libunwind: update from LLVM 10 to 11rc1

This commit is contained in:
Andrew Kelley 2020-08-04 17:39:29 -07:00
parent 42da1d385d
commit 372062b4fe
20 changed files with 804 additions and 196 deletions

View File

@ -23,6 +23,7 @@
#define _LIBUNWIND_HIGHEST_DWARF_REGISTER_OR1K 32
#define _LIBUNWIND_HIGHEST_DWARF_REGISTER_MIPS 65
#define _LIBUNWIND_HIGHEST_DWARF_REGISTER_SPARC 31
#define _LIBUNWIND_HIGHEST_DWARF_REGISTER_HEXAGON 34
#define _LIBUNWIND_HIGHEST_DWARF_REGISTER_RISCV 64
#if defined(_LIBUNWIND_IS_NATIVE_ONLY)
@ -82,6 +83,12 @@
# define _LIBUNWIND_CONTEXT_SIZE 16
# define _LIBUNWIND_CURSOR_SIZE 24
# define _LIBUNWIND_HIGHEST_DWARF_REGISTER _LIBUNWIND_HIGHEST_DWARF_REGISTER_OR1K
# elif defined(__hexagon__)
# define _LIBUNWIND_TARGET_HEXAGON 1
// Values here change when : Registers.hpp - hexagon_thread_state_t change
# define _LIBUNWIND_CONTEXT_SIZE 18
# define _LIBUNWIND_CURSOR_SIZE 24
# define _LIBUNWIND_HIGHEST_DWARF_REGISTER _LIBUNWIND_HIGHEST_DWARF_REGISTER_HEXAGON
# elif defined(__mips__)
# if defined(_ABIO32) && _MIPS_SIM == _ABIO32
# define _LIBUNWIND_TARGET_MIPS_O32 1
@ -142,6 +149,7 @@
# define _LIBUNWIND_TARGET_MIPS_O32 1
# define _LIBUNWIND_TARGET_MIPS_NEWABI 1
# define _LIBUNWIND_TARGET_SPARC 1
# define _LIBUNWIND_TARGET_HEXAGON 1
# define _LIBUNWIND_TARGET_RISCV 1
# define _LIBUNWIND_CONTEXT_SIZE 167
# define _LIBUNWIND_CURSOR_SIZE 179

View File

@ -832,6 +832,44 @@ enum {
UNW_SPARC_I7 = 31,
};
// Hexagon register numbers
enum {
UNW_HEXAGON_R0,
UNW_HEXAGON_R1,
UNW_HEXAGON_R2,
UNW_HEXAGON_R3,
UNW_HEXAGON_R4,
UNW_HEXAGON_R5,
UNW_HEXAGON_R6,
UNW_HEXAGON_R7,
UNW_HEXAGON_R8,
UNW_HEXAGON_R9,
UNW_HEXAGON_R10,
UNW_HEXAGON_R11,
UNW_HEXAGON_R12,
UNW_HEXAGON_R13,
UNW_HEXAGON_R14,
UNW_HEXAGON_R15,
UNW_HEXAGON_R16,
UNW_HEXAGON_R17,
UNW_HEXAGON_R18,
UNW_HEXAGON_R19,
UNW_HEXAGON_R20,
UNW_HEXAGON_R21,
UNW_HEXAGON_R22,
UNW_HEXAGON_R23,
UNW_HEXAGON_R24,
UNW_HEXAGON_R25,
UNW_HEXAGON_R26,
UNW_HEXAGON_R27,
UNW_HEXAGON_R28,
UNW_HEXAGON_R29,
UNW_HEXAGON_R30,
UNW_HEXAGON_R31,
UNW_HEXAGON_P3_0,
UNW_HEXAGON_PC,
};
// RISC-V registers. These match the DWARF register numbers defined by section
// 4 of the RISC-V ELF psABI specification, which can be found at:
//

View File

@ -111,10 +111,9 @@ typedef _Unwind_Reason_Code (*_Unwind_Stop_Fn)
_Unwind_Exception* exceptionObject,
struct _Unwind_Context* context);
typedef _Unwind_Reason_Code (*__personality_routine)
(_Unwind_State state,
_Unwind_Exception* exceptionObject,
struct _Unwind_Context* context);
typedef _Unwind_Reason_Code (*_Unwind_Personality_Fn)(
_Unwind_State state, _Unwind_Exception *exceptionObject,
struct _Unwind_Context *context);
#else
struct _Unwind_Context; // opaque
struct _Unwind_Exception; // forward declaration
@ -150,12 +149,9 @@ typedef _Unwind_Reason_Code (*_Unwind_Stop_Fn)
struct _Unwind_Context* context,
void* stop_parameter );
typedef _Unwind_Reason_Code (*__personality_routine)
(int version,
_Unwind_Action actions,
uint64_t exceptionClass,
_Unwind_Exception* exceptionObject,
struct _Unwind_Context* context);
typedef _Unwind_Reason_Code (*_Unwind_Personality_Fn)(
int version, _Unwind_Action actions, uint64_t exceptionClass,
_Unwind_Exception *exceptionObject, struct _Unwind_Context *context);
#endif
#ifdef __cplusplus
@ -387,10 +383,9 @@ typedef struct _DISPATCHER_CONTEXT DISPATCHER_CONTEXT;
#endif
// This is the common wrapper for GCC-style personality functions with SEH.
extern EXCEPTION_DISPOSITION _GCC_specific_handler(EXCEPTION_RECORD *exc,
void *frame,
CONTEXT *ctx,
void *frame, CONTEXT *ctx,
DISPATCHER_CONTEXT *disp,
__personality_routine pers);
_Unwind_Personality_Fn pers);
#endif
#ifdef __cplusplus

View File

@ -392,6 +392,164 @@ LocalAddressSpace::getEncodedP(pint_t &addr, pint_t end, uint8_t encoding,
return result;
}
#ifdef __APPLE__
#elif defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) && defined(_LIBUNWIND_IS_BAREMETAL)
#elif defined(_LIBUNWIND_ARM_EHABI) && defined(_LIBUNWIND_IS_BAREMETAL)
#elif defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) && defined(_WIN32)
#elif defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) && defined(_WIN32)
#elif defined(_LIBUNWIND_ARM_EHABI) && defined(__BIONIC__)
// Code inside findUnwindSections handles all these cases.
//
// Although the above ifdef chain is ugly, there doesn't seem to be a cleaner
// way to handle it. The generalized boolean expression is:
//
// A OR (B AND C) OR (D AND C) OR (B AND E) OR (F AND E) OR (D AND G)
//
// Running it through various boolean expression simplifiers gives expressions
// that don't help at all.
#elif defined(_LIBUNWIND_ARM_EHABI) || defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
#if !defined(Elf_Half)
typedef ElfW(Half) Elf_Half;
#endif
#if !defined(Elf_Phdr)
typedef ElfW(Phdr) Elf_Phdr;
#endif
#if !defined(Elf_Addr)
typedef ElfW(Addr) Elf_Addr;
#endif
static Elf_Addr calculateImageBase(struct dl_phdr_info *pinfo) {
Elf_Addr image_base = pinfo->dlpi_addr;
#if defined(__ANDROID__) && __ANDROID_API__ < 18
if (image_base == 0) {
// Normally, an image base of 0 indicates a non-PIE executable. On
// versions of Android prior to API 18, the dynamic linker reported a
// dlpi_addr of 0 for PIE executables. Compute the true image base
// using the PT_PHDR segment.
// See https://github.com/android/ndk/issues/505.
for (Elf_Half i = 0; i < pinfo->dlpi_phnum; i++) {
const Elf_Phdr *phdr = &pinfo->dlpi_phdr[i];
if (phdr->p_type == PT_PHDR) {
image_base = reinterpret_cast<Elf_Addr>(pinfo->dlpi_phdr) -
phdr->p_vaddr;
break;
}
}
}
#endif
return image_base;
}
struct _LIBUNWIND_HIDDEN dl_iterate_cb_data {
LocalAddressSpace *addressSpace;
UnwindInfoSections *sects;
uintptr_t targetAddr;
};
#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
#if !defined(_LIBUNWIND_SUPPORT_DWARF_INDEX)
#error "_LIBUNWIND_SUPPORT_DWARF_UNWIND requires _LIBUNWIND_SUPPORT_DWARF_INDEX on this platform."
#endif
#include "FrameHeaderCache.hpp"
// There should be just one of these per process.
static FrameHeaderCache ProcessFrameHeaderCache;
static bool checkAddrInSegment(const Elf_Phdr *phdr, size_t image_base,
dl_iterate_cb_data *cbdata) {
if (phdr->p_type == PT_LOAD) {
uintptr_t begin = image_base + phdr->p_vaddr;
uintptr_t end = begin + phdr->p_memsz;
if (cbdata->targetAddr >= begin && cbdata->targetAddr < end) {
cbdata->sects->dso_base = begin;
cbdata->sects->dwarf_section_length = phdr->p_memsz;
return true;
}
}
return false;
}
int findUnwindSectionsByPhdr(struct dl_phdr_info *pinfo, size_t pinfo_size,
void *data) {
auto cbdata = static_cast<dl_iterate_cb_data *>(data);
if (pinfo->dlpi_phnum == 0 || cbdata->targetAddr < pinfo->dlpi_addr)
return 0;
if (ProcessFrameHeaderCache.find(pinfo, pinfo_size, data))
return 1;
Elf_Addr image_base = calculateImageBase(pinfo);
bool found_obj = false;
bool found_hdr = false;
// Third phdr is usually the executable phdr.
if (pinfo->dlpi_phnum > 2)
found_obj = checkAddrInSegment(&pinfo->dlpi_phdr[2], image_base, cbdata);
// PT_GNU_EH_FRAME is usually near the end. Iterate backward. We already know
// that there is one or more phdrs.
for (Elf_Half i = pinfo->dlpi_phnum; i > 0; i--) {
const Elf_Phdr *phdr = &pinfo->dlpi_phdr[i - 1];
if (!found_hdr && phdr->p_type == PT_GNU_EH_FRAME) {
EHHeaderParser<LocalAddressSpace>::EHHeaderInfo hdrInfo;
uintptr_t eh_frame_hdr_start = image_base + phdr->p_vaddr;
cbdata->sects->dwarf_index_section = eh_frame_hdr_start;
cbdata->sects->dwarf_index_section_length = phdr->p_memsz;
found_hdr = EHHeaderParser<LocalAddressSpace>::decodeEHHdr(
*cbdata->addressSpace, eh_frame_hdr_start, phdr->p_memsz,
hdrInfo);
if (found_hdr)
cbdata->sects->dwarf_section = hdrInfo.eh_frame_ptr;
} else if (!found_obj) {
found_obj = checkAddrInSegment(phdr, image_base, cbdata);
}
if (found_obj && found_hdr) {
ProcessFrameHeaderCache.add(cbdata->sects);
return 1;
}
}
cbdata->sects->dwarf_section_length = 0;
return 0;
}
#else // defined(LIBUNWIND_SUPPORT_DWARF_UNWIND)
// Given all the #ifdef's above, the code here is for
// defined(LIBUNWIND_ARM_EHABI)
int findUnwindSectionsByPhdr(struct dl_phdr_info *pinfo, size_t, void *data) {
auto *cbdata = static_cast<dl_iterate_cb_data *>(data);
bool found_obj = false;
bool found_hdr = false;
assert(cbdata);
assert(cbdata->sects);
if (cbdata->targetAddr < pinfo->dlpi_addr)
return 0;
Elf_Addr image_base = calculateImageBase(pinfo);
for (Elf_Half i = 0; i < pinfo->dlpi_phnum; i++) {
const Elf_Phdr *phdr = &pinfo->dlpi_phdr[i];
if (phdr->p_type == PT_LOAD) {
uintptr_t begin = image_base + phdr->p_vaddr;
uintptr_t end = begin + phdr->p_memsz;
if (cbdata->targetAddr >= begin && cbdata->targetAddr < end)
found_obj = true;
} else if (phdr->p_type == PT_ARM_EXIDX) {
uintptr_t exidx_start = image_base + phdr->p_vaddr;
cbdata->sects->arm_section = exidx_start;
cbdata->sects->arm_section_length = phdr->p_memsz;
found_hdr = true;
}
}
return found_obj && found_hdr;
}
#endif // defined(LIBUNWIND_SUPPORT_DWARF_UNWIND)
#endif // defined(_LIBUNWIND_ARM_EHABI) || defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
inline bool LocalAddressSpace::findUnwindSections(pint_t targetAddr,
UnwindInfoSections &info) {
#ifdef __APPLE__
@ -483,110 +641,8 @@ inline bool LocalAddressSpace::findUnwindSections(pint_t targetAddr,
if (info.arm_section && info.arm_section_length)
return true;
#elif defined(_LIBUNWIND_ARM_EHABI) || defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
struct dl_iterate_cb_data {
LocalAddressSpace *addressSpace;
UnwindInfoSections *sects;
uintptr_t targetAddr;
};
dl_iterate_cb_data cb_data = {this, &info, targetAddr};
int found = dl_iterate_phdr(
[](struct dl_phdr_info *pinfo, size_t, void *data) -> int {
auto cbdata = static_cast<dl_iterate_cb_data *>(data);
bool found_obj = false;
bool found_hdr = false;
assert(cbdata);
assert(cbdata->sects);
if (cbdata->targetAddr < pinfo->dlpi_addr) {
return false;
}
#if !defined(Elf_Half)
typedef ElfW(Half) Elf_Half;
#endif
#if !defined(Elf_Phdr)
typedef ElfW(Phdr) Elf_Phdr;
#endif
#if !defined(Elf_Addr)
typedef ElfW(Addr) Elf_Addr;
#endif
Elf_Addr image_base = pinfo->dlpi_addr;
#if defined(__ANDROID__) && __ANDROID_API__ < 18
if (image_base == 0) {
// Normally, an image base of 0 indicates a non-PIE executable. On
// versions of Android prior to API 18, the dynamic linker reported a
// dlpi_addr of 0 for PIE executables. Compute the true image base
// using the PT_PHDR segment.
// See https://github.com/android/ndk/issues/505.
for (Elf_Half i = 0; i < pinfo->dlpi_phnum; i++) {
const Elf_Phdr *phdr = &pinfo->dlpi_phdr[i];
if (phdr->p_type == PT_PHDR) {
image_base = reinterpret_cast<Elf_Addr>(pinfo->dlpi_phdr) -
phdr->p_vaddr;
break;
}
}
}
#endif
#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
#if !defined(_LIBUNWIND_SUPPORT_DWARF_INDEX)
#error "_LIBUNWIND_SUPPORT_DWARF_UNWIND requires _LIBUNWIND_SUPPORT_DWARF_INDEX on this platform."
#endif
size_t object_length;
for (Elf_Half i = 0; i < pinfo->dlpi_phnum; i++) {
const Elf_Phdr *phdr = &pinfo->dlpi_phdr[i];
if (phdr->p_type == PT_LOAD) {
uintptr_t begin = image_base + phdr->p_vaddr;
uintptr_t end = begin + phdr->p_memsz;
if (cbdata->targetAddr >= begin && cbdata->targetAddr < end) {
cbdata->sects->dso_base = begin;
object_length = phdr->p_memsz;
found_obj = true;
}
} else if (phdr->p_type == PT_GNU_EH_FRAME) {
EHHeaderParser<LocalAddressSpace>::EHHeaderInfo hdrInfo;
uintptr_t eh_frame_hdr_start = image_base + phdr->p_vaddr;
cbdata->sects->dwarf_index_section = eh_frame_hdr_start;
cbdata->sects->dwarf_index_section_length = phdr->p_memsz;
found_hdr = EHHeaderParser<LocalAddressSpace>::decodeEHHdr(
*cbdata->addressSpace, eh_frame_hdr_start, phdr->p_memsz,
hdrInfo);
if (found_hdr)
cbdata->sects->dwarf_section = hdrInfo.eh_frame_ptr;
}
}
if (found_obj && found_hdr) {
cbdata->sects->dwarf_section_length = object_length;
return true;
} else {
return false;
}
#else // defined(_LIBUNWIND_ARM_EHABI)
for (Elf_Half i = 0; i < pinfo->dlpi_phnum; i++) {
const Elf_Phdr *phdr = &pinfo->dlpi_phdr[i];
if (phdr->p_type == PT_LOAD) {
uintptr_t begin = image_base + phdr->p_vaddr;
uintptr_t end = begin + phdr->p_memsz;
if (cbdata->targetAddr >= begin && cbdata->targetAddr < end)
found_obj = true;
} else if (phdr->p_type == PT_ARM_EXIDX) {
uintptr_t exidx_start = image_base + phdr->p_vaddr;
cbdata->sects->arm_section = exidx_start;
cbdata->sects->arm_section_length = phdr->p_memsz;
found_hdr = true;
}
}
return found_obj && found_hdr;
#endif
},
&cb_data);
int found = dl_iterate_phdr(findUnwindSectionsByPhdr, &cb_data);
return static_cast<bool>(found);
#endif

View File

@ -77,6 +77,7 @@ public:
};
struct RegisterLocation {
RegisterSavedWhere location;
bool initialStateSaved;
int64_t value;
};
/// Information about a frame layout and registers saved determined
@ -90,6 +91,40 @@ public:
bool registersInOtherRegisters;
bool sameValueUsed;
RegisterLocation savedRegisters[kMaxRegisterNumber + 1];
enum class InitializeTime { kLazy, kNormal };
// When saving registers, this data structure is lazily initialized.
PrologInfo(InitializeTime IT = InitializeTime::kNormal) {
if (IT == InitializeTime::kNormal)
memset(this, 0, sizeof(*this));
}
void checkSaveRegister(uint64_t reg, PrologInfo &initialState) {
if (!savedRegisters[reg].initialStateSaved) {
initialState.savedRegisters[reg] = savedRegisters[reg];
savedRegisters[reg].initialStateSaved = true;
}
}
void setRegister(uint64_t reg, RegisterSavedWhere newLocation,
int64_t newValue, PrologInfo &initialState) {
checkSaveRegister(reg, initialState);
savedRegisters[reg].location = newLocation;
savedRegisters[reg].value = newValue;
}
void setRegisterLocation(uint64_t reg, RegisterSavedWhere newLocation,
PrologInfo &initialState) {
checkSaveRegister(reg, initialState);
savedRegisters[reg].location = newLocation;
}
void setRegisterValue(uint64_t reg, int64_t newValue,
PrologInfo &initialState) {
checkSaveRegister(reg, initialState);
savedRegisters[reg].value = newValue;
}
void restoreRegisterToInitialState(uint64_t reg, PrologInfo &initialState) {
if (savedRegisters[reg].initialStateSaved)
savedRegisters[reg] = initialState.savedRegisters[reg];
// else the register still holds its initial state
}
};
struct PrologInfoStackEntry {
@ -355,18 +390,30 @@ bool CFI_Parser<A>::parseFDEInstructions(A &addressSpace,
const FDE_Info &fdeInfo,
const CIE_Info &cieInfo, pint_t upToPC,
int arch, PrologInfo *results) {
// clear results
memset(results, '\0', sizeof(PrologInfo));
PrologInfoStackEntry *rememberStack = NULL;
// parse CIE then FDE instructions
return parseInstructions(addressSpace, cieInfo.cieInstructions,
cieInfo.cieStart + cieInfo.cieLength, cieInfo,
(pint_t)(-1), rememberStack, arch, results) &&
parseInstructions(addressSpace, fdeInfo.fdeInstructions,
fdeInfo.fdeStart + fdeInfo.fdeLength, cieInfo,
upToPC - fdeInfo.pcStart, rememberStack, arch,
results);
bool returnValue =
parseInstructions(addressSpace, cieInfo.cieInstructions,
cieInfo.cieStart + cieInfo.cieLength, cieInfo,
(pint_t)(-1), rememberStack, arch, results) &&
parseInstructions(addressSpace, fdeInfo.fdeInstructions,
fdeInfo.fdeStart + fdeInfo.fdeLength, cieInfo,
upToPC - fdeInfo.pcStart, rememberStack, arch, results);
#if !defined(_LIBUNWIND_NO_HEAP)
// Clean up rememberStack. Even in the case where every DW_CFA_remember_state
// is paired with a DW_CFA_restore_state, parseInstructions can skip restore
// opcodes if it reaches the target PC and stops interpreting, so we have to
// make sure we don't leak memory.
while (rememberStack) {
PrologInfoStackEntry *next = rememberStack->next;
free(rememberStack);
rememberStack = next;
}
#endif
return returnValue;
}
/// "run" the DWARF instructions
@ -378,7 +425,9 @@ bool CFI_Parser<A>::parseInstructions(A &addressSpace, pint_t instructions,
int arch, PrologInfo *results) {
pint_t p = instructions;
pint_t codeOffset = 0;
PrologInfo initialState = *results;
// initialState initialized as registers in results are modified. Use
// PrologInfo accessor functions to avoid reading uninitialized data.
PrologInfo initialState(PrologInfo::InitializeTime::kLazy);
_LIBUNWIND_TRACE_DWARF("parseInstructions(instructions=0x%0" PRIx64 ")\n",
static_cast<uint64_t>(instructionsEnd));
@ -431,8 +480,7 @@ bool CFI_Parser<A>::parseInstructions(A &addressSpace, pint_t instructions,
"malformed DW_CFA_offset_extended DWARF unwind, reg too big");
return false;
}
results->savedRegisters[reg].location = kRegisterInCFA;
results->savedRegisters[reg].value = offset;
results->setRegister(reg, kRegisterInCFA, offset, initialState);
_LIBUNWIND_TRACE_DWARF("DW_CFA_offset_extended(reg=%" PRIu64 ", "
"offset=%" PRId64 ")\n",
reg, offset);
@ -444,7 +492,7 @@ bool CFI_Parser<A>::parseInstructions(A &addressSpace, pint_t instructions,
"malformed DW_CFA_restore_extended DWARF unwind, reg too big");
return false;
}
results->savedRegisters[reg] = initialState.savedRegisters[reg];
results->restoreRegisterToInitialState(reg, initialState);
_LIBUNWIND_TRACE_DWARF("DW_CFA_restore_extended(reg=%" PRIu64 ")\n", reg);
break;
case DW_CFA_undefined:
@ -454,7 +502,7 @@ bool CFI_Parser<A>::parseInstructions(A &addressSpace, pint_t instructions,
"malformed DW_CFA_undefined DWARF unwind, reg too big");
return false;
}
results->savedRegisters[reg].location = kRegisterUnused;
results->setRegisterLocation(reg, kRegisterUnused, initialState);
_LIBUNWIND_TRACE_DWARF("DW_CFA_undefined(reg=%" PRIu64 ")\n", reg);
break;
case DW_CFA_same_value:
@ -468,7 +516,7 @@ bool CFI_Parser<A>::parseInstructions(A &addressSpace, pint_t instructions,
// "same value" means register was stored in frame, but its current
// value has not changed, so no need to restore from frame.
// We model this as if the register was never saved.
results->savedRegisters[reg].location = kRegisterUnused;
results->setRegisterLocation(reg, kRegisterUnused, initialState);
// set flag to disable conversion to compact unwind
results->sameValueUsed = true;
_LIBUNWIND_TRACE_DWARF("DW_CFA_same_value(reg=%" PRIu64 ")\n", reg);
@ -486,8 +534,8 @@ bool CFI_Parser<A>::parseInstructions(A &addressSpace, pint_t instructions,
"malformed DW_CFA_register DWARF unwind, reg2 too big");
return false;
}
results->savedRegisters[reg].location = kRegisterInRegister;
results->savedRegisters[reg].value = (int64_t)reg2;
results->setRegister(reg, kRegisterInRegister, (int64_t)reg2,
initialState);
// set flag to disable conversion to compact unwind
results->registersInOtherRegisters = true;
_LIBUNWIND_TRACE_DWARF(
@ -564,8 +612,8 @@ bool CFI_Parser<A>::parseInstructions(A &addressSpace, pint_t instructions,
"malformed DW_CFA_expression DWARF unwind, reg too big");
return false;
}
results->savedRegisters[reg].location = kRegisterAtExpression;
results->savedRegisters[reg].value = (int64_t)p;
results->setRegister(reg, kRegisterAtExpression, (int64_t)p,
initialState);
length = addressSpace.getULEB128(p, instructionsEnd);
assert(length < static_cast<pint_t>(~0) && "pointer overflow");
p += static_cast<pint_t>(length);
@ -583,8 +631,7 @@ bool CFI_Parser<A>::parseInstructions(A &addressSpace, pint_t instructions,
}
offset =
addressSpace.getSLEB128(p, instructionsEnd) * cieInfo.dataAlignFactor;
results->savedRegisters[reg].location = kRegisterInCFA;
results->savedRegisters[reg].value = offset;
results->setRegister(reg, kRegisterInCFA, offset, initialState);
_LIBUNWIND_TRACE_DWARF("DW_CFA_offset_extended_sf(reg=%" PRIu64 ", "
"offset=%" PRId64 ")\n",
reg, offset);
@ -622,8 +669,7 @@ bool CFI_Parser<A>::parseInstructions(A &addressSpace, pint_t instructions,
}
offset = (int64_t)addressSpace.getULEB128(p, instructionsEnd)
* cieInfo.dataAlignFactor;
results->savedRegisters[reg].location = kRegisterOffsetFromCFA;
results->savedRegisters[reg].value = offset;
results->setRegister(reg, kRegisterOffsetFromCFA, offset, initialState);
_LIBUNWIND_TRACE_DWARF("DW_CFA_val_offset(reg=%" PRIu64 ", "
"offset=%" PRId64 "\n",
reg, offset);
@ -637,8 +683,7 @@ bool CFI_Parser<A>::parseInstructions(A &addressSpace, pint_t instructions,
}
offset =
addressSpace.getSLEB128(p, instructionsEnd) * cieInfo.dataAlignFactor;
results->savedRegisters[reg].location = kRegisterOffsetFromCFA;
results->savedRegisters[reg].value = offset;
results->setRegister(reg, kRegisterOffsetFromCFA, offset, initialState);
_LIBUNWIND_TRACE_DWARF("DW_CFA_val_offset_sf(reg=%" PRIu64 ", "
"offset=%" PRId64 "\n",
reg, offset);
@ -650,8 +695,8 @@ bool CFI_Parser<A>::parseInstructions(A &addressSpace, pint_t instructions,
"malformed DW_CFA_val_expression DWARF unwind, reg too big");
return false;
}
results->savedRegisters[reg].location = kRegisterIsExpression;
results->savedRegisters[reg].value = (int64_t)p;
results->setRegister(reg, kRegisterIsExpression, (int64_t)p,
initialState);
length = addressSpace.getULEB128(p, instructionsEnd);
assert(length < static_cast<pint_t>(~0) && "pointer overflow");
p += static_cast<pint_t>(length);
@ -673,8 +718,7 @@ bool CFI_Parser<A>::parseInstructions(A &addressSpace, pint_t instructions,
}
offset = (int64_t)addressSpace.getULEB128(p, instructionsEnd)
* cieInfo.dataAlignFactor;
results->savedRegisters[reg].location = kRegisterInCFA;
results->savedRegisters[reg].value = -offset;
results->setRegister(reg, kRegisterInCFA, -offset, initialState);
_LIBUNWIND_TRACE_DWARF(
"DW_CFA_GNU_negative_offset_extended(%" PRId64 ")\n", offset);
break;
@ -687,25 +731,27 @@ bool CFI_Parser<A>::parseInstructions(A &addressSpace, pint_t instructions,
case DW_CFA_AARCH64_negate_ra_state:
switch (arch) {
#if defined(_LIBUNWIND_TARGET_AARCH64)
case REGISTERS_ARM64:
results->savedRegisters[UNW_ARM64_RA_SIGN_STATE].value ^= 0x1;
_LIBUNWIND_TRACE_DWARF("DW_CFA_AARCH64_negate_ra_state\n");
break;
case REGISTERS_ARM64: {
int64_t value =
results->savedRegisters[UNW_ARM64_RA_SIGN_STATE].value ^ 0x1;
results->setRegisterValue(UNW_ARM64_RA_SIGN_STATE, value, initialState);
_LIBUNWIND_TRACE_DWARF("DW_CFA_AARCH64_negate_ra_state\n");
} break;
#endif
#if defined(_LIBUNWIND_TARGET_SPARC)
// case DW_CFA_GNU_window_save:
case REGISTERS_SPARC:
_LIBUNWIND_TRACE_DWARF("DW_CFA_GNU_window_save()\n");
for (reg = UNW_SPARC_O0; reg <= UNW_SPARC_O7; reg++) {
results->savedRegisters[reg].location = kRegisterInRegister;
results->savedRegisters[reg].value =
((int64_t)reg - UNW_SPARC_O0) + UNW_SPARC_I0;
results->setRegister(reg, kRegisterInRegister,
((int64_t)reg - UNW_SPARC_O0) + UNW_SPARC_I0,
initialState);
}
for (reg = UNW_SPARC_L0; reg <= UNW_SPARC_I7; reg++) {
results->savedRegisters[reg].location = kRegisterInCFA;
results->savedRegisters[reg].value =
((int64_t)reg - UNW_SPARC_L0) * 4;
results->setRegister(reg, kRegisterInCFA,
((int64_t)reg - UNW_SPARC_L0) * 4, initialState);
}
break;
#endif
@ -728,8 +774,7 @@ bool CFI_Parser<A>::parseInstructions(A &addressSpace, pint_t instructions,
}
offset = (int64_t)addressSpace.getULEB128(p, instructionsEnd)
* cieInfo.dataAlignFactor;
results->savedRegisters[reg].location = kRegisterInCFA;
results->savedRegisters[reg].value = offset;
results->setRegister(reg, kRegisterInCFA, offset, initialState);
_LIBUNWIND_TRACE_DWARF("DW_CFA_offset(reg=%d, offset=%" PRId64 ")\n",
operand, offset);
break;
@ -746,7 +791,7 @@ bool CFI_Parser<A>::parseInstructions(A &addressSpace, pint_t instructions,
reg);
return false;
}
results->savedRegisters[reg] = initialState.savedRegisters[reg];
results->restoreRegisterToInitialState(reg, initialState);
_LIBUNWIND_TRACE_DWARF("DW_CFA_restore(reg=%" PRIu64 ")\n",
static_cast<uint64_t>(operand));
break;

View File

@ -109,6 +109,8 @@ bool EHHeaderParser<A>::findFDE(A &addressSpace, pint_t pc, pint_t ehHdrStart,
hdrInfo))
return false;
if (hdrInfo.fde_count == 0) return false;
size_t tableEntrySize = getTableEntrySize(hdrInfo.table_enc);
pint_t tableEntry;

View File

@ -0,0 +1,149 @@
//===-FrameHeaderCache.hpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
// Cache the elf program headers necessary to unwind the stack more efficiently
// in the presence of many dsos.
//
//===----------------------------------------------------------------------===//
#ifndef __FRAMEHEADER_CACHE_HPP__
#define __FRAMEHEADER_CACHE_HPP__
#include "config.h"
#include <limits.h>
#ifdef _LIBUNWIND_DEBUG_FRAMEHEADER_CACHE
#define _LIBUNWIND_FRAMEHEADERCACHE_TRACE0(x) _LIBUNWIND_LOG0(x)
#define _LIBUNWIND_FRAMEHEADERCACHE_TRACE(msg, ...) \
_LIBUNWIND_LOG(msg, __VA_ARGS__)
#else
#define _LIBUNWIND_FRAMEHEADERCACHE_TRACE0(x)
#define _LIBUNWIND_FRAMEHEADERCACHE_TRACE(msg, ...)
#endif
// This cache should only be be used from within a dl_iterate_phdr callback.
// dl_iterate_phdr does the necessary synchronization to prevent problems
// with concurrent access via the libc load lock. Adding synchronization
// for other uses is possible, but not currently done.
class _LIBUNWIND_HIDDEN FrameHeaderCache {
struct CacheEntry {
uintptr_t LowPC() { return Info.dso_base; };
uintptr_t HighPC() { return Info.dso_base + Info.dwarf_section_length; };
UnwindInfoSections Info;
CacheEntry *Next;
};
static const size_t kCacheEntryCount = 8;
// Can't depend on the C++ standard library in libunwind, so use an array to
// allocate the entries, and two linked lists for ordering unused and recently
// used entries. FIXME: Would the the extra memory for a doubly-linked list
// be better than the runtime cost of traversing a very short singly-linked
// list on a cache miss? The entries themselves are all small and consecutive,
// so unlikely to cause page faults when following the pointers. The memory
// spent on additional pointers could also be spent on more entries.
CacheEntry Entries[kCacheEntryCount];
CacheEntry *MostRecentlyUsed;
CacheEntry *Unused;
void resetCache() {
_LIBUNWIND_FRAMEHEADERCACHE_TRACE0("FrameHeaderCache reset");
MostRecentlyUsed = nullptr;
Unused = &Entries[0];
for (size_t i = 0; i < kCacheEntryCount - 1; i++) {
Entries[i].Next = &Entries[i + 1];
}
Entries[kCacheEntryCount - 1].Next = nullptr;
}
bool cacheNeedsReset(dl_phdr_info *PInfo) {
// C libraries increment dl_phdr_info.adds and dl_phdr_info.subs when
// loading and unloading shared libraries. If these values change between
// iterations of dl_iterate_phdr, then invalidate the cache.
// These are static to avoid needing an initializer, and unsigned long long
// because that is their type within the extended dl_phdr_info. Initialize
// these to something extremely unlikely to be found upon the first call to
// dl_iterate_phdr.
static unsigned long long LastAdds = ULLONG_MAX;
static unsigned long long LastSubs = ULLONG_MAX;
if (PInfo->dlpi_adds != LastAdds || PInfo->dlpi_subs != LastSubs) {
// Resetting the entire cache is a big hammer, but this path is rare--
// usually just on the very first call, when the cache is empty anyway--so
// added complexity doesn't buy much.
LastAdds = PInfo->dlpi_adds;
LastSubs = PInfo->dlpi_subs;
resetCache();
return true;
}
return false;
}
public:
bool find(dl_phdr_info *PInfo, size_t, void *data) {
if (cacheNeedsReset(PInfo) || MostRecentlyUsed == nullptr)
return false;
auto *CBData = static_cast<dl_iterate_cb_data *>(data);
CacheEntry *Current = MostRecentlyUsed;
CacheEntry *Previous = nullptr;
while (Current != nullptr) {
_LIBUNWIND_FRAMEHEADERCACHE_TRACE(
"FrameHeaderCache check %lx in [%lx - %lx)", CBData->targetAddr,
Current->LowPC(), Current->HighPC());
if (Current->LowPC() <= CBData->targetAddr &&
CBData->targetAddr < Current->HighPC()) {
_LIBUNWIND_FRAMEHEADERCACHE_TRACE(
"FrameHeaderCache hit %lx in [%lx - %lx)", CBData->targetAddr,
Current->LowPC(), Current->HighPC());
if (Previous) {
// If there is no Previous, then Current is already the
// MostRecentlyUsed, and no need to move it up.
Previous->Next = Current->Next;
Current->Next = MostRecentlyUsed;
MostRecentlyUsed = Current;
}
*CBData->sects = Current->Info;
return true;
}
Previous = Current;
Current = Current->Next;
}
_LIBUNWIND_FRAMEHEADERCACHE_TRACE("FrameHeaderCache miss for address %lx",
CBData->targetAddr);
return false;
}
void add(const UnwindInfoSections *UIS) {
CacheEntry *Current = nullptr;
if (Unused != nullptr) {
Current = Unused;
Unused = Unused->Next;
} else {
Current = MostRecentlyUsed;
CacheEntry *Previous = nullptr;
while (Current->Next != nullptr) {
Previous = Current;
Current = Current->Next;
}
Previous->Next = nullptr;
_LIBUNWIND_FRAMEHEADERCACHE_TRACE("FrameHeaderCache evict [%lx - %lx)",
Current->LowPC(), Current->HighPC());
}
Current->Info = *UIS;
Current->Next = MostRecentlyUsed;
MostRecentlyUsed = Current;
_LIBUNWIND_FRAMEHEADERCACHE_TRACE("FrameHeaderCache add [%lx - %lx)",
MostRecentlyUsed->LowPC(),
MostRecentlyUsed->HighPC());
}
};
#endif // __FRAMEHEADER_CACHE_HPP__

View File

@ -34,6 +34,7 @@ enum {
REGISTERS_MIPS_O32,
REGISTERS_MIPS_NEWABI,
REGISTERS_SPARC,
REGISTERS_HEXAGON,
REGISTERS_RISCV,
};
@ -2869,6 +2870,8 @@ inline bool Registers_mips_o32::validFloatRegister(int regNum) const {
#if defined(__mips_hard_float) && __mips_fpr == 64
if (regNum >= UNW_MIPS_F0 && regNum <= UNW_MIPS_F31)
return true;
#else
(void)regNum;
#endif
return false;
}
@ -2878,6 +2881,7 @@ inline double Registers_mips_o32::getFloatRegister(int regNum) const {
assert(validFloatRegister(regNum));
return _floats[regNum - UNW_MIPS_F0];
#else
(void)regNum;
_LIBUNWIND_ABORT("mips_o32 float support not implemented");
#endif
}
@ -2888,6 +2892,8 @@ inline void Registers_mips_o32::setFloatRegister(int regNum,
assert(validFloatRegister(regNum));
_floats[regNum - UNW_MIPS_F0] = value;
#else
(void)regNum;
(void)value;
_LIBUNWIND_ABORT("mips_o32 float support not implemented");
#endif
}
@ -3159,6 +3165,8 @@ inline bool Registers_mips_newabi::validFloatRegister(int regNum) const {
#ifdef __mips_hard_float
if (regNum >= UNW_MIPS_F0 && regNum <= UNW_MIPS_F31)
return true;
#else
(void)regNum;
#endif
return false;
}
@ -3168,6 +3176,7 @@ inline double Registers_mips_newabi::getFloatRegister(int regNum) const {
assert(validFloatRegister(regNum));
return _floats[regNum - UNW_MIPS_F0];
#else
(void)regNum;
_LIBUNWIND_ABORT("mips_newabi float support not implemented");
#endif
}
@ -3178,6 +3187,8 @@ inline void Registers_mips_newabi::setFloatRegister(int regNum,
assert(validFloatRegister(regNum));
_floats[regNum - UNW_MIPS_F0] = value;
#else
(void)regNum;
(void)value;
_LIBUNWIND_ABORT("mips_newabi float support not implemented");
#endif
}
@ -3518,6 +3529,187 @@ inline const char *Registers_sparc::getRegisterName(int regNum) {
}
#endif // _LIBUNWIND_TARGET_SPARC
#if defined(_LIBUNWIND_TARGET_HEXAGON)
/// Registers_hexagon holds the register state of a thread in a Hexagon QDSP6
/// process.
class _LIBUNWIND_HIDDEN Registers_hexagon {
public:
Registers_hexagon();
Registers_hexagon(const void *registers);
bool validRegister(int num) const;
uint32_t getRegister(int num) const;
void setRegister(int num, uint32_t value);
bool validFloatRegister(int num) const;
double getFloatRegister(int num) const;
void setFloatRegister(int num, double value);
bool validVectorRegister(int num) const;
v128 getVectorRegister(int num) const;
void setVectorRegister(int num, v128 value);
const char *getRegisterName(int num);
void jumpto();
static int lastDwarfRegNum() { return _LIBUNWIND_HIGHEST_DWARF_REGISTER_HEXAGON; }
static int getArch() { return REGISTERS_HEXAGON; }
uint32_t getSP() const { return _registers.__r[UNW_HEXAGON_R29]; }
void setSP(uint32_t value) { _registers.__r[UNW_HEXAGON_R29] = value; }
uint32_t getIP() const { return _registers.__r[UNW_HEXAGON_PC]; }
void setIP(uint32_t value) { _registers.__r[UNW_HEXAGON_PC] = value; }
private:
struct hexagon_thread_state_t {
unsigned int __r[35];
};
hexagon_thread_state_t _registers;
};
inline Registers_hexagon::Registers_hexagon(const void *registers) {
static_assert((check_fit<Registers_hexagon, unw_context_t>::does_fit),
"hexagon registers do not fit into unw_context_t");
memcpy(&_registers, static_cast<const uint8_t *>(registers),
sizeof(_registers));
}
inline Registers_hexagon::Registers_hexagon() {
memset(&_registers, 0, sizeof(_registers));
}
inline bool Registers_hexagon::validRegister(int regNum) const {
if (regNum <= UNW_HEXAGON_R31)
return true;
return false;
}
inline uint32_t Registers_hexagon::getRegister(int regNum) const {
if (regNum >= UNW_HEXAGON_R0 && regNum <= UNW_HEXAGON_R31)
return _registers.__r[regNum - UNW_HEXAGON_R0];
switch (regNum) {
case UNW_REG_IP:
return _registers.__r[UNW_HEXAGON_PC];
case UNW_REG_SP:
return _registers.__r[UNW_HEXAGON_R29];
}
_LIBUNWIND_ABORT("unsupported hexagon register");
}
inline void Registers_hexagon::setRegister(int regNum, uint32_t value) {
if (regNum >= UNW_HEXAGON_R0 && regNum <= UNW_HEXAGON_R31) {
_registers.__r[regNum - UNW_HEXAGON_R0] = value;
return;
}
switch (regNum) {
case UNW_REG_IP:
_registers.__r[UNW_HEXAGON_PC] = value;
return;
case UNW_REG_SP:
_registers.__r[UNW_HEXAGON_R29] = value;
return;
}
_LIBUNWIND_ABORT("unsupported hexagon register");
}
inline bool Registers_hexagon::validFloatRegister(int /* regNum */) const {
return false;
}
inline double Registers_hexagon::getFloatRegister(int /* regNum */) const {
_LIBUNWIND_ABORT("hexagon float support not implemented");
}
inline void Registers_hexagon::setFloatRegister(int /* regNum */,
double /* value */) {
_LIBUNWIND_ABORT("hexagon float support not implemented");
}
inline bool Registers_hexagon::validVectorRegister(int /* regNum */) const {
return false;
}
inline v128 Registers_hexagon::getVectorRegister(int /* regNum */) const {
_LIBUNWIND_ABORT("hexagon vector support not implemented");
}
inline void Registers_hexagon::setVectorRegister(int /* regNum */, v128 /* value */) {
_LIBUNWIND_ABORT("hexagon vector support not implemented");
}
inline const char *Registers_hexagon::getRegisterName(int regNum) {
switch (regNum) {
case UNW_HEXAGON_R0:
return "r0";
case UNW_HEXAGON_R1:
return "r1";
case UNW_HEXAGON_R2:
return "r2";
case UNW_HEXAGON_R3:
return "r3";
case UNW_HEXAGON_R4:
return "r4";
case UNW_HEXAGON_R5:
return "r5";
case UNW_HEXAGON_R6:
return "r6";
case UNW_HEXAGON_R7:
return "r7";
case UNW_HEXAGON_R8:
return "r8";
case UNW_HEXAGON_R9:
return "r9";
case UNW_HEXAGON_R10:
return "r10";
case UNW_HEXAGON_R11:
return "r11";
case UNW_HEXAGON_R12:
return "r12";
case UNW_HEXAGON_R13:
return "r13";
case UNW_HEXAGON_R14:
return "r14";
case UNW_HEXAGON_R15:
return "r15";
case UNW_HEXAGON_R16:
return "r16";
case UNW_HEXAGON_R17:
return "r17";
case UNW_HEXAGON_R18:
return "r18";
case UNW_HEXAGON_R19:
return "r19";
case UNW_HEXAGON_R20:
return "r20";
case UNW_HEXAGON_R21:
return "r21";
case UNW_HEXAGON_R22:
return "r22";
case UNW_HEXAGON_R23:
return "r23";
case UNW_HEXAGON_R24:
return "r24";
case UNW_HEXAGON_R25:
return "r25";
case UNW_HEXAGON_R26:
return "r26";
case UNW_HEXAGON_R27:
return "r27";
case UNW_HEXAGON_R28:
return "r28";
case UNW_HEXAGON_R29:
return "r29";
case UNW_HEXAGON_R30:
return "r30";
case UNW_HEXAGON_R31:
return "r31";
default:
return "unknown register";
}
}
#endif // _LIBUNWIND_TARGET_HEXAGON
#if defined(_LIBUNWIND_TARGET_RISCV)
/// Registers_riscv holds the register state of a thread in a 64-bit RISC-V
/// process.
@ -3542,11 +3734,11 @@ public:
uint64_t getSP() const { return _registers[2]; }
void setSP(uint64_t value) { _registers[2] = value; }
uint64_t getIP() const { return _registers[1]; }
void setIP(uint64_t value) { _registers[1] = value; }
uint64_t getIP() const { return _registers[0]; }
void setIP(uint64_t value) { _registers[0] = value; }
private:
// _registers[0] holds the pc
uint64_t _registers[32];
double _floats[32];
};
@ -3581,7 +3773,7 @@ inline bool Registers_riscv::validRegister(int regNum) const {
inline uint64_t Registers_riscv::getRegister(int regNum) const {
if (regNum == UNW_REG_IP)
return _registers[1];
return _registers[0];
if (regNum == UNW_REG_SP)
return _registers[2];
if (regNum == UNW_RISCV_X0)
@ -3593,7 +3785,7 @@ inline uint64_t Registers_riscv::getRegister(int regNum) const {
inline void Registers_riscv::setRegister(int regNum, uint64_t value) {
if (regNum == UNW_REG_IP)
_registers[1] = value;
_registers[0] = value;
else if (regNum == UNW_REG_SP)
_registers[2] = value;
else if (regNum == UNW_RISCV_X0)
@ -3757,6 +3949,7 @@ inline double Registers_riscv::getFloatRegister(int regNum) const {
assert(validFloatRegister(regNum));
return _floats[regNum - UNW_RISCV_F0];
#else
(void)regNum;
_LIBUNWIND_ABORT("libunwind not built with float support");
#endif
}
@ -3766,6 +3959,8 @@ inline void Registers_riscv::setFloatRegister(int regNum, double value) {
assert(validFloatRegister(regNum));
_floats[regNum - UNW_RISCV_F0] = value;
#else
(void)regNum;
(void)value;
_LIBUNWIND_ABORT("libunwind not built with float support");
#endif
}

View File

@ -31,10 +31,12 @@ namespace {
// signinficant byte.
uint8_t getByte(const uint32_t* data, size_t offset) {
const uint8_t* byteData = reinterpret_cast<const uint8_t*>(data);
#ifdef __LITTLE_ENDIAN__
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return byteData[(offset & ~(size_t)0x03) + (3 - (offset & (size_t)0x03))];
#else
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return byteData[offset];
#else
#error "Unable to determine endianess"
#endif
}
@ -481,8 +483,8 @@ unwind_phase1(unw_context_t *uc, unw_cursor_t *cursor, _Unwind_Exception *except
// If there is a personality routine, ask it if it will want to stop at
// this frame.
if (frameInfo.handler != 0) {
__personality_routine p =
(__personality_routine)(long)(frameInfo.handler);
_Unwind_Personality_Fn p =
(_Unwind_Personality_Fn)(long)(frameInfo.handler);
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase1(ex_ojb=%p): calling personality function %p",
static_cast<void *>(exception_object),
@ -597,8 +599,8 @@ static _Unwind_Reason_Code unwind_phase2(unw_context_t *uc, unw_cursor_t *cursor
// If there is a personality routine, tell it we are unwinding.
if (frameInfo.handler != 0) {
__personality_routine p =
(__personality_routine)(long)(frameInfo.handler);
_Unwind_Personality_Fn p =
(_Unwind_Personality_Fn)(long)(frameInfo.handler);
struct _Unwind_Context *context = (struct _Unwind_Context *)(cursor);
// EHABI #7.2
exception_object->pr_cache.fnstart = frameInfo.start_ip;
@ -943,10 +945,12 @@ _Unwind_VRS_Pop(_Unwind_Context *context, _Unwind_VRS_RegClass regclass,
// SP is only 32-bit aligned so don't copy 64-bit at a time.
uint64_t w0 = *sp++;
uint64_t w1 = *sp++;
#ifdef __LITTLE_ENDIAN__
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
uint64_t value = (w1 << 32) | w0;
#else
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
uint64_t value = (w0 << 32) | w1;
#else
#error "Unable to determine endianess"
#endif
if (_Unwind_VRS_Set(context, regclass, i, representation, &value) !=
_UVRSR_OK)

View File

@ -69,7 +69,7 @@ static void __unw_seh_set_disp_ctx(unw_cursor_t *cursor,
/// b) Initiate a collided unwind to halt unwinding.
_LIBUNWIND_EXPORT EXCEPTION_DISPOSITION
_GCC_specific_handler(PEXCEPTION_RECORD ms_exc, PVOID frame, PCONTEXT ms_ctx,
DISPATCHER_CONTEXT *disp, __personality_routine pers) {
DISPATCHER_CONTEXT *disp, _Unwind_Personality_Fn pers) {
unw_cursor_t cursor;
_Unwind_Exception *exc;
_Unwind_Action action;
@ -290,8 +290,8 @@ unwind_phase2_forced(unw_context_t *uc,
// If there is a personality routine, tell it we are unwinding.
if (frameInfo.handler != 0) {
__personality_routine p =
(__personality_routine)(intptr_t)(frameInfo.handler);
_Unwind_Personality_Fn p =
(_Unwind_Personality_Fn)(intptr_t)(frameInfo.handler);
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase2_forced(ex_ojb=%p): calling personality function %p",
(void *)exception_object, (void *)(uintptr_t)p);

View File

@ -39,7 +39,7 @@ struct _Unwind_FunctionContext {
uint32_t resumeParameters[4];
// set by calling function before registering
__personality_routine personality; // arm offset=24
_Unwind_Personality_Fn personality; // arm offset=24
uintptr_t lsda; // arm offset=28
// variable length array, contains registers to restore
@ -268,7 +268,7 @@ unwind_phase2_forced(struct _Unwind_Exception *exception_object,
// if there is a personality routine, tell it we are unwinding
if (c->personality != NULL) {
__personality_routine p = (__personality_routine) c->personality;
_Unwind_Personality_Fn p = (_Unwind_Personality_Fn)c->personality;
_LIBUNWIND_TRACE_UNWINDING("unwind_phase2_forced(ex_ojb=%p): "
"calling personality function %p",
(void *)exception_object, (void *)p);

View File

@ -1123,6 +1123,12 @@ private:
}
#endif
#if defined (_LIBUNWIND_TARGET_HEXAGON)
compact_unwind_encoding_t dwarfEncoding(Registers_hexagon &) const {
return 0;
}
#endif
#if defined (_LIBUNWIND_TARGET_MIPS_O32)
compact_unwind_encoding_t dwarfEncoding(Registers_mips_o32 &) const {
return 0;
@ -1269,7 +1275,7 @@ struct EHABISectionIterator {
_Self operator+(size_t a) { _Self out = *this; out._i += a; return out; }
_Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; }
size_t operator-(const _Self& other) { return _i - other._i; }
size_t operator-(const _Self& other) const { return _i - other._i; }
bool operator==(const _Self& other) const {
assert(_addressSpace == other._addressSpace);
@ -1277,6 +1283,12 @@ struct EHABISectionIterator {
return _i == other._i;
}
bool operator!=(const _Self& other) const {
assert(_addressSpace == other._addressSpace);
assert(_sects == other._sects);
return _i != other._i;
}
typename A::pint_t operator*() const { return functionAddress(); }
typename A::pint_t functionAddress() const {
@ -1353,7 +1365,8 @@ bool UnwindCursor<A, R>::getInfoFromEHABISection(
// If the high bit is set, the exception handling table entry is inline inside
// the index table entry on the second word (aka |indexDataAddr|). Otherwise,
// the table points at an offset in the exception handling table (section 5 EHABI).
// the table points at an offset in the exception handling table (section 5
// EHABI).
pint_t exceptionTableAddr;
uint32_t exceptionTableData;
bool isSingleWordEHT;
@ -1452,7 +1465,7 @@ bool UnwindCursor<A, R>::getInfoFromEHABISection(
_info.unwind_info = exceptionTableAddr;
_info.lsda = lsda;
// flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0.
_info.flags = isSingleWordEHT ? 1 : 0 | scope32 ? 0x2 : 0; // Use enum?
_info.flags = (isSingleWordEHT ? 1 : 0) | (scope32 ? 0x2 : 0); // Use enum?
return true;
}
@ -1847,6 +1860,12 @@ void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) {
pc &= (pint_t)~0x1;
#endif
// Exit early if at the top of the stack.
if (pc == 0) {
_unwindInfoMissing = true;
return;
}
// If the last line of a function is a "throw" the compiler sometimes
// emits no instructions after the call to __cxa_throw. This means
// the return address is actually the start of the next function.

View File

@ -149,7 +149,7 @@ _Unwind_Backtrace(_Unwind_Trace_Fn callback, void *ref) {
struct _Unwind_Context *context = (struct _Unwind_Context *)&cursor;
// Get and call the personality function to unwind the frame.
__personality_routine handler = (__personality_routine) frameInfo.handler;
_Unwind_Personality_Fn handler = (_Unwind_Personality_Fn)frameInfo.handler;
if (handler == NULL) {
return _URC_END_OF_STACK;
}

View File

@ -90,8 +90,8 @@ unwind_phase1(unw_context_t *uc, unw_cursor_t *cursor, _Unwind_Exception *except
// If there is a personality routine, ask it if it will want to stop at
// this frame.
if (frameInfo.handler != 0) {
__personality_routine p =
(__personality_routine)(uintptr_t)(frameInfo.handler);
_Unwind_Personality_Fn p =
(_Unwind_Personality_Fn)(uintptr_t)(frameInfo.handler);
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase1(ex_ojb=%p): calling personality function %p",
(void *)exception_object, (void *)(uintptr_t)p);
@ -188,8 +188,8 @@ unwind_phase2(unw_context_t *uc, unw_cursor_t *cursor, _Unwind_Exception *except
// If there is a personality routine, tell it we are unwinding.
if (frameInfo.handler != 0) {
__personality_routine p =
(__personality_routine)(uintptr_t)(frameInfo.handler);
_Unwind_Personality_Fn p =
(_Unwind_Personality_Fn)(uintptr_t)(frameInfo.handler);
_Unwind_Action action = _UA_CLEANUP_PHASE;
if (sp == exception_object->private_2) {
// Tell personality this was the frame it marked in phase 1.
@ -294,8 +294,8 @@ unwind_phase2_forced(unw_context_t *uc, unw_cursor_t *cursor,
// If there is a personality routine, tell it we are unwinding.
if (frameInfo.handler != 0) {
__personality_routine p =
(__personality_routine)(intptr_t)(frameInfo.handler);
_Unwind_Personality_Fn p =
(_Unwind_Personality_Fn)(intptr_t)(frameInfo.handler);
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase2_forced(ex_ojb=%p): calling personality function %p",
(void *)exception_object, (void *)(uintptr_t)p);

View File

@ -557,7 +557,7 @@ Lnovec:
lwz %r3, 20(%r3) // do r3 last
bctr
#elif defined(__arm64__) || defined(__aarch64__)
#elif defined(__aarch64__)
//
// void libunwind::Registers_arm64::jumpto()
@ -808,6 +808,48 @@ DEFINE_LIBUNWIND_FUNCTION(_ZN9libunwind14Registers_or1k6jumptoEv)
l.jr r9
l.nop
#elif defined(__hexagon__)
# On entry:
# thread_state pointer is in r2
DEFINE_LIBUNWIND_FUNCTION(_ZN9libunwind17Registers_hexagon6jumptoEv)
#
# void libunwind::Registers_hexagon::jumpto()
#
r8 = memw(r0+#32)
r9 = memw(r0+#36)
r10 = memw(r0+#40)
r11 = memw(r0+#44)
r12 = memw(r0+#48)
r13 = memw(r0+#52)
r14 = memw(r0+#56)
r15 = memw(r0+#60)
r16 = memw(r0+#64)
r17 = memw(r0+#68)
r18 = memw(r0+#72)
r19 = memw(r0+#76)
r20 = memw(r0+#80)
r21 = memw(r0+#84)
r22 = memw(r0+#88)
r23 = memw(r0+#92)
r24 = memw(r0+#96)
r25 = memw(r0+#100)
r26 = memw(r0+#104)
r27 = memw(r0+#108)
r28 = memw(r0+#112)
r29 = memw(r0+#116)
r30 = memw(r0+#120)
r31 = memw(r0+#132)
r1 = memw(r0+#128)
c4 = r1 // Predicate register
r1 = memw(r0+#4)
r0 = memw(r0)
jumpr r31
#elif defined(__mips__) && defined(_ABIO32) && _MIPS_SIM == _ABIO32
//
@ -1075,7 +1117,7 @@ DEFINE_LIBUNWIND_FUNCTION(_ZN9libunwind15Registers_riscv6jumptoEv)
#endif
// x0 is zero
ld x1, (8 * 1)(a0)
ld x1, (8 * 0)(a0) // restore pc into ra
ld x2, (8 * 2)(a0)
ld x3, (8 * 3)(a0)
ld x4, (8 * 4)(a0)

View File

@ -697,7 +697,7 @@ DEFINE_LIBUNWIND_FUNCTION(__unw_getcontext)
blr
#elif defined(__arm64__) || defined(__aarch64__)
#elif defined(__aarch64__)
//
// extern int __unw_getcontext(unw_context_t* thread_state)
@ -945,6 +945,52 @@ DEFINE_LIBUNWIND_FUNCTION(__unw_getcontext)
# zero epcr
l.sw 132(r3), r0
#elif defined(__hexagon__)
#
# extern int unw_getcontext(unw_context_t* thread_state)
#
# On entry:
# thread_state pointer is in r0
#
#define OFFSET(offset) (offset/4)
DEFINE_LIBUNWIND_FUNCTION(__unw_getcontext)
memw(r0+#32) = r8
memw(r0+#36) = r9
memw(r0+#40) = r10
memw(r0+#44) = r11
memw(r0+#48) = r12
memw(r0+#52) = r13
memw(r0+#56) = r14
memw(r0+#60) = r15
memw(r0+#64) = r16
memw(r0+#68) = r17
memw(r0+#72) = r18
memw(r0+#76) = r19
memw(r0+#80) = r20
memw(r0+#84) = r21
memw(r0+#88) = r22
memw(r0+#92) = r23
memw(r0+#96) = r24
memw(r0+#100) = r25
memw(r0+#104) = r26
memw(r0+#108) = r27
memw(r0+#112) = r28
memw(r0+#116) = r29
memw(r0+#120) = r30
memw(r0+#124) = r31
r1 = c4 // Predicate register
memw(r0+#128) = r1
r1 = memw(r30) // *FP == Saved FP
r1 = r31
memw(r0+#132) = r1
jumpr r31
#elif defined(__sparc__)
#
@ -984,7 +1030,7 @@ DEFINE_LIBUNWIND_FUNCTION(__unw_getcontext)
# thread_state pointer is in a0
#
DEFINE_LIBUNWIND_FUNCTION(__unw_getcontext)
// x0 is zero
sd x1, (8 * 0)(a0) // store ra as pc
sd x1, (8 * 1)(a0)
sd x2, (8 * 2)(a0)
sd x3, (8 * 3)(a0)

View File

@ -56,7 +56,7 @@ struct libgcc_object_info {
__attribute__((visibility("default"))) const char sym##_tmp42 = 0; \
extern const char sym##_tmp43 __asm("$ld$hide$os4.3$_" #sym ); \
__attribute__((visibility("default"))) const char sym##_tmp43 = 0;
#elif defined(__arm64__)
#elif defined(__aarch64__)
#define NOT_HERE_BEFORE_10_6(sym)
#define NEVER_HERE(sym)
#else

View File

@ -28,7 +28,7 @@
#ifdef _ARCH_PWR8
#define PPC64_HAS_VMX
#endif
#elif defined(__arm64__)
#elif defined(__APPLE__) && defined(__aarch64__)
#define SEPARATOR %%
#else
#define SEPARATOR ;
@ -75,9 +75,16 @@
#define EXPORT_SYMBOL(name)
#define HIDDEN_SYMBOL(name) .hidden name
#define WEAK_SYMBOL(name) .weak name
#if defined(__hexagon__)
#define WEAK_ALIAS(name, aliasname) \
WEAK_SYMBOL(aliasname) SEPARATOR \
.equiv SYMBOL_NAME(aliasname), SYMBOL_NAME(name)
#else
#define WEAK_ALIAS(name, aliasname) \
WEAK_SYMBOL(aliasname) SEPARATOR \
SYMBOL_NAME(aliasname) = SYMBOL_NAME(name)
#endif
#if defined(__GNU__) || defined(__FreeBSD__) || defined(__Fuchsia__) || \
defined(__linux__)

View File

@ -102,9 +102,10 @@
#if defined(__i386__) || defined(__x86_64__) || \
defined(__ppc__) || defined(__ppc64__) || defined(__powerpc64__) || \
(!defined(__APPLE__) && defined(__arm__)) || \
(defined(__arm64__) || defined(__aarch64__)) || \
defined(__aarch64__) || \
defined(__mips__) || \
defined(__riscv)
defined(__riscv) || \
defined(__hexagon__)
#if !defined(_LIBUNWIND_BUILD_SJLJ_APIS)
#define _LIBUNWIND_BUILD_ZERO_COST_APIS
#endif
@ -122,8 +123,7 @@
#else
#define _LIBUNWIND_ABORT(msg) \
do { \
fprintf(stderr, "libunwind: %s %s:%d - %s\n", __func__, __FILE__, \
__LINE__, msg); \
fprintf(stderr, "libunwind: %s - %s\n", __func__, msg); \
fflush(stderr); \
abort(); \
} while (0)

View File

@ -50,6 +50,8 @@ _LIBUNWIND_HIDDEN int __unw_init_local(unw_cursor_t *cursor,
# define REGISTER_KIND Registers_arm
#elif defined(__or1k__)
# define REGISTER_KIND Registers_or1k
#elif defined(__hexagon__)
# define REGISTER_KIND Registers_hexagon
#elif defined(__mips__) && defined(_ABIO32) && _MIPS_SIM == _ABIO32
# define REGISTER_KIND Registers_mips_o32
#elif defined(__mips64)