lo = clmul(x_lo, y_lo);
const r_hi = clmul(x_hi, y_hi);
const r_mid = clmul(x_lo ^ x_hi, y_lo ^ y_hi) ^ r_lo ^ r_hi;
return (@as(u256, r_hi) << 128) ^ (@as(u256, r_mid) << 64) ^ r_lo;
}
// Reduce a 256-bit representative of a polynomial modulo the irreducible polynomial x^128 + x^127 + x^126 + x^121 + 1.
// This is done *without reversing the bits*, using Shay Gueron's black magic demysticated here:
// https://blog.quarkslab.com/reversing-a-finite-field-multiplication-optimization.html
inline fn gcm_reduce(x: u256) u128 {
const p64 = (((1 << 121) | (1 << 126) | (1 << 127)) >> 64);
const a = clmul(@truncate(u64, x), p64);
const b = ((@truncate(u128, x) << 64) | (@truncate(u128, x) >> 64)) ^ a;
const c = clmul(@truncate(u64, b), p64);
const d = ((b << 64) | (b >> 64)) ^ c;
return d ^ @truncate(u128, x >> 128);
}
const has_pclmul = std.Target.x86.featureSetHas(builtin.cpu.features, .pclmul);
@ -142,116 +157,100 @@ pub const Ghash = struct {
break :impl clmul_soft;
};
// Process a block of 16 bytes.
fn blocks(st: *Ghash, msg: []const u8) void {
assert(msg.len % 16 == 0); // GHASH blocks() expects full blocks
var y1 = st.y1;
var y0 = st.y0;
var acc = st.acc;
var i: usize = 0;
// 2-blocks aggregated reduction
if (builtin.mode != .ReleaseSmall) {
// 8-blocks aggregated reduction
while (i + 128 <= msg.len) : (i += 128) {
const b0 = mem.readIntBig(u128, msg[i..][0..16]);
const z0 = acc ^ b0;
const z0h = clmul128(z0, st.hx[7]);
const b1 = mem.readIntBig(u128, msg[i..][16..32]);
const b1h = clmul128(b1, st.hx[6]);
const b2 = mem.readIntBig(u128, msg[i..][32..48]);
const b2h = clmul128(b2, st.hx[5]);
const b3 = mem.readIntBig(u128, msg[i..][48..64]);
const b3h = clmul128(b3, st.hx[4]);
const b4 = mem.readIntBig(u128, msg[i..][64..80]);
const b4h = clmul128(b4, st.hx[3]);
const b5 = mem.readIntBig(u128, msg[i..][80..96]);
const b5h = clmul128(b5, st.hx[2]);
const b6 = mem.readIntBig(u128, msg[i..][96..112]);
const b6h = clmul128(b6, st.hx[1]);
const b7 = mem.readIntBig(u128, msg[i..][112..128]);
const b7h = clmul128(b7, st.hx[0]);
const u = z0h ^ b1h ^ b2h ^ b3h ^ b4h ^ b5h ^ b6h ^ b7h;
acc = gcm_reduce(u);
}
// 4-blocks aggregated reduction
while (i + 64 <= msg.len) : (i += 64) {
// (acc + b0) * H^4 unreduced
const b0 = mem.readIntBig(u128, msg[i..][0..16]);
const z0 = acc ^ b0;
const z0h = clmul128(z0, st.hx[3]);
// b1 * H^3 unreduced
const b1 = mem.readIntBig(u128, msg[i..][16..32]);
const b1h = clmul128(b1, st.hx[2]);
// b2 * H^2 unreduced
const b2 = mem.readIntBig(u128, msg[i..][32..48]);
const b2h = clmul128(b2, st.hx[1]);
// b3 * H unreduced
const b3 = mem.readIntBig(u128, msg[i..][48..64]);
const b3h = clmul128(b3, st.hx[0]);
// (((acc + b0) * H^4) + B1 * H^3 + B2 * H^2 + B3 * H) (mod P)
const u = z0h ^ b1h ^ b2h ^ b3h;
acc = gcm_reduce(u);
}
// 2-blocks aggregated reduction
while (i + 32 <= msg.len) : (i += 32) {
// B0 * H^2 unreduced
y1 ^= mem.readIntBig(u64, msg[i..][0..8]);
y0 ^= mem.readIntBig(u64, msg[i..][8..16]);
// (acc + b0) * H^2 unreduced
const b0 = mem.readIntBig(u128, msg[i..][0..16]);
const z0 = acc ^ b0;
const z0h = clmul128(z0, st.hx[1]);
const y1r = @bitReverse(y1);
const y0r = @bitReverse(y0);
const y2 = y0 ^ y1;
const y2r = y0r ^ y1r;
// b1 * H unreduced
const b1 = mem.readIntBig(u128, msg[i..][16..32]);
const b1h = clmul128(b1, st.hx[0]);
var z0 = clmul(y0, st.hh0);
var z1 = clmul(y1, st.hh1);
var z2 = clmul(y2, st.hh2) ^ z0 ^ z1;
var z0h = clmul(y0r, st.hh0r);
var z1h = clmul(y1r, st.hh1r);
var z2h = clmul(y2r, st.hh2r) ^ z0h ^ z1h;
// B1 * H unreduced
const sy1 = mem.readIntBig(u64, msg[i..][16..24]);
const sy0 = mem.readIntBig(u64, msg[i..][24..32]);
const sy1r = @bitReverse(sy1);
const sy0r = @bitReverse(sy0);
const sy2 = sy0 ^ sy1;
const sy2r = sy0r ^ sy1r;
const sz0 = clmul(sy0, st.h0);
const sz1 = clmul(sy1, st.h1);
const sz2 = clmul(sy2, st.h2) ^ sz0 ^ sz1;
const sz0h = clmul(sy0r, st.h0r);
const sz1h = clmul(sy1r, st.h1r);
const sz2h = clmul(sy2r, st.h2r) ^ sz0h ^ sz1h;
// ((B0 * H^2) + B1 * H) (mod M)
z0 ^= sz0;
z1 ^= sz1;
z2 ^= sz2;
z0h ^= sz0h;
z1h ^= sz1h;
z2h ^= sz2h;
z0h = @bitReverse(z0h) >> 1;
z1h = @bitReverse(z1h) >> 1;
z2h = @bitReverse(z2h) >> 1;
var v3 = z1h;
var v2 = z1 ^ z2h;
var v1 = z0h ^ z2;
var v0 = z0;
v3 = (v3 << 1) | (v2 >> 63);
v2 = (v2 << 1) | (v1 >> 63);
v1 = (v1 << 1) | (v0 >> 63);
v0 = (v0 << 1);
v2 ^= v0 ^ (v0 >> 1) ^ (v0 >> 2) ^ (v0 >> 7);
v1 ^= (v0 << 63) ^ (v0 << 62) ^ (v0 << 57);
y1 = v3 ^ v1 ^ (v1 >> 1) ^ (v1 >> 2) ^ (v1 >> 7);
y0 = v2 ^ (v1 << 63) ^ (v1 << 62) ^ (v1 << 57);
// (((acc + b0) * H^2) + B1 * H) (mod P)
const u = z0h ^ b1h;
acc = gcm_reduce(u);
}
}
// single block
while (i + 16 <= msg.len) : (i += 16) {
y1 ^= mem.readIntBig(u64, msg[i..][0..8]);
y0 ^= mem.readIntBig(u64, msg[i..][8..16]);
// (acc + b0) * H unreduced
const b0 = mem.readIntBig(u128, msg[i..][0..16]);
const z0 = acc ^ b0;
const z0h = clmul128(z0, st.hx[0]);
const y1r = @bitReverse(y1);
const y0r = @bitReverse(y0);
const y2 = y0 ^ y1;
const y2r = y0r ^ y1r;
const z0 = clmul(y0, st.h0);
const z1 = clmul(y1, st.h1);
var z2 = clmul(y2, st.h2) ^ z0 ^ z1;
var z0h = clmul(y0r, st.h0r);
var z1h = clmul(y1r, st.h1r);
var z2h = clmul(y2r, st.h2r) ^ z0h ^ z1h;
z0h = @bitReverse(z0h) >> 1;
z1h = @bitReverse(z1h) >> 1;
z2h = @bitReverse(z2h) >> 1;
// shift & reduce
var v3 = z1h;
var v2 = z1 ^ z2h;
var v1 = z0h ^ z2;
var v0 = z0;
v3 = (v3 << 1) | (v2 >> 63);
v2 = (v2 << 1) | (v1 >> 63);
v1 = (v1 << 1) | (v0 >> 63);
v0 = (v0 << 1);
v2 ^= v0 ^ (v0 >> 1) ^ (v0 >> 2) ^ (v0 >> 7);
v1 ^= (v0 << 63) ^ (v0 << 62) ^ (v0 << 57);
y1 = v3 ^ v1 ^ (v1 >> 1) ^ (v1 >> 2) ^ (v1 >> 7);
y0 = v2 ^ (v1 << 63) ^ (v1 << 62) ^ (v1 << 57);
// (acc + b0) * H (mod P)
acc = gcm_reduce(z0h);
}
st.y1 = y1;
st.y0 = y0;
st.acc = acc;
}
/// Absorb a message into the GHASH state.
pub fn update(st: *Ghash, m: []const u8) void {
var mb = m;
@ -295,14 +294,15 @@ pub const Ghash = struct {
st.leftover = 0;
}
/// Compute the GHASH of the entire input.
pub fn final(st: *Ghash, out: *[mac_length]u8) void {
st.pad();
mem.writeIntBig(u64, out[0..8], st.y1);
mem.writeIntBig(u64, out[8..16], st.y0);
mem.writeIntBig(u128, out[0..16], st.acc);
utils.secureZero(u8, @ptrCast([*]u8, st)[0..@sizeOf(Ghash)]);
}
/// Compute the GHASH of a message.
pub fn create(out: *[mac_length]u8, msg: []const u8, key: *const [key_length]u8) void {
var st = Ghash.init(key);
st.update(msg);