elf: move code paths responsible for emitting object and archive into relocatable module

This commit is contained in:
Jakub Konka 2024-02-12 23:37:05 +01:00
parent a94d5895cf
commit 616a8f9853
3 changed files with 544 additions and 527 deletions

View File

@ -593,6 +593,7 @@ set(ZIG_STAGE2_SOURCES
"${CMAKE_SOURCE_DIR}/src/link/Elf/eh_frame.zig"
"${CMAKE_SOURCE_DIR}/src/link/Elf/file.zig"
"${CMAKE_SOURCE_DIR}/src/link/Elf/gc.zig"
"${CMAKE_SOURCE_DIR}/src/link/Elf/relocatable.zig"
"${CMAKE_SOURCE_DIR}/src/link/Elf/synthetic_sections.zig"
"${CMAKE_SOURCE_DIR}/src/link/MachO.zig"
"${CMAKE_SOURCE_DIR}/src/link/MachO/Archive.zig"

View File

@ -570,7 +570,7 @@ fn detectAllocCollision(self: *Elf, start: u64, size: u64) ?u64 {
return null;
}
fn allocatedSize(self: *Elf, start: u64) u64 {
pub fn allocatedSize(self: *Elf, start: u64) u64 {
if (start == 0) return 0;
var min_pos: u64 = std.math.maxInt(u64);
if (self.shdr_table_offset) |off| {
@ -597,7 +597,7 @@ fn allocatedVirtualSize(self: *Elf, start: u64) u64 {
return min_pos - start;
}
fn findFreeSpace(self: *Elf, object_size: u64, min_alignment: u64) u64 {
pub fn findFreeSpace(self: *Elf, object_size: u64, min_alignment: u64) u64 {
var start: u64 = 0;
while (self.detectAllocCollision(start, object_size)) |item_end| {
start = mem.alignForward(u64, item_end, min_alignment);
@ -1083,8 +1083,8 @@ pub fn flushModule(self: *Elf, arena: Allocator, prog_node: *std.Progress.Node)
};
if (self.zigObjectPtr()) |zig_object| try zig_object.flushModule(self);
if (self.base.isStaticLib()) return self.flushStaticLib(comp, module_obj_path);
if (self.base.isObject()) return self.flushObject(comp, module_obj_path);
if (self.base.isStaticLib()) return relocatable.flushStaticLib(self, comp, module_obj_path);
if (self.base.isObject()) return relocatable.flushObject(self, comp, module_obj_path);
// Here we will parse input positional and library files (if referenced).
// This will roughly match in any linker backend we support.
@ -1388,222 +1388,6 @@ pub fn flushModule(self: *Elf, arena: Allocator, prog_node: *std.Progress.Node)
if (comp.link_errors.items.len > 0) return error.FlushFailure;
}
pub fn flushStaticLib(self: *Elf, comp: *Compilation, module_obj_path: ?[]const u8) link.File.FlushError!void {
const gpa = comp.gpa;
var positionals = std.ArrayList(Compilation.LinkObject).init(gpa);
defer positionals.deinit();
try positionals.ensureUnusedCapacity(comp.objects.len);
positionals.appendSliceAssumeCapacity(comp.objects);
// This is a set of object files emitted by clang in a single `build-exe` invocation.
// For instance, the implicit `a.o` as compiled by `zig build-exe a.c` will end up
// in this set.
for (comp.c_object_table.keys()) |key| {
try positionals.append(.{ .path = key.status.success.object_path });
}
if (module_obj_path) |path| try positionals.append(.{ .path = path });
for (positionals.items) |obj| {
self.parsePositional(obj.path, obj.must_link) catch |err| switch (err) {
error.MalformedObject, error.MalformedArchive, error.InvalidCpuArch => continue, // already reported
else => |e| try self.reportParseError(
obj.path,
"unexpected error: parsing input file failed with error {s}",
.{@errorName(e)},
),
};
}
if (comp.link_errors.items.len > 0) return error.FlushFailure;
// First, we flush relocatable object file generated with our backends.
if (self.zigObjectPtr()) |zig_object| {
zig_object.resolveSymbols(self);
zig_object.claimUnresolvedObject(self);
try self.initSymtab();
try self.initShStrtab();
try self.sortShdrs();
try zig_object.addAtomsToRelaSections(self);
try self.updateSectionSizesObject();
try self.allocateAllocSectionsObject();
try self.allocateNonAllocSections();
if (build_options.enable_logging) {
state_log.debug("{}", .{self.dumpState()});
}
try self.writeSyntheticSectionsObject();
try self.writeShdrTable();
try self.writeElfHeader();
// TODO we can avoid reading in the file contents we just wrote if we give the linker
// ability to write directly to a buffer.
try zig_object.readFileContents(self);
}
var files = std.ArrayList(File.Index).init(gpa);
defer files.deinit();
try files.ensureTotalCapacityPrecise(self.objects.items.len + 1);
if (self.zigObjectPtr()) |zig_object| files.appendAssumeCapacity(zig_object.index);
for (self.objects.items) |index| files.appendAssumeCapacity(index);
// Update ar symtab from parsed objects
var ar_symtab: Archive.ArSymtab = .{};
defer ar_symtab.deinit(gpa);
for (files.items) |index| {
try self.file(index).?.updateArSymtab(&ar_symtab, self);
}
ar_symtab.sort();
// Save object paths in filenames strtab.
var ar_strtab: Archive.ArStrtab = .{};
defer ar_strtab.deinit(gpa);
for (files.items) |index| {
const file_ptr = self.file(index).?;
try file_ptr.updateArStrtab(gpa, &ar_strtab);
try file_ptr.updateArSize(self);
}
// Update file offsets of contributing objects.
const total_size: usize = blk: {
var pos: usize = elf.ARMAG.len;
pos += @sizeOf(elf.ar_hdr) + ar_symtab.size(.p64);
if (ar_strtab.size() > 0) {
pos = mem.alignForward(usize, pos, 2);
pos += @sizeOf(elf.ar_hdr) + ar_strtab.size();
}
for (files.items) |index| {
const file_ptr = self.file(index).?;
const state = switch (file_ptr) {
.zig_object => |x| &x.output_ar_state,
.object => |x| &x.output_ar_state,
else => unreachable,
};
pos = mem.alignForward(usize, pos, 2);
state.file_off = pos;
pos += @sizeOf(elf.ar_hdr) + (math.cast(usize, state.size) orelse return error.Overflow);
}
break :blk pos;
};
if (build_options.enable_logging) {
state_log.debug("ar_symtab\n{}\n", .{ar_symtab.fmt(self)});
state_log.debug("ar_strtab\n{}\n", .{ar_strtab});
}
var buffer = std.ArrayList(u8).init(gpa);
defer buffer.deinit();
try buffer.ensureTotalCapacityPrecise(total_size);
// Write magic
try buffer.writer().writeAll(elf.ARMAG);
// Write symtab
try ar_symtab.write(.p64, self, buffer.writer());
// Write strtab
if (ar_strtab.size() > 0) {
if (!mem.isAligned(buffer.items.len, 2)) try buffer.writer().writeByte(0);
try ar_strtab.write(buffer.writer());
}
// Write object files
for (files.items) |index| {
if (!mem.isAligned(buffer.items.len, 2)) try buffer.writer().writeByte(0);
try self.file(index).?.writeAr(self, buffer.writer());
}
assert(buffer.items.len == total_size);
try self.base.file.?.setEndPos(total_size);
try self.base.file.?.pwriteAll(buffer.items, 0);
if (comp.link_errors.items.len > 0) return error.FlushFailure;
}
pub fn flushObject(self: *Elf, comp: *Compilation, module_obj_path: ?[]const u8) link.File.FlushError!void {
const gpa = self.base.comp.gpa;
var positionals = std.ArrayList(Compilation.LinkObject).init(gpa);
defer positionals.deinit();
try positionals.ensureUnusedCapacity(comp.objects.len);
positionals.appendSliceAssumeCapacity(comp.objects);
// This is a set of object files emitted by clang in a single `build-exe` invocation.
// For instance, the implicit `a.o` as compiled by `zig build-exe a.c` will end up
// in this set.
for (comp.c_object_table.keys()) |key| {
try positionals.append(.{ .path = key.status.success.object_path });
}
if (module_obj_path) |path| try positionals.append(.{ .path = path });
for (positionals.items) |obj| {
self.parsePositional(obj.path, obj.must_link) catch |err| switch (err) {
error.MalformedObject, error.MalformedArchive, error.InvalidCpuArch => continue, // already reported
else => |e| try self.reportParseError(
obj.path,
"unexpected error: parsing input file failed with error {s}",
.{@errorName(e)},
),
};
}
if (comp.link_errors.items.len > 0) return error.FlushFailure;
// Init all objects
for (self.objects.items) |index| {
try self.file(index).?.object.init(self);
}
if (comp.link_errors.items.len > 0) return error.FlushFailure;
// Now, we are ready to resolve the symbols across all input files.
// We will first resolve the files in the ZigObject, next in the parsed
// input Object files.
self.resolveSymbols();
self.markEhFrameAtomsDead();
self.claimUnresolvedObject();
try self.initSectionsObject();
try self.sortShdrs();
if (self.zigObjectPtr()) |zig_object| {
try zig_object.addAtomsToRelaSections(self);
}
for (self.objects.items) |index| {
const object = self.file(index).?.object;
try object.addAtomsToOutputSections(self);
try object.addAtomsToRelaSections(self);
}
try self.updateSectionSizesObject();
try self.allocateAllocSectionsObject();
try self.allocateNonAllocSections();
self.allocateAtoms();
if (build_options.enable_logging) {
state_log.debug("{}", .{self.dumpState()});
}
try self.writeAtomsObject();
try self.writeSyntheticSectionsObject();
try self.writeShdrTable();
try self.writeElfHeader();
if (comp.link_errors.items.len > 0) return error.FlushFailure;
}
/// --verbose-link output
fn dumpArgv(self: *Elf, comp: *Compilation) !void {
const gpa = self.base.comp.gpa;
@ -1880,7 +1664,7 @@ const ParseError = error{
InvalidCharacter,
} || LdScript.Error || std.os.AccessError || std.os.SeekError || std.fs.File.OpenError || std.fs.File.ReadError;
fn parsePositional(self: *Elf, path: []const u8, must_link: bool) ParseError!void {
pub fn parsePositional(self: *Elf, path: []const u8, must_link: bool) ParseError!void {
const tracy = trace(@src());
defer tracy.end();
if (try Object.isObject(path)) {
@ -2089,7 +1873,7 @@ fn accessLibPath(
/// 4. Reset state of all resolved globals since we will redo this bit on the pruned set.
/// 5. Remove references to dead objects/shared objects
/// 6. Re-run symbol resolution on pruned objects and shared objects sets.
fn resolveSymbols(self: *Elf) void {
pub fn resolveSymbols(self: *Elf) void {
// Resolve symbols in the ZigObject. For now, we assume that it's always live.
if (self.zigObjectPtr()) |zig_object| zig_object.asFile().resolveSymbols(self);
// Resolve symbols on the set of all objects and shared objects (even if some are unneeded).
@ -2173,7 +1957,7 @@ fn markLive(self: *Elf) void {
}
}
fn markEhFrameAtomsDead(self: *Elf) void {
pub fn markEhFrameAtomsDead(self: *Elf) void {
for (self.objects.items) |index| {
const file_ptr = self.file(index).?;
if (!file_ptr.isAlive()) continue;
@ -2239,15 +2023,6 @@ fn claimUnresolved(self: *Elf) void {
}
}
fn claimUnresolvedObject(self: *Elf) void {
if (self.zigObjectPtr()) |zig_object| {
zig_object.claimUnresolvedObject(self);
}
for (self.objects.items) |index| {
self.file(index).?.object.claimUnresolvedObject(self);
}
}
/// In scanRelocs we will go over all live atoms and scan their relocs.
/// This will help us work out what synthetics to emit, GOT indirection, etc.
/// This is also the point where we will report undefined symbols for any
@ -2985,7 +2760,7 @@ fn writeDwarfAddrAssumeCapacity(self: *Elf, buf: *std.ArrayList(u8), addr: u64)
}
}
fn writeShdrTable(self: *Elf) !void {
pub fn writeShdrTable(self: *Elf) !void {
const gpa = self.base.comp.gpa;
const target = self.base.comp.root_mod.resolved_target.result;
const target_endian = target.cpu.arch.endian();
@ -3082,7 +2857,7 @@ fn writePhdrTable(self: *Elf) !void {
}
}
fn writeElfHeader(self: *Elf) !void {
pub fn writeElfHeader(self: *Elf) !void {
const comp = self.base.comp;
if (comp.link_errors.items.len > 0) return; // We had errors, so skip flushing to render the output unusable
@ -3658,61 +3433,7 @@ fn initSyntheticSections(self: *Elf) !void {
try self.initShStrtab();
}
fn initSectionsObject(self: *Elf) !void {
const ptr_size = self.ptrWidthBytes();
for (self.objects.items) |index| {
const object = self.file(index).?.object;
try object.initOutputSections(self);
try object.initRelaSections(self);
}
const needs_eh_frame = for (self.objects.items) |index| {
if (self.file(index).?.object.cies.items.len > 0) break true;
} else false;
if (needs_eh_frame) {
self.eh_frame_section_index = try self.addSection(.{
.name = ".eh_frame",
.type = elf.SHT_PROGBITS,
.flags = elf.SHF_ALLOC,
.addralign = ptr_size,
.offset = std.math.maxInt(u64),
});
self.eh_frame_rela_section_index = try self.addRelaShdr(".rela.eh_frame", self.eh_frame_section_index.?);
}
try self.initComdatGroups();
try self.initSymtab();
try self.initShStrtab();
}
fn initComdatGroups(self: *Elf) !void {
const gpa = self.base.comp.gpa;
for (self.objects.items) |index| {
const object = self.file(index).?.object;
for (object.comdat_groups.items) |cg_index| {
const cg = self.comdatGroup(cg_index);
const cg_owner = self.comdatGroupOwner(cg.owner);
if (cg_owner.file != index) continue;
const cg_sec = try self.comdat_group_sections.addOne(gpa);
cg_sec.* = .{
.shndx = try self.addSection(.{
.name = ".group",
.type = elf.SHT_GROUP,
.entsize = @sizeOf(u32),
.addralign = @alignOf(u32),
.offset = std.math.maxInt(u64),
}),
.cg_index = cg_index,
};
}
}
}
fn initSymtab(self: *Elf) !void {
pub fn initSymtab(self: *Elf) !void {
const small_ptr = switch (self.ptr_width) {
.p32 => true,
.p64 => false,
@ -3737,7 +3458,7 @@ fn initSymtab(self: *Elf) !void {
}
}
fn initShStrtab(self: *Elf) !void {
pub fn initShStrtab(self: *Elf) !void {
if (self.shstrtab_section_index == null) {
self.shstrtab_section_index = try self.addSection(.{
.name = ".shstrtab",
@ -4043,7 +3764,7 @@ fn shdrRank(self: *Elf, shndx: u16) u8 {
}
}
fn sortShdrs(self: *Elf) !void {
pub fn sortShdrs(self: *Elf) !void {
const Entry = struct {
shndx: u16,
@ -4355,58 +4076,7 @@ fn updateSectionSizes(self: *Elf) !void {
self.updateShStrtabSize();
}
fn updateSectionSizesObject(self: *Elf) !void {
for (self.output_sections.keys(), self.output_sections.values()) |shndx, atom_list| {
const shdr = &self.shdrs.items[shndx];
for (atom_list.items) |atom_index| {
const atom_ptr = self.atom(atom_index) orelse continue;
if (!atom_ptr.flags.alive) continue;
const offset = atom_ptr.alignment.forward(shdr.sh_size);
const padding = offset - shdr.sh_size;
atom_ptr.value = offset;
shdr.sh_size += padding + atom_ptr.size;
shdr.sh_addralign = @max(shdr.sh_addralign, atom_ptr.alignment.toByteUnits(1));
}
}
for (self.output_rela_sections.values()) |sec| {
const shdr = &self.shdrs.items[sec.shndx];
for (sec.atom_list.items) |atom_index| {
const atom_ptr = self.atom(atom_index) orelse continue;
if (!atom_ptr.flags.alive) continue;
const relocs = atom_ptr.relocs(self);
shdr.sh_size += shdr.sh_entsize * relocs.len;
}
if (shdr.sh_size == 0) shdr.sh_offset = 0;
}
if (self.eh_frame_section_index) |index| {
self.shdrs.items[index].sh_size = try eh_frame.calcEhFrameSize(self);
}
if (self.eh_frame_rela_section_index) |index| {
const shdr = &self.shdrs.items[index];
shdr.sh_size = eh_frame.calcEhFrameRelocs(self) * shdr.sh_entsize;
}
try self.updateSymtabSize();
self.updateComdatGroupsSizes();
self.updateShStrtabSize();
}
fn updateComdatGroupsSizes(self: *Elf) void {
for (self.comdat_group_sections.items) |cg| {
const shdr = &self.shdrs.items[cg.shndx];
shdr.sh_size = cg.size(self);
shdr.sh_link = self.symtab_section_index.?;
const sym = self.symbol(cg.symbol(self));
shdr.sh_info = sym.outputSymtabIndex(self) orelse
self.sectionSymbolOutputSymtabIndex(sym.outputShndx().?);
}
}
fn updateShStrtabSize(self: *Elf) void {
pub fn updateShStrtabSize(self: *Elf) void {
if (self.shstrtab_section_index) |index| {
self.shdrs.items[index].sh_size = self.shstrtab.items.len;
}
@ -4491,7 +4161,7 @@ fn allocatePhdrTable(self: *Elf) error{OutOfMemory}!void {
/// Allocates alloc sections and creates load segments for sections
/// extracted from input object files.
fn allocateAllocSections(self: *Elf) error{OutOfMemory}!void {
pub fn allocateAllocSections(self: *Elf) error{OutOfMemory}!void {
// We use this struct to track maximum alignment of all TLS sections.
// According to https://github.com/rui314/mold/commit/bd46edf3f0fe9e1a787ea453c4657d535622e61f in mold,
// in-file offsets have to be aligned against the start of TLS program header.
@ -4638,27 +4308,8 @@ fn allocateAllocSections(self: *Elf) error{OutOfMemory}!void {
}
}
/// Allocates alloc sections when merging relocatable objects files together.
fn allocateAllocSectionsObject(self: *Elf) !void {
for (self.shdrs.items) |*shdr| {
if (shdr.sh_type == elf.SHT_NULL) continue;
if (shdr.sh_flags & elf.SHF_ALLOC == 0) continue;
if (shdr.sh_type == elf.SHT_NOBITS) {
shdr.sh_offset = 0;
continue;
}
const needed_size = shdr.sh_size;
if (needed_size > self.allocatedSize(shdr.sh_offset)) {
shdr.sh_size = 0;
const new_offset = self.findFreeSpace(needed_size, shdr.sh_addralign);
shdr.sh_offset = new_offset;
shdr.sh_size = needed_size;
}
}
}
/// Allocates non-alloc sections (debug info, symtabs, etc.).
fn allocateNonAllocSections(self: *Elf) !void {
pub fn allocateNonAllocSections(self: *Elf) !void {
for (self.shdrs.items, 0..) |*shdr, shndx| {
if (shdr.sh_type == elf.SHT_NULL) continue;
if (shdr.sh_flags & elf.SHF_ALLOC != 0) continue;
@ -4757,7 +4408,7 @@ fn allocateSpecialPhdrs(self: *Elf) void {
}
}
fn allocateAtoms(self: *Elf) void {
pub fn allocateAtoms(self: *Elf) void {
if (self.zigObjectPtr()) |zig_object| {
zig_object.allocateTlvAtoms(self);
}
@ -4854,76 +4505,7 @@ fn writeAtoms(self: *Elf) !void {
try self.reportUndefinedSymbols(&undefs);
}
fn writeAtomsObject(self: *Elf) !void {
const gpa = self.base.comp.gpa;
// TODO iterate over `output_sections` directly
for (self.shdrs.items, 0..) |shdr, shndx| {
if (shdr.sh_type == elf.SHT_NULL) continue;
if (shdr.sh_type == elf.SHT_NOBITS) continue;
const atom_list = self.output_sections.get(@intCast(shndx)) orelse continue;
if (atom_list.items.len == 0) continue;
log.debug("writing atoms in '{s}' section", .{self.getShString(shdr.sh_name)});
// TODO really, really handle debug section separately
const base_offset = if (self.isDebugSection(@intCast(shndx))) blk: {
const zig_object = self.zigObjectPtr().?;
if (shndx == self.debug_info_section_index.?)
break :blk zig_object.debug_info_section_zig_size;
if (shndx == self.debug_abbrev_section_index.?)
break :blk zig_object.debug_abbrev_section_zig_size;
if (shndx == self.debug_str_section_index.?)
break :blk zig_object.debug_str_section_zig_size;
if (shndx == self.debug_aranges_section_index.?)
break :blk zig_object.debug_aranges_section_zig_size;
if (shndx == self.debug_line_section_index.?)
break :blk zig_object.debug_line_section_zig_size;
unreachable;
} else 0;
const sh_offset = shdr.sh_offset + base_offset;
const sh_size = math.cast(usize, shdr.sh_size - base_offset) orelse return error.Overflow;
const buffer = try gpa.alloc(u8, sh_size);
defer gpa.free(buffer);
const padding_byte: u8 = if (shdr.sh_type == elf.SHT_PROGBITS and
shdr.sh_flags & elf.SHF_EXECINSTR != 0)
0xcc // int3
else
0;
@memset(buffer, padding_byte);
for (atom_list.items) |atom_index| {
const atom_ptr = self.atom(atom_index).?;
assert(atom_ptr.flags.alive);
const offset = math.cast(usize, atom_ptr.value - shdr.sh_addr - base_offset) orelse
return error.Overflow;
const size = math.cast(usize, atom_ptr.size) orelse return error.Overflow;
log.debug("writing atom({d}) from 0x{x} to 0x{x}", .{
atom_index,
sh_offset + offset,
sh_offset + offset + size,
});
// TODO decompress directly into provided buffer
const out_code = buffer[offset..][0..size];
const in_code = switch (atom_ptr.file(self).?) {
.object => |x| try x.codeDecompressAlloc(self, atom_index),
.zig_object => |x| try x.codeAlloc(self, atom_index),
else => unreachable,
};
defer gpa.free(in_code);
@memcpy(out_code, in_code);
}
try self.base.file.?.pwriteAll(buffer, sh_offset);
}
}
fn updateSymtabSize(self: *Elf) !void {
pub fn updateSymtabSize(self: *Elf) !void {
var nlocals: u32 = 0;
var nglobals: u32 = 0;
var strsize: u32 = 0;
@ -5141,94 +4723,7 @@ fn writeSyntheticSections(self: *Elf) !void {
try self.writeShStrtab();
}
fn writeSyntheticSectionsObject(self: *Elf) !void {
const gpa = self.base.comp.gpa;
for (self.output_rela_sections.values()) |sec| {
if (sec.atom_list.items.len == 0) continue;
const shdr = self.shdrs.items[sec.shndx];
const num_relocs = math.cast(usize, @divExact(shdr.sh_size, shdr.sh_entsize)) orelse
return error.Overflow;
var relocs = try std.ArrayList(elf.Elf64_Rela).initCapacity(gpa, num_relocs);
defer relocs.deinit();
for (sec.atom_list.items) |atom_index| {
const atom_ptr = self.atom(atom_index) orelse continue;
if (!atom_ptr.flags.alive) continue;
try atom_ptr.writeRelocs(self, &relocs);
}
assert(relocs.items.len == num_relocs);
const SortRelocs = struct {
pub fn lessThan(ctx: void, lhs: elf.Elf64_Rela, rhs: elf.Elf64_Rela) bool {
_ = ctx;
return lhs.r_offset < rhs.r_offset;
}
};
mem.sort(elf.Elf64_Rela, relocs.items, {}, SortRelocs.lessThan);
log.debug("writing {s} from 0x{x} to 0x{x}", .{
self.getShString(shdr.sh_name),
shdr.sh_offset,
shdr.sh_offset + shdr.sh_size,
});
try self.base.file.?.pwriteAll(mem.sliceAsBytes(relocs.items), shdr.sh_offset);
}
if (self.eh_frame_section_index) |shndx| {
const shdr = self.shdrs.items[shndx];
const sh_size = math.cast(usize, shdr.sh_size) orelse return error.Overflow;
var buffer = try std.ArrayList(u8).initCapacity(gpa, sh_size);
defer buffer.deinit();
try eh_frame.writeEhFrameObject(self, buffer.writer());
log.debug("writing .eh_frame from 0x{x} to 0x{x}", .{
shdr.sh_offset,
shdr.sh_offset + shdr.sh_size,
});
assert(buffer.items.len == sh_size);
try self.base.file.?.pwriteAll(buffer.items, shdr.sh_offset);
}
if (self.eh_frame_rela_section_index) |shndx| {
const shdr = self.shdrs.items[shndx];
const sh_size = math.cast(usize, shdr.sh_size) orelse return error.Overflow;
var buffer = try std.ArrayList(u8).initCapacity(gpa, sh_size);
defer buffer.deinit();
try eh_frame.writeEhFrameRelocs(self, buffer.writer());
assert(buffer.items.len == sh_size);
log.debug("writing .rela.eh_frame from 0x{x} to 0x{x}", .{
shdr.sh_offset,
shdr.sh_offset + shdr.sh_size,
});
try self.base.file.?.pwriteAll(buffer.items, shdr.sh_offset);
}
try self.writeComdatGroups();
try self.writeSymtab();
try self.writeShStrtab();
}
fn writeComdatGroups(self: *Elf) !void {
const gpa = self.base.comp.gpa;
for (self.comdat_group_sections.items) |cgs| {
const shdr = self.shdrs.items[cgs.shndx];
const sh_size = math.cast(usize, shdr.sh_size) orelse return error.Overflow;
var buffer = try std.ArrayList(u8).initCapacity(gpa, sh_size);
defer buffer.deinit();
try cgs.write(self, buffer.writer());
assert(buffer.items.len == sh_size);
log.debug("writing COMDAT group from 0x{x} to 0x{x}", .{
shdr.sh_offset,
shdr.sh_offset + shdr.sh_size,
});
try self.base.file.?.pwriteAll(buffer.items, shdr.sh_offset);
}
}
fn writeShStrtab(self: *Elf) !void {
pub fn writeShStrtab(self: *Elf) !void {
if (self.shstrtab_section_index) |index| {
const shdr = self.shdrs.items[index];
log.debug("writing .shstrtab from 0x{x} to 0x{x}", .{ shdr.sh_offset, shdr.sh_offset + shdr.sh_size });
@ -5236,7 +4731,7 @@ fn writeShStrtab(self: *Elf) !void {
}
}
fn writeSymtab(self: *Elf) !void {
pub fn writeSymtab(self: *Elf) !void {
const target = self.base.comp.root_mod.resolved_target.result;
const gpa = self.base.comp.gpa;
const symtab_shdr = self.shdrs.items[self.symtab_section_index.?];
@ -5367,7 +4862,7 @@ pub fn sectionSymbolOutputSymtabIndex(self: Elf, shndx: u32) u32 {
}
/// Always 4 or 8 depending on whether this is 32-bit ELF or 64-bit ELF.
fn ptrWidthBytes(self: Elf) u8 {
pub fn ptrWidthBytes(self: Elf) u8 {
return switch (self.ptr_width) {
.p32 => 4,
.p64 => 8,
@ -5713,7 +5208,7 @@ fn addPhdr(self: *Elf, opts: struct {
return index;
}
fn addRelaShdr(self: *Elf, name: [:0]const u8, shndx: u16) !u16 {
pub fn addRelaShdr(self: *Elf, name: [:0]const u8, shndx: u16) !u16 {
const entsize: u64 = switch (self.ptr_width) {
.p32 => @sizeOf(elf.Elf32_Rela),
.p64 => @sizeOf(elf.Elf64_Rela),
@ -6340,7 +5835,7 @@ fn formatPhdr(
});
}
fn dumpState(self: *Elf) std.fmt.Formatter(fmtDumpState) {
pub fn dumpState(self: *Elf) std.fmt.Formatter(fmtDumpState) {
return .{ .data = self };
}
@ -6579,6 +6074,7 @@ const glibc = @import("../glibc.zig");
const link = @import("../link.zig");
const lldMain = @import("../main.zig").lldMain;
const musl = @import("../musl.zig");
const relocatable = @import("Elf/relocatable.zig");
const target_util = @import("../target.zig");
const trace = @import("../tracy.zig").trace;
const synthetic_sections = @import("Elf/synthetic_sections.zig");

View File

@ -0,0 +1,520 @@
pub fn flushStaticLib(elf_file: *Elf, comp: *Compilation, module_obj_path: ?[]const u8) link.File.FlushError!void {
const gpa = comp.gpa;
var positionals = std.ArrayList(Compilation.LinkObject).init(gpa);
defer positionals.deinit();
try positionals.ensureUnusedCapacity(comp.objects.len);
positionals.appendSliceAssumeCapacity(comp.objects);
// This is a set of object files emitted by clang in a single `build-exe` invocation.
// For instance, the implicit `a.o` as compiled by `zig build-exe a.c` will end up
// in this set.
for (comp.c_object_table.keys()) |key| {
try positionals.append(.{ .path = key.status.success.object_path });
}
if (module_obj_path) |path| try positionals.append(.{ .path = path });
for (positionals.items) |obj| {
elf_file.parsePositional(obj.path, obj.must_link) catch |err| switch (err) {
error.MalformedObject, error.MalformedArchive, error.InvalidCpuArch => continue, // already reported
else => |e| try elf_file.reportParseError(
obj.path,
"unexpected error: parsing input file failed with error {s}",
.{@errorName(e)},
),
};
}
if (comp.link_errors.items.len > 0) return error.FlushFailure;
// First, we flush relocatable object file generated with our backends.
if (elf_file.zigObjectPtr()) |zig_object| {
zig_object.resolveSymbols(elf_file);
zig_object.claimUnresolvedObject(elf_file);
try elf_file.initSymtab();
try elf_file.initShStrtab();
try elf_file.sortShdrs();
try zig_object.addAtomsToRelaSections(elf_file);
try updateSectionSizes(elf_file);
try allocateAllocSections(elf_file);
try elf_file.allocateNonAllocSections();
if (build_options.enable_logging) {
state_log.debug("{}", .{elf_file.dumpState()});
}
try writeSyntheticSections(elf_file);
try elf_file.writeShdrTable();
try elf_file.writeElfHeader();
// TODO we can avoid reading in the file contents we just wrote if we give the linker
// ability to write directly to a buffer.
try zig_object.readFileContents(elf_file);
}
var files = std.ArrayList(File.Index).init(gpa);
defer files.deinit();
try files.ensureTotalCapacityPrecise(elf_file.objects.items.len + 1);
if (elf_file.zigObjectPtr()) |zig_object| files.appendAssumeCapacity(zig_object.index);
for (elf_file.objects.items) |index| files.appendAssumeCapacity(index);
// Update ar symtab from parsed objects
var ar_symtab: Archive.ArSymtab = .{};
defer ar_symtab.deinit(gpa);
for (files.items) |index| {
try elf_file.file(index).?.updateArSymtab(&ar_symtab, elf_file);
}
ar_symtab.sort();
// Save object paths in filenames strtab.
var ar_strtab: Archive.ArStrtab = .{};
defer ar_strtab.deinit(gpa);
for (files.items) |index| {
const file_ptr = elf_file.file(index).?;
try file_ptr.updateArStrtab(gpa, &ar_strtab);
try file_ptr.updateArSize(elf_file);
}
// Update file offsets of contributing objects.
const total_size: usize = blk: {
var pos: usize = elf.ARMAG.len;
pos += @sizeOf(elf.ar_hdr) + ar_symtab.size(.p64);
if (ar_strtab.size() > 0) {
pos = mem.alignForward(usize, pos, 2);
pos += @sizeOf(elf.ar_hdr) + ar_strtab.size();
}
for (files.items) |index| {
const file_ptr = elf_file.file(index).?;
const state = switch (file_ptr) {
.zig_object => |x| &x.output_ar_state,
.object => |x| &x.output_ar_state,
else => unreachable,
};
pos = mem.alignForward(usize, pos, 2);
state.file_off = pos;
pos += @sizeOf(elf.ar_hdr) + (math.cast(usize, state.size) orelse return error.Overflow);
}
break :blk pos;
};
if (build_options.enable_logging) {
state_log.debug("ar_symtab\n{}\n", .{ar_symtab.fmt(elf_file)});
state_log.debug("ar_strtab\n{}\n", .{ar_strtab});
}
var buffer = std.ArrayList(u8).init(gpa);
defer buffer.deinit();
try buffer.ensureTotalCapacityPrecise(total_size);
// Write magic
try buffer.writer().writeAll(elf.ARMAG);
// Write symtab
try ar_symtab.write(.p64, elf_file, buffer.writer());
// Write strtab
if (ar_strtab.size() > 0) {
if (!mem.isAligned(buffer.items.len, 2)) try buffer.writer().writeByte(0);
try ar_strtab.write(buffer.writer());
}
// Write object files
for (files.items) |index| {
if (!mem.isAligned(buffer.items.len, 2)) try buffer.writer().writeByte(0);
try elf_file.file(index).?.writeAr(elf_file, buffer.writer());
}
assert(buffer.items.len == total_size);
try elf_file.base.file.?.setEndPos(total_size);
try elf_file.base.file.?.pwriteAll(buffer.items, 0);
if (comp.link_errors.items.len > 0) return error.FlushFailure;
}
pub fn flushObject(elf_file: *Elf, comp: *Compilation, module_obj_path: ?[]const u8) link.File.FlushError!void {
const gpa = elf_file.base.comp.gpa;
var positionals = std.ArrayList(Compilation.LinkObject).init(gpa);
defer positionals.deinit();
try positionals.ensureUnusedCapacity(comp.objects.len);
positionals.appendSliceAssumeCapacity(comp.objects);
// This is a set of object files emitted by clang in a single `build-exe` invocation.
// For instance, the implicit `a.o` as compiled by `zig build-exe a.c` will end up
// in this set.
for (comp.c_object_table.keys()) |key| {
try positionals.append(.{ .path = key.status.success.object_path });
}
if (module_obj_path) |path| try positionals.append(.{ .path = path });
for (positionals.items) |obj| {
elf_file.parsePositional(obj.path, obj.must_link) catch |err| switch (err) {
error.MalformedObject, error.MalformedArchive, error.InvalidCpuArch => continue, // already reported
else => |e| try elf_file.reportParseError(
obj.path,
"unexpected error: parsing input file failed with error {s}",
.{@errorName(e)},
),
};
}
if (comp.link_errors.items.len > 0) return error.FlushFailure;
// Init all objects
for (elf_file.objects.items) |index| {
try elf_file.file(index).?.object.init(elf_file);
}
if (comp.link_errors.items.len > 0) return error.FlushFailure;
// Now, we are ready to resolve the symbols across all input files.
// We will first resolve the files in the ZigObject, next in the parsed
// input Object files.
elf_file.resolveSymbols();
elf_file.markEhFrameAtomsDead();
claimUnresolved(elf_file);
try initSections(elf_file);
try elf_file.sortShdrs();
if (elf_file.zigObjectPtr()) |zig_object| {
try zig_object.addAtomsToRelaSections(elf_file);
}
for (elf_file.objects.items) |index| {
const object = elf_file.file(index).?.object;
try object.addAtomsToOutputSections(elf_file);
try object.addAtomsToRelaSections(elf_file);
}
try updateSectionSizes(elf_file);
try allocateAllocSections(elf_file);
try elf_file.allocateNonAllocSections();
elf_file.allocateAtoms();
if (build_options.enable_logging) {
state_log.debug("{}", .{elf_file.dumpState()});
}
try writeAtoms(elf_file);
try writeSyntheticSections(elf_file);
try elf_file.writeShdrTable();
try elf_file.writeElfHeader();
if (comp.link_errors.items.len > 0) return error.FlushFailure;
}
fn claimUnresolved(elf_file: *Elf) void {
if (elf_file.zigObjectPtr()) |zig_object| {
zig_object.claimUnresolvedObject(elf_file);
}
for (elf_file.objects.items) |index| {
elf_file.file(index).?.object.claimUnresolvedObject(elf_file);
}
}
fn initSections(elf_file: *Elf) !void {
const ptr_size = elf_file.ptrWidthBytes();
for (elf_file.objects.items) |index| {
const object = elf_file.file(index).?.object;
try object.initOutputSections(elf_file);
try object.initRelaSections(elf_file);
}
const needs_eh_frame = for (elf_file.objects.items) |index| {
if (elf_file.file(index).?.object.cies.items.len > 0) break true;
} else false;
if (needs_eh_frame) {
elf_file.eh_frame_section_index = try elf_file.addSection(.{
.name = ".eh_frame",
.type = elf.SHT_PROGBITS,
.flags = elf.SHF_ALLOC,
.addralign = ptr_size,
.offset = std.math.maxInt(u64),
});
elf_file.eh_frame_rela_section_index = try elf_file.addRelaShdr(".rela.eh_frame", elf_file.eh_frame_section_index.?);
}
try initComdatGroups(elf_file);
try elf_file.initSymtab();
try elf_file.initShStrtab();
}
fn initComdatGroups(elf_file: *Elf) !void {
const gpa = elf_file.base.comp.gpa;
for (elf_file.objects.items) |index| {
const object = elf_file.file(index).?.object;
for (object.comdat_groups.items) |cg_index| {
const cg = elf_file.comdatGroup(cg_index);
const cg_owner = elf_file.comdatGroupOwner(cg.owner);
if (cg_owner.file != index) continue;
const cg_sec = try elf_file.comdat_group_sections.addOne(gpa);
cg_sec.* = .{
.shndx = try elf_file.addSection(.{
.name = ".group",
.type = elf.SHT_GROUP,
.entsize = @sizeOf(u32),
.addralign = @alignOf(u32),
.offset = std.math.maxInt(u64),
}),
.cg_index = cg_index,
};
}
}
}
fn updateSectionSizes(elf_file: *Elf) !void {
for (elf_file.output_sections.keys(), elf_file.output_sections.values()) |shndx, atom_list| {
const shdr = &elf_file.shdrs.items[shndx];
for (atom_list.items) |atom_index| {
const atom_ptr = elf_file.atom(atom_index) orelse continue;
if (!atom_ptr.flags.alive) continue;
const offset = atom_ptr.alignment.forward(shdr.sh_size);
const padding = offset - shdr.sh_size;
atom_ptr.value = offset;
shdr.sh_size += padding + atom_ptr.size;
shdr.sh_addralign = @max(shdr.sh_addralign, atom_ptr.alignment.toByteUnits(1));
}
}
for (elf_file.output_rela_sections.values()) |sec| {
const shdr = &elf_file.shdrs.items[sec.shndx];
for (sec.atom_list.items) |atom_index| {
const atom_ptr = elf_file.atom(atom_index) orelse continue;
if (!atom_ptr.flags.alive) continue;
const relocs = atom_ptr.relocs(elf_file);
shdr.sh_size += shdr.sh_entsize * relocs.len;
}
if (shdr.sh_size == 0) shdr.sh_offset = 0;
}
if (elf_file.eh_frame_section_index) |index| {
elf_file.shdrs.items[index].sh_size = try eh_frame.calcEhFrameSize(elf_file);
}
if (elf_file.eh_frame_rela_section_index) |index| {
const shdr = &elf_file.shdrs.items[index];
shdr.sh_size = eh_frame.calcEhFrameRelocs(elf_file) * shdr.sh_entsize;
}
try elf_file.updateSymtabSize();
updateComdatGroupsSizes(elf_file);
elf_file.updateShStrtabSize();
}
fn updateComdatGroupsSizes(elf_file: *Elf) void {
for (elf_file.comdat_group_sections.items) |cg| {
const shdr = &elf_file.shdrs.items[cg.shndx];
shdr.sh_size = cg.size(elf_file);
shdr.sh_link = elf_file.symtab_section_index.?;
const sym = elf_file.symbol(cg.symbol(elf_file));
shdr.sh_info = sym.outputSymtabIndex(elf_file) orelse
elf_file.sectionSymbolOutputSymtabIndex(sym.outputShndx().?);
}
}
/// Allocates alloc sections when merging relocatable objects files together.
fn allocateAllocSections(elf_file: *Elf) !void {
for (elf_file.shdrs.items) |*shdr| {
if (shdr.sh_type == elf.SHT_NULL) continue;
if (shdr.sh_flags & elf.SHF_ALLOC == 0) continue;
if (shdr.sh_type == elf.SHT_NOBITS) {
shdr.sh_offset = 0;
continue;
}
const needed_size = shdr.sh_size;
if (needed_size > elf_file.allocatedSize(shdr.sh_offset)) {
shdr.sh_size = 0;
const new_offset = elf_file.findFreeSpace(needed_size, shdr.sh_addralign);
shdr.sh_offset = new_offset;
shdr.sh_size = needed_size;
}
}
}
fn writeAtoms(elf_file: *Elf) !void {
const gpa = elf_file.base.comp.gpa;
// TODO iterate over `output_sections` directly
for (elf_file.shdrs.items, 0..) |shdr, shndx| {
if (shdr.sh_type == elf.SHT_NULL) continue;
if (shdr.sh_type == elf.SHT_NOBITS) continue;
const atom_list = elf_file.output_sections.get(@intCast(shndx)) orelse continue;
if (atom_list.items.len == 0) continue;
log.debug("writing atoms in '{s}' section", .{elf_file.getShString(shdr.sh_name)});
// TODO really, really handle debug section separately
const base_offset = if (elf_file.isDebugSection(@intCast(shndx))) blk: {
const zig_object = elf_file.zigObjectPtr().?;
if (shndx == elf_file.debug_info_section_index.?)
break :blk zig_object.debug_info_section_zig_size;
if (shndx == elf_file.debug_abbrev_section_index.?)
break :blk zig_object.debug_abbrev_section_zig_size;
if (shndx == elf_file.debug_str_section_index.?)
break :blk zig_object.debug_str_section_zig_size;
if (shndx == elf_file.debug_aranges_section_index.?)
break :blk zig_object.debug_aranges_section_zig_size;
if (shndx == elf_file.debug_line_section_index.?)
break :blk zig_object.debug_line_section_zig_size;
unreachable;
} else 0;
const sh_offset = shdr.sh_offset + base_offset;
const sh_size = math.cast(usize, shdr.sh_size - base_offset) orelse return error.Overflow;
const buffer = try gpa.alloc(u8, sh_size);
defer gpa.free(buffer);
const padding_byte: u8 = if (shdr.sh_type == elf.SHT_PROGBITS and
shdr.sh_flags & elf.SHF_EXECINSTR != 0)
0xcc // int3
else
0;
@memset(buffer, padding_byte);
for (atom_list.items) |atom_index| {
const atom_ptr = elf_file.atom(atom_index).?;
assert(atom_ptr.flags.alive);
const offset = math.cast(usize, atom_ptr.value - shdr.sh_addr - base_offset) orelse
return error.Overflow;
const size = math.cast(usize, atom_ptr.size) orelse return error.Overflow;
log.debug("writing atom({d}) from 0x{x} to 0x{x}", .{
atom_index,
sh_offset + offset,
sh_offset + offset + size,
});
// TODO decompress directly into provided buffer
const out_code = buffer[offset..][0..size];
const in_code = switch (atom_ptr.file(elf_file).?) {
.object => |x| try x.codeDecompressAlloc(elf_file, atom_index),
.zig_object => |x| try x.codeAlloc(elf_file, atom_index),
else => unreachable,
};
defer gpa.free(in_code);
@memcpy(out_code, in_code);
}
try elf_file.base.file.?.pwriteAll(buffer, sh_offset);
}
}
fn writeSyntheticSections(elf_file: *Elf) !void {
const gpa = elf_file.base.comp.gpa;
for (elf_file.output_rela_sections.values()) |sec| {
if (sec.atom_list.items.len == 0) continue;
const shdr = elf_file.shdrs.items[sec.shndx];
const num_relocs = math.cast(usize, @divExact(shdr.sh_size, shdr.sh_entsize)) orelse
return error.Overflow;
var relocs = try std.ArrayList(elf.Elf64_Rela).initCapacity(gpa, num_relocs);
defer relocs.deinit();
for (sec.atom_list.items) |atom_index| {
const atom_ptr = elf_file.atom(atom_index) orelse continue;
if (!atom_ptr.flags.alive) continue;
try atom_ptr.writeRelocs(elf_file, &relocs);
}
assert(relocs.items.len == num_relocs);
const SortRelocs = struct {
pub fn lessThan(ctx: void, lhs: elf.Elf64_Rela, rhs: elf.Elf64_Rela) bool {
_ = ctx;
return lhs.r_offset < rhs.r_offset;
}
};
mem.sort(elf.Elf64_Rela, relocs.items, {}, SortRelocs.lessThan);
log.debug("writing {s} from 0x{x} to 0x{x}", .{
elf_file.getShString(shdr.sh_name),
shdr.sh_offset,
shdr.sh_offset + shdr.sh_size,
});
try elf_file.base.file.?.pwriteAll(mem.sliceAsBytes(relocs.items), shdr.sh_offset);
}
if (elf_file.eh_frame_section_index) |shndx| {
const shdr = elf_file.shdrs.items[shndx];
const sh_size = math.cast(usize, shdr.sh_size) orelse return error.Overflow;
var buffer = try std.ArrayList(u8).initCapacity(gpa, sh_size);
defer buffer.deinit();
try eh_frame.writeEhFrameObject(elf_file, buffer.writer());
log.debug("writing .eh_frame from 0x{x} to 0x{x}", .{
shdr.sh_offset,
shdr.sh_offset + shdr.sh_size,
});
assert(buffer.items.len == sh_size);
try elf_file.base.file.?.pwriteAll(buffer.items, shdr.sh_offset);
}
if (elf_file.eh_frame_rela_section_index) |shndx| {
const shdr = elf_file.shdrs.items[shndx];
const sh_size = math.cast(usize, shdr.sh_size) orelse return error.Overflow;
var buffer = try std.ArrayList(u8).initCapacity(gpa, sh_size);
defer buffer.deinit();
try eh_frame.writeEhFrameRelocs(elf_file, buffer.writer());
assert(buffer.items.len == sh_size);
log.debug("writing .rela.eh_frame from 0x{x} to 0x{x}", .{
shdr.sh_offset,
shdr.sh_offset + shdr.sh_size,
});
try elf_file.base.file.?.pwriteAll(buffer.items, shdr.sh_offset);
}
try writeComdatGroups(elf_file);
try elf_file.writeSymtab();
try elf_file.writeShStrtab();
}
fn writeComdatGroups(elf_file: *Elf) !void {
const gpa = elf_file.base.comp.gpa;
for (elf_file.comdat_group_sections.items) |cgs| {
const shdr = elf_file.shdrs.items[cgs.shndx];
const sh_size = math.cast(usize, shdr.sh_size) orelse return error.Overflow;
var buffer = try std.ArrayList(u8).initCapacity(gpa, sh_size);
defer buffer.deinit();
try cgs.write(elf_file, buffer.writer());
assert(buffer.items.len == sh_size);
log.debug("writing COMDAT group from 0x{x} to 0x{x}", .{
shdr.sh_offset,
shdr.sh_offset + shdr.sh_size,
});
try elf_file.base.file.?.pwriteAll(buffer.items, shdr.sh_offset);
}
}
const assert = std.debug.assert;
const build_options = @import("build_options");
const eh_frame = @import("eh_frame.zig");
const elf = std.elf;
const link = @import("../../link.zig");
const log = std.log.scoped(.link);
const math = std.math;
const mem = std.mem;
const state_log = std.log.scoped(.link_state);
const std = @import("std");
const Archive = @import("Archive.zig");
const Compilation = @import("../../Compilation.zig");
const Elf = @import("../Elf.zig");
const File = @import("file.zig").File;