remove std.event

This commit is contained in:
Veikka Tuominen 2024-01-28 00:43:46 +02:00
parent 8d11ade6a7
commit b0bea72588
15 changed files with 0 additions and 3960 deletions

View File

@ -233,9 +233,6 @@ set(ZIG_STAGE2_SOURCES
"${CMAKE_SOURCE_DIR}/lib/std/dwarf/OP.zig"
"${CMAKE_SOURCE_DIR}/lib/std/dwarf/TAG.zig"
"${CMAKE_SOURCE_DIR}/lib/std/elf.zig"
"${CMAKE_SOURCE_DIR}/lib/std/event.zig"
"${CMAKE_SOURCE_DIR}/lib/std/event/batch.zig"
"${CMAKE_SOURCE_DIR}/lib/std/event/loop.zig"
"${CMAKE_SOURCE_DIR}/lib/std/fifo.zig"
"${CMAKE_SOURCE_DIR}/lib/std/fmt.zig"
"${CMAKE_SOURCE_DIR}/lib/std/fmt/errol.zig"

View File

@ -1,23 +0,0 @@
pub const Channel = @import("event/channel.zig").Channel;
pub const Future = @import("event/future.zig").Future;
pub const Group = @import("event/group.zig").Group;
pub const Batch = @import("event/batch.zig").Batch;
pub const Lock = @import("event/lock.zig").Lock;
pub const Locked = @import("event/locked.zig").Locked;
pub const RwLock = @import("event/rwlock.zig").RwLock;
pub const RwLocked = @import("event/rwlocked.zig").RwLocked;
pub const Loop = @import("event/loop.zig").Loop;
pub const WaitGroup = @import("event/wait_group.zig").WaitGroup;
test {
_ = @import("event/channel.zig");
_ = @import("event/future.zig");
_ = @import("event/group.zig");
_ = @import("event/batch.zig");
_ = @import("event/lock.zig");
_ = @import("event/locked.zig");
_ = @import("event/rwlock.zig");
_ = @import("event/rwlocked.zig");
_ = @import("event/loop.zig");
_ = @import("event/wait_group.zig");
}

View File

@ -1,141 +0,0 @@
const std = @import("../std.zig");
const testing = std.testing;
/// Performs multiple async functions in parallel, without heap allocation.
/// Async function frames are managed externally to this abstraction, and
/// passed in via the `add` function. Once all the jobs are added, call `wait`.
/// This API is *not* thread-safe. The object must be accessed from one thread at
/// a time, however, it need not be the same thread.
pub fn Batch(
/// The return value for each job.
/// If a job slot was re-used due to maxed out concurrency, then its result
/// value will be overwritten. The values can be accessed with the `results` field.
comptime Result: type,
/// How many jobs to run in parallel.
comptime max_jobs: comptime_int,
/// Controls whether the `add` and `wait` functions will be async functions.
comptime async_behavior: enum {
/// Observe the value of `std.io.is_async` to decide whether `add`
/// and `wait` will be async functions. Asserts that the jobs do not suspend when
/// `std.options.io_mode == .blocking`. This is a generally safe assumption, and the
/// usual recommended option for this parameter.
auto_async,
/// Always uses the `nosuspend` keyword when using `await` on the jobs,
/// making `add` and `wait` non-async functions. Asserts that the jobs do not suspend.
never_async,
/// `add` and `wait` use regular `await` keyword, making them async functions.
always_async,
},
) type {
return struct {
jobs: [max_jobs]Job,
next_job_index: usize,
collected_result: CollectedResult,
const Job = struct {
frame: ?anyframe->Result,
result: Result,
};
const Self = @This();
const CollectedResult = switch (@typeInfo(Result)) {
.ErrorUnion => Result,
else => void,
};
const async_ok = switch (async_behavior) {
.auto_async => std.io.is_async,
.never_async => false,
.always_async => true,
};
pub fn init() Self {
return Self{
.jobs = [1]Job{
.{
.frame = null,
.result = undefined,
},
} ** max_jobs,
.next_job_index = 0,
.collected_result = {},
};
}
/// Add a frame to the Batch. If all jobs are in-flight, then this function
/// waits until one completes.
/// This function is *not* thread-safe. It must be called from one thread at
/// a time, however, it need not be the same thread.
/// TODO: "select" language feature to use the next available slot, rather than
/// awaiting the next index.
pub fn add(self: *Self, frame: anyframe->Result) void {
const job = &self.jobs[self.next_job_index];
self.next_job_index = (self.next_job_index + 1) % max_jobs;
if (job.frame) |existing| {
job.result = if (async_ok) await existing else nosuspend await existing;
if (CollectedResult != void) {
job.result catch |err| {
self.collected_result = err;
};
}
}
job.frame = frame;
}
/// Wait for all the jobs to complete.
/// Safe to call any number of times.
/// If `Result` is an error union, this function returns the last error that occurred, if any.
/// Unlike the `results` field, the return value of `wait` will report any error that occurred;
/// hitting max parallelism will not compromise the result.
/// This function is *not* thread-safe. It must be called from one thread at
/// a time, however, it need not be the same thread.
pub fn wait(self: *Self) CollectedResult {
for (self.jobs) |*job|
if (job.frame) |f| {
job.result = if (async_ok) await f else nosuspend await f;
if (CollectedResult != void) {
job.result catch |err| {
self.collected_result = err;
};
}
job.frame = null;
};
return self.collected_result;
}
};
}
test "std.event.Batch" {
if (true) return error.SkipZigTest;
var count: usize = 0;
var batch = Batch(void, 2, .auto_async).init();
batch.add(&async sleepALittle(&count));
batch.add(&async increaseByTen(&count));
batch.wait();
try testing.expect(count == 11);
var another = Batch(anyerror!void, 2, .auto_async).init();
another.add(&async somethingElse());
another.add(&async doSomethingThatFails());
try testing.expectError(error.ItBroke, another.wait());
}
fn sleepALittle(count: *usize) void {
std.time.sleep(1 * std.time.ns_per_ms);
_ = @atomicRmw(usize, count, .Add, 1, .SeqCst);
}
fn increaseByTen(count: *usize) void {
var i: usize = 0;
while (i < 10) : (i += 1) {
_ = @atomicRmw(usize, count, .Add, 1, .SeqCst);
}
}
fn doSomethingThatFails() anyerror!void {}
fn somethingElse() anyerror!void {
return error.ItBroke;
}

View File

@ -1,334 +0,0 @@
const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const testing = std.testing;
const Loop = std.event.Loop;
/// Many producer, many consumer, thread-safe, runtime configurable buffer size.
/// When buffer is empty, consumers suspend and are resumed by producers.
/// When buffer is full, producers suspend and are resumed by consumers.
pub fn Channel(comptime T: type) type {
return struct {
getters: std.atomic.Queue(GetNode),
or_null_queue: std.atomic.Queue(*std.atomic.Queue(GetNode).Node),
putters: std.atomic.Queue(PutNode),
get_count: usize,
put_count: usize,
dispatch_lock: bool,
need_dispatch: bool,
// simple fixed size ring buffer
buffer_nodes: []T,
buffer_index: usize,
buffer_len: usize,
const SelfChannel = @This();
const GetNode = struct {
tick_node: *Loop.NextTickNode,
data: Data,
const Data = union(enum) {
Normal: Normal,
OrNull: OrNull,
};
const Normal = struct {
ptr: *T,
};
const OrNull = struct {
ptr: *?T,
or_null: *std.atomic.Queue(*std.atomic.Queue(GetNode).Node).Node,
};
};
const PutNode = struct {
data: T,
tick_node: *Loop.NextTickNode,
};
const global_event_loop = Loop.instance orelse
@compileError("std.event.Channel currently only works with event-based I/O");
/// Call `deinit` to free resources when done.
/// `buffer` must live until `deinit` is called.
/// For a zero length buffer, use `[0]T{}`.
/// TODO https://github.com/ziglang/zig/issues/2765
pub fn init(self: *SelfChannel, buffer: []T) void {
// The ring buffer implementation only works with power of 2 buffer sizes
// because of relying on subtracting across zero. For example (0 -% 1) % 10 == 5
assert(buffer.len == 0 or @popCount(buffer.len) == 1);
self.* = SelfChannel{
.buffer_len = 0,
.buffer_nodes = buffer,
.buffer_index = 0,
.dispatch_lock = false,
.need_dispatch = false,
.getters = std.atomic.Queue(GetNode).init(),
.putters = std.atomic.Queue(PutNode).init(),
.or_null_queue = std.atomic.Queue(*std.atomic.Queue(GetNode).Node).init(),
.get_count = 0,
.put_count = 0,
};
}
/// Must be called when all calls to put and get have suspended and no more calls occur.
/// This can be omitted if caller can guarantee that the suspended putters and getters
/// do not need to be run to completion. Note that this may leave awaiters hanging.
pub fn deinit(self: *SelfChannel) void {
while (self.getters.get()) |get_node| {
resume get_node.data.tick_node.data;
}
while (self.putters.get()) |put_node| {
resume put_node.data.tick_node.data;
}
self.* = undefined;
}
/// puts a data item in the channel. The function returns when the value has been added to the
/// buffer, or in the case of a zero size buffer, when the item has been retrieved by a getter.
/// Or when the channel is destroyed.
pub fn put(self: *SelfChannel, data: T) void {
var my_tick_node = Loop.NextTickNode{ .data = @frame() };
var queue_node = std.atomic.Queue(PutNode).Node{
.data = PutNode{
.tick_node = &my_tick_node,
.data = data,
},
};
suspend {
self.putters.put(&queue_node);
_ = @atomicRmw(usize, &self.put_count, .Add, 1, .SeqCst);
self.dispatch();
}
}
/// await this function to get an item from the channel. If the buffer is empty, the frame will
/// complete when the next item is put in the channel.
pub fn get(self: *SelfChannel) callconv(.Async) T {
// TODO https://github.com/ziglang/zig/issues/2765
var result: T = undefined;
var my_tick_node = Loop.NextTickNode{ .data = @frame() };
var queue_node = std.atomic.Queue(GetNode).Node{
.data = GetNode{
.tick_node = &my_tick_node,
.data = GetNode.Data{
.Normal = GetNode.Normal{ .ptr = &result },
},
},
};
suspend {
self.getters.put(&queue_node);
_ = @atomicRmw(usize, &self.get_count, .Add, 1, .SeqCst);
self.dispatch();
}
return result;
}
//pub async fn select(comptime EnumUnion: type, channels: ...) EnumUnion {
// assert(@memberCount(EnumUnion) == channels.len); // enum union and channels mismatch
// assert(channels.len != 0); // enum unions cannot have 0 fields
// if (channels.len == 1) {
// const result = await (async channels[0].get() catch unreachable);
// return @unionInit(EnumUnion, @memberName(EnumUnion, 0), result);
// }
//}
/// Get an item from the channel. If the buffer is empty and there are no
/// puts waiting, this returns `null`.
pub fn getOrNull(self: *SelfChannel) ?T {
// TODO integrate this function with named return values
// so we can get rid of this extra result copy
var result: ?T = null;
var my_tick_node = Loop.NextTickNode{ .data = @frame() };
var or_null_node = std.atomic.Queue(*std.atomic.Queue(GetNode).Node).Node{ .data = undefined };
var queue_node = std.atomic.Queue(GetNode).Node{
.data = GetNode{
.tick_node = &my_tick_node,
.data = GetNode.Data{
.OrNull = GetNode.OrNull{
.ptr = &result,
.or_null = &or_null_node,
},
},
},
};
or_null_node.data = &queue_node;
suspend {
self.getters.put(&queue_node);
_ = @atomicRmw(usize, &self.get_count, .Add, 1, .SeqCst);
self.or_null_queue.put(&or_null_node);
self.dispatch();
}
return result;
}
fn dispatch(self: *SelfChannel) void {
// set the "need dispatch" flag
@atomicStore(bool, &self.need_dispatch, true, .SeqCst);
lock: while (true) {
// set the lock flag
if (@atomicRmw(bool, &self.dispatch_lock, .Xchg, true, .SeqCst)) return;
// clear the need_dispatch flag since we're about to do it
@atomicStore(bool, &self.need_dispatch, false, .SeqCst);
while (true) {
one_dispatch: {
// later we correct these extra subtractions
var get_count = @atomicRmw(usize, &self.get_count, .Sub, 1, .SeqCst);
var put_count = @atomicRmw(usize, &self.put_count, .Sub, 1, .SeqCst);
// transfer self.buffer to self.getters
while (self.buffer_len != 0) {
if (get_count == 0) break :one_dispatch;
const get_node = &self.getters.get().?.data;
switch (get_node.data) {
GetNode.Data.Normal => |info| {
info.ptr.* = self.buffer_nodes[(self.buffer_index -% self.buffer_len) % self.buffer_nodes.len];
},
GetNode.Data.OrNull => |info| {
_ = self.or_null_queue.remove(info.or_null);
info.ptr.* = self.buffer_nodes[(self.buffer_index -% self.buffer_len) % self.buffer_nodes.len];
},
}
global_event_loop.onNextTick(get_node.tick_node);
self.buffer_len -= 1;
get_count = @atomicRmw(usize, &self.get_count, .Sub, 1, .SeqCst);
}
// direct transfer self.putters to self.getters
while (get_count != 0 and put_count != 0) {
const get_node = &self.getters.get().?.data;
const put_node = &self.putters.get().?.data;
switch (get_node.data) {
GetNode.Data.Normal => |info| {
info.ptr.* = put_node.data;
},
GetNode.Data.OrNull => |info| {
_ = self.or_null_queue.remove(info.or_null);
info.ptr.* = put_node.data;
},
}
global_event_loop.onNextTick(get_node.tick_node);
global_event_loop.onNextTick(put_node.tick_node);
get_count = @atomicRmw(usize, &self.get_count, .Sub, 1, .SeqCst);
put_count = @atomicRmw(usize, &self.put_count, .Sub, 1, .SeqCst);
}
// transfer self.putters to self.buffer
while (self.buffer_len != self.buffer_nodes.len and put_count != 0) {
const put_node = &self.putters.get().?.data;
self.buffer_nodes[self.buffer_index % self.buffer_nodes.len] = put_node.data;
global_event_loop.onNextTick(put_node.tick_node);
self.buffer_index +%= 1;
self.buffer_len += 1;
put_count = @atomicRmw(usize, &self.put_count, .Sub, 1, .SeqCst);
}
}
// undo the extra subtractions
_ = @atomicRmw(usize, &self.get_count, .Add, 1, .SeqCst);
_ = @atomicRmw(usize, &self.put_count, .Add, 1, .SeqCst);
// All the "get or null" functions should resume now.
var remove_count: usize = 0;
while (self.or_null_queue.get()) |or_null_node| {
remove_count += @intFromBool(self.getters.remove(or_null_node.data));
global_event_loop.onNextTick(or_null_node.data.data.tick_node);
}
if (remove_count != 0) {
_ = @atomicRmw(usize, &self.get_count, .Sub, remove_count, .SeqCst);
}
// clear need-dispatch flag
if (@atomicRmw(bool, &self.need_dispatch, .Xchg, false, .SeqCst)) continue;
assert(@atomicRmw(bool, &self.dispatch_lock, .Xchg, false, .SeqCst));
// we have to check again now that we unlocked
if (@atomicLoad(bool, &self.need_dispatch, .SeqCst)) continue :lock;
return;
}
}
}
};
}
test "std.event.Channel" {
if (!std.io.is_async) return error.SkipZigTest;
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
// https://github.com/ziglang/zig/issues/3251
if (builtin.os.tag == .freebsd) return error.SkipZigTest;
var channel: Channel(i32) = undefined;
channel.init(&[0]i32{});
defer channel.deinit();
var handle = async testChannelGetter(&channel);
var putter = async testChannelPutter(&channel);
await handle;
await putter;
}
test "std.event.Channel wraparound" {
// TODO provide a way to run tests in evented I/O mode
if (!std.io.is_async) return error.SkipZigTest;
const channel_size = 2;
var buf: [channel_size]i32 = undefined;
var channel: Channel(i32) = undefined;
channel.init(&buf);
defer channel.deinit();
// add items to channel and pull them out until
// the buffer wraps around, make sure it doesn't crash.
channel.put(5);
try testing.expectEqual(@as(i32, 5), channel.get());
channel.put(6);
try testing.expectEqual(@as(i32, 6), channel.get());
channel.put(7);
try testing.expectEqual(@as(i32, 7), channel.get());
}
fn testChannelGetter(channel: *Channel(i32)) callconv(.Async) void {
const value1 = channel.get();
try testing.expect(value1 == 1234);
const value2 = channel.get();
try testing.expect(value2 == 4567);
const value3 = channel.getOrNull();
try testing.expect(value3 == null);
var last_put = async testPut(channel, 4444);
const value4 = channel.getOrNull();
try testing.expect(value4.? == 4444);
await last_put;
}
fn testChannelPutter(channel: *Channel(i32)) callconv(.Async) void {
channel.put(1234);
channel.put(4567);
}
fn testPut(channel: *Channel(i32), value: i32) callconv(.Async) void {
channel.put(value);
}

View File

@ -1,115 +0,0 @@
const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const testing = std.testing;
const Lock = std.event.Lock;
/// This is a value that starts out unavailable, until resolve() is called.
/// While it is unavailable, functions suspend when they try to get() it,
/// and then are resumed when resolve() is called.
/// At this point the value remains forever available, and another resolve() is not allowed.
pub fn Future(comptime T: type) type {
return struct {
lock: Lock,
data: T,
available: Available,
const Available = enum(u8) {
NotStarted,
Started,
Finished,
};
const Self = @This();
const Queue = std.atomic.Queue(anyframe);
pub fn init() Self {
return Self{
.lock = Lock.initLocked(),
.available = .NotStarted,
.data = undefined,
};
}
/// Obtain the value. If it's not available, wait until it becomes
/// available.
/// Thread-safe.
pub fn get(self: *Self) callconv(.Async) *T {
if (@atomicLoad(Available, &self.available, .SeqCst) == .Finished) {
return &self.data;
}
const held = self.lock.acquire();
held.release();
return &self.data;
}
/// Gets the data without waiting for it. If it's available, a pointer is
/// returned. Otherwise, null is returned.
pub fn getOrNull(self: *Self) ?*T {
if (@atomicLoad(Available, &self.available, .SeqCst) == .Finished) {
return &self.data;
} else {
return null;
}
}
/// If someone else has started working on the data, wait for them to complete
/// and return a pointer to the data. Otherwise, return null, and the caller
/// should start working on the data.
/// It's not required to call start() before resolve() but it can be useful since
/// this method is thread-safe.
pub fn start(self: *Self) callconv(.Async) ?*T {
const state = @cmpxchgStrong(Available, &self.available, .NotStarted, .Started, .SeqCst, .SeqCst) orelse return null;
switch (state) {
.Started => {
const held = self.lock.acquire();
held.release();
return &self.data;
},
.Finished => return &self.data,
else => unreachable,
}
}
/// Make the data become available. May be called only once.
/// Before calling this, modify the `data` property.
pub fn resolve(self: *Self) void {
const prev = @atomicRmw(Available, &self.available, .Xchg, .Finished, .SeqCst);
assert(prev != .Finished); // resolve() called twice
Lock.Held.release(Lock.Held{ .lock = &self.lock });
}
};
}
test "std.event.Future" {
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
// https://github.com/ziglang/zig/issues/3251
if (builtin.os.tag == .freebsd) return error.SkipZigTest;
// TODO provide a way to run tests in evented I/O mode
if (!std.io.is_async) return error.SkipZigTest;
testFuture();
}
fn testFuture() void {
var future = Future(i32).init();
var a = async waitOnFuture(&future);
var b = async waitOnFuture(&future);
resolveFuture(&future);
const result = (await a) + (await b);
try testing.expect(result == 12);
}
fn waitOnFuture(future: *Future(i32)) i32 {
return future.get().*;
}
fn resolveFuture(future: *Future(i32)) void {
future.data = 6;
future.resolve();
}

View File

@ -1,160 +0,0 @@
const std = @import("../std.zig");
const builtin = @import("builtin");
const Lock = std.event.Lock;
const testing = std.testing;
const Allocator = std.mem.Allocator;
/// ReturnType must be `void` or `E!void`
/// TODO This API was created back with the old design of async/await, when calling any
/// async function required an allocator. There is an ongoing experiment to transition
/// all uses of this API to the simpler and more resource-aware `std.event.Batch` API.
/// If the transition goes well, all usages of `Group` will be gone, and this API
/// will be deleted.
pub fn Group(comptime ReturnType: type) type {
return struct {
frame_stack: Stack,
alloc_stack: AllocStack,
lock: Lock,
allocator: Allocator,
const Self = @This();
const Error = switch (@typeInfo(ReturnType)) {
.ErrorUnion => |payload| payload.error_set,
else => void,
};
const Stack = std.atomic.Stack(anyframe->ReturnType);
const AllocStack = std.atomic.Stack(Node);
pub const Node = struct {
bytes: []const u8 = &[0]u8{},
handle: anyframe->ReturnType,
};
pub fn init(allocator: Allocator) Self {
return Self{
.frame_stack = Stack.init(),
.alloc_stack = AllocStack.init(),
.lock = .{},
.allocator = allocator,
};
}
/// Add a frame to the group. Thread-safe.
pub fn add(self: *Self, handle: anyframe->ReturnType) (error{OutOfMemory}!void) {
const node = try self.allocator.create(AllocStack.Node);
node.* = AllocStack.Node{
.next = undefined,
.data = Node{
.handle = handle,
},
};
self.alloc_stack.push(node);
}
/// Add a node to the group. Thread-safe. Cannot fail.
/// `node.data` should be the frame handle to add to the group.
/// The node's memory should be in the function frame of
/// the handle that is in the node, or somewhere guaranteed to live
/// at least as long.
pub fn addNode(self: *Self, node: *Stack.Node) void {
self.frame_stack.push(node);
}
/// This is equivalent to adding a frame to the group but the memory of its frame is
/// allocated by the group and freed by `wait`.
/// `func` must be async and have return type `ReturnType`.
/// Thread-safe.
pub fn call(self: *Self, comptime func: anytype, args: anytype) error{OutOfMemory}!void {
const frame = try self.allocator.create(@TypeOf(@call(.{ .modifier = .async_kw }, func, args)));
errdefer self.allocator.destroy(frame);
const node = try self.allocator.create(AllocStack.Node);
errdefer self.allocator.destroy(node);
node.* = AllocStack.Node{
.next = undefined,
.data = Node{
.handle = frame,
.bytes = std.mem.asBytes(frame),
},
};
frame.* = @call(.{ .modifier = .async_kw }, func, args);
self.alloc_stack.push(node);
}
/// Wait for all the calls and promises of the group to complete.
/// Thread-safe.
/// Safe to call any number of times.
pub fn wait(self: *Self) callconv(.Async) ReturnType {
const held = self.lock.acquire();
defer held.release();
var result: ReturnType = {};
while (self.frame_stack.pop()) |node| {
if (Error == void) {
await node.data;
} else {
(await node.data) catch |err| {
result = err;
};
}
}
while (self.alloc_stack.pop()) |node| {
const handle = node.data.handle;
if (Error == void) {
await handle;
} else {
(await handle) catch |err| {
result = err;
};
}
self.allocator.free(node.data.bytes);
self.allocator.destroy(node);
}
return result;
}
};
}
test "std.event.Group" {
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
if (!std.io.is_async) return error.SkipZigTest;
// TODO this file has bit-rotted. repair it
if (true) return error.SkipZigTest;
_ = async testGroup(std.heap.page_allocator);
}
fn testGroup(allocator: Allocator) callconv(.Async) void {
var count: usize = 0;
var group = Group(void).init(allocator);
var sleep_a_little_frame = async sleepALittle(&count);
group.add(&sleep_a_little_frame) catch @panic("memory");
var increase_by_ten_frame = async increaseByTen(&count);
group.add(&increase_by_ten_frame) catch @panic("memory");
group.wait();
try testing.expect(count == 11);
var another = Group(anyerror!void).init(allocator);
var something_else_frame = async somethingElse();
another.add(&something_else_frame) catch @panic("memory");
var something_that_fails_frame = async doSomethingThatFails();
another.add(&something_that_fails_frame) catch @panic("memory");
try testing.expectError(error.ItBroke, another.wait());
}
fn sleepALittle(count: *usize) callconv(.Async) void {
std.time.sleep(1 * std.time.ns_per_ms);
_ = @atomicRmw(usize, count, .Add, 1, .SeqCst);
}
fn increaseByTen(count: *usize) callconv(.Async) void {
var i: usize = 0;
while (i < 10) : (i += 1) {
_ = @atomicRmw(usize, count, .Add, 1, .SeqCst);
}
}
fn doSomethingThatFails() callconv(.Async) anyerror!void {}
fn somethingElse() callconv(.Async) anyerror!void {
return error.ItBroke;
}

View File

@ -1,162 +0,0 @@
const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const testing = std.testing;
const mem = std.mem;
const Loop = std.event.Loop;
/// Thread-safe async/await lock.
/// Functions which are waiting for the lock are suspended, and
/// are resumed when the lock is released, in order.
/// Allows only one actor to hold the lock.
/// TODO: make this API also work in blocking I/O mode.
pub const Lock = struct {
mutex: std.Thread.Mutex = std.Thread.Mutex{},
head: usize = UNLOCKED,
const UNLOCKED = 0;
const LOCKED = 1;
const global_event_loop = Loop.instance orelse
@compileError("std.event.Lock currently only works with event-based I/O");
const Waiter = struct {
// forced Waiter alignment to ensure it doesn't clash with LOCKED
next: ?*Waiter align(2),
tail: *Waiter,
node: Loop.NextTickNode,
};
pub fn initLocked() Lock {
return Lock{ .head = LOCKED };
}
pub fn acquire(self: *Lock) Held {
self.mutex.lock();
// self.head transitions from multiple stages depending on the value:
// UNLOCKED -> LOCKED:
// acquire Lock ownership when there are no waiters
// LOCKED -> <Waiter head ptr>:
// Lock is already owned, enqueue first Waiter
// <head ptr> -> <head ptr>:
// Lock is owned with pending waiters. Push our waiter to the queue.
if (self.head == UNLOCKED) {
self.head = LOCKED;
self.mutex.unlock();
return Held{ .lock = self };
}
var waiter: Waiter = undefined;
waiter.next = null;
waiter.tail = &waiter;
const head = switch (self.head) {
UNLOCKED => unreachable,
LOCKED => null,
else => @as(*Waiter, @ptrFromInt(self.head)),
};
if (head) |h| {
h.tail.next = &waiter;
h.tail = &waiter;
} else {
self.head = @intFromPtr(&waiter);
}
suspend {
waiter.node = Loop.NextTickNode{
.prev = undefined,
.next = undefined,
.data = @frame(),
};
self.mutex.unlock();
}
return Held{ .lock = self };
}
pub const Held = struct {
lock: *Lock,
pub fn release(self: Held) void {
const waiter = blk: {
self.lock.mutex.lock();
defer self.lock.mutex.unlock();
// self.head goes through the reverse transition from acquire():
// <head ptr> -> <new head ptr>:
// pop a waiter from the queue to give Lock ownership when there are still others pending
// <head ptr> -> LOCKED:
// pop the laster waiter from the queue, while also giving it lock ownership when awaken
// LOCKED -> UNLOCKED:
// last lock owner releases lock while no one else is waiting for it
switch (self.lock.head) {
UNLOCKED => {
unreachable; // Lock unlocked while unlocking
},
LOCKED => {
self.lock.head = UNLOCKED;
break :blk null;
},
else => {
const waiter = @as(*Waiter, @ptrFromInt(self.lock.head));
self.lock.head = if (waiter.next == null) LOCKED else @intFromPtr(waiter.next);
if (waiter.next) |next|
next.tail = waiter.tail;
break :blk waiter;
},
}
};
if (waiter) |w| {
global_event_loop.onNextTick(&w.node);
}
}
};
};
test "std.event.Lock" {
if (!std.io.is_async) return error.SkipZigTest;
// TODO https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
// TODO https://github.com/ziglang/zig/issues/3251
if (builtin.os.tag == .freebsd) return error.SkipZigTest;
var lock = Lock{};
testLock(&lock);
const expected_result = [1]i32{3 * @as(i32, @intCast(shared_test_data.len))} ** shared_test_data.len;
try testing.expectEqualSlices(i32, &expected_result, &shared_test_data);
}
fn testLock(lock: *Lock) void {
var handle1 = async lockRunner(lock);
var handle2 = async lockRunner(lock);
var handle3 = async lockRunner(lock);
await handle1;
await handle2;
await handle3;
}
var shared_test_data = [1]i32{0} ** 10;
var shared_test_index: usize = 0;
fn lockRunner(lock: *Lock) void {
Lock.global_event_loop.yield();
var i: usize = 0;
while (i < shared_test_data.len) : (i += 1) {
const handle = lock.acquire();
defer handle.release();
shared_test_index = 0;
while (shared_test_index < shared_test_data.len) : (shared_test_index += 1) {
shared_test_data[shared_test_index] = shared_test_data[shared_test_index] + 1;
}
}
}

View File

@ -1,42 +0,0 @@
const std = @import("../std.zig");
const Lock = std.event.Lock;
/// Thread-safe async/await lock that protects one piece of data.
/// Functions which are waiting for the lock are suspended, and
/// are resumed when the lock is released, in order.
pub fn Locked(comptime T: type) type {
return struct {
lock: Lock,
private_data: T,
const Self = @This();
pub const HeldLock = struct {
value: *T,
held: Lock.Held,
pub fn release(self: HeldLock) void {
self.held.release();
}
};
pub fn init(data: T) Self {
return Self{
.lock = .{},
.private_data = data,
};
}
pub fn deinit(self: *Self) void {
self.lock.deinit();
}
pub fn acquire(self: *Self) callconv(.Async) HeldLock {
return HeldLock{
// TODO guaranteed allocation elision
.held = self.lock.acquire(),
.value = &self.private_data,
};
}
};
}

File diff suppressed because it is too large Load Diff

View File

@ -1,292 +0,0 @@
const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const testing = std.testing;
const mem = std.mem;
const Loop = std.event.Loop;
const Allocator = std.mem.Allocator;
/// Thread-safe async/await lock.
/// Functions which are waiting for the lock are suspended, and
/// are resumed when the lock is released, in order.
/// Many readers can hold the lock at the same time; however locking for writing is exclusive.
/// When a read lock is held, it will not be released until the reader queue is empty.
/// When a write lock is held, it will not be released until the writer queue is empty.
/// TODO: make this API also work in blocking I/O mode
pub const RwLock = struct {
shared_state: State,
writer_queue: Queue,
reader_queue: Queue,
writer_queue_empty: bool,
reader_queue_empty: bool,
reader_lock_count: usize,
const State = enum(u8) {
Unlocked,
WriteLock,
ReadLock,
};
const Queue = std.atomic.Queue(anyframe);
const global_event_loop = Loop.instance orelse
@compileError("std.event.RwLock currently only works with event-based I/O");
pub const HeldRead = struct {
lock: *RwLock,
pub fn release(self: HeldRead) void {
// If other readers still hold the lock, we're done.
if (@atomicRmw(usize, &self.lock.reader_lock_count, .Sub, 1, .SeqCst) != 1) {
return;
}
@atomicStore(bool, &self.lock.reader_queue_empty, true, .SeqCst);
if (@cmpxchgStrong(State, &self.lock.shared_state, .ReadLock, .Unlocked, .SeqCst, .SeqCst) != null) {
// Didn't unlock. Someone else's problem.
return;
}
self.lock.commonPostUnlock();
}
};
pub const HeldWrite = struct {
lock: *RwLock,
pub fn release(self: HeldWrite) void {
// See if we can leave it locked for writing, and pass the lock to the next writer
// in the queue to grab the lock.
if (self.lock.writer_queue.get()) |node| {
global_event_loop.onNextTick(node);
return;
}
// We need to release the write lock. Check if any readers are waiting to grab the lock.
if (!@atomicLoad(bool, &self.lock.reader_queue_empty, .SeqCst)) {
// Switch to a read lock.
@atomicStore(State, &self.lock.shared_state, .ReadLock, .SeqCst);
while (self.lock.reader_queue.get()) |node| {
global_event_loop.onNextTick(node);
}
return;
}
@atomicStore(bool, &self.lock.writer_queue_empty, true, .SeqCst);
@atomicStore(State, &self.lock.shared_state, .Unlocked, .SeqCst);
self.lock.commonPostUnlock();
}
};
pub fn init() RwLock {
return .{
.shared_state = .Unlocked,
.writer_queue = Queue.init(),
.writer_queue_empty = true,
.reader_queue = Queue.init(),
.reader_queue_empty = true,
.reader_lock_count = 0,
};
}
/// Must be called when not locked. Not thread safe.
/// All calls to acquire() and release() must complete before calling deinit().
pub fn deinit(self: *RwLock) void {
assert(self.shared_state == .Unlocked);
while (self.writer_queue.get()) |node| resume node.data;
while (self.reader_queue.get()) |node| resume node.data;
}
pub fn acquireRead(self: *RwLock) callconv(.Async) HeldRead {
_ = @atomicRmw(usize, &self.reader_lock_count, .Add, 1, .SeqCst);
suspend {
var my_tick_node = Loop.NextTickNode{
.data = @frame(),
.prev = undefined,
.next = undefined,
};
self.reader_queue.put(&my_tick_node);
// At this point, we are in the reader_queue, so we might have already been resumed.
// We set this bit so that later we can rely on the fact, that if reader_queue_empty == true,
// some actor will attempt to grab the lock.
@atomicStore(bool, &self.reader_queue_empty, false, .SeqCst);
// Here we don't care if we are the one to do the locking or if it was already locked for reading.
const have_read_lock = if (@cmpxchgStrong(State, &self.shared_state, .Unlocked, .ReadLock, .SeqCst, .SeqCst)) |old_state| old_state == .ReadLock else true;
if (have_read_lock) {
// Give out all the read locks.
if (self.reader_queue.get()) |first_node| {
while (self.reader_queue.get()) |node| {
global_event_loop.onNextTick(node);
}
resume first_node.data;
}
}
}
return HeldRead{ .lock = self };
}
pub fn acquireWrite(self: *RwLock) callconv(.Async) HeldWrite {
suspend {
var my_tick_node = Loop.NextTickNode{
.data = @frame(),
.prev = undefined,
.next = undefined,
};
self.writer_queue.put(&my_tick_node);
// At this point, we are in the writer_queue, so we might have already been resumed.
// We set this bit so that later we can rely on the fact, that if writer_queue_empty == true,
// some actor will attempt to grab the lock.
@atomicStore(bool, &self.writer_queue_empty, false, .SeqCst);
// Here we must be the one to acquire the write lock. It cannot already be locked.
if (@cmpxchgStrong(State, &self.shared_state, .Unlocked, .WriteLock, .SeqCst, .SeqCst) == null) {
// We now have a write lock.
if (self.writer_queue.get()) |node| {
// Whether this node is us or someone else, we tail resume it.
resume node.data;
}
}
}
return HeldWrite{ .lock = self };
}
fn commonPostUnlock(self: *RwLock) void {
while (true) {
// There might be a writer_queue item or a reader_queue item
// If we check and both are empty, we can be done, because the other actors will try to
// obtain the lock.
// But if there's a writer_queue item or a reader_queue item,
// we are the actor which must loop and attempt to grab the lock again.
if (!@atomicLoad(bool, &self.writer_queue_empty, .SeqCst)) {
if (@cmpxchgStrong(State, &self.shared_state, .Unlocked, .WriteLock, .SeqCst, .SeqCst) != null) {
// We did not obtain the lock. Great, the queues are someone else's problem.
return;
}
// If there's an item in the writer queue, give them the lock, and we're done.
if (self.writer_queue.get()) |node| {
global_event_loop.onNextTick(node);
return;
}
// Release the lock again.
@atomicStore(bool, &self.writer_queue_empty, true, .SeqCst);
@atomicStore(State, &self.shared_state, .Unlocked, .SeqCst);
continue;
}
if (!@atomicLoad(bool, &self.reader_queue_empty, .SeqCst)) {
if (@cmpxchgStrong(State, &self.shared_state, .Unlocked, .ReadLock, .SeqCst, .SeqCst) != null) {
// We did not obtain the lock. Great, the queues are someone else's problem.
return;
}
// If there are any items in the reader queue, give out all the reader locks, and we're done.
if (self.reader_queue.get()) |first_node| {
global_event_loop.onNextTick(first_node);
while (self.reader_queue.get()) |node| {
global_event_loop.onNextTick(node);
}
return;
}
// Release the lock again.
@atomicStore(bool, &self.reader_queue_empty, true, .SeqCst);
if (@cmpxchgStrong(State, &self.shared_state, .ReadLock, .Unlocked, .SeqCst, .SeqCst) != null) {
// Didn't unlock. Someone else's problem.
return;
}
continue;
}
return;
}
}
};
test "std.event.RwLock" {
// https://github.com/ziglang/zig/issues/2377
if (true) return error.SkipZigTest;
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
// TODO provide a way to run tests in evented I/O mode
if (!std.io.is_async) return error.SkipZigTest;
var lock = RwLock.init();
defer lock.deinit();
_ = testLock(std.heap.page_allocator, &lock);
const expected_result = [1]i32{shared_it_count * @as(i32, @intCast(shared_test_data.len))} ** shared_test_data.len;
try testing.expectEqualSlices(i32, expected_result, shared_test_data);
}
fn testLock(allocator: Allocator, lock: *RwLock) callconv(.Async) void {
var read_nodes: [100]Loop.NextTickNode = undefined;
for (&read_nodes) |*read_node| {
const frame = allocator.create(@Frame(readRunner)) catch @panic("memory");
read_node.data = frame;
frame.* = async readRunner(lock);
Loop.instance.?.onNextTick(read_node);
}
var write_nodes: [shared_it_count]Loop.NextTickNode = undefined;
for (&write_nodes) |*write_node| {
const frame = allocator.create(@Frame(writeRunner)) catch @panic("memory");
write_node.data = frame;
frame.* = async writeRunner(lock);
Loop.instance.?.onNextTick(write_node);
}
for (&write_nodes) |*write_node| {
const casted = @as(*const @Frame(writeRunner), @ptrCast(write_node.data));
await casted;
allocator.destroy(casted);
}
for (&read_nodes) |*read_node| {
const casted = @as(*const @Frame(readRunner), @ptrCast(read_node.data));
await casted;
allocator.destroy(casted);
}
}
const shared_it_count = 10;
var shared_test_data = [1]i32{0} ** 10;
var shared_test_index: usize = 0;
var shared_count: usize = 0;
fn writeRunner(lock: *RwLock) callconv(.Async) void {
suspend {} // resumed by onNextTick
var i: usize = 0;
while (i < shared_test_data.len) : (i += 1) {
std.time.sleep(100 * std.time.microsecond);
const lock_promise = async lock.acquireWrite();
const handle = await lock_promise;
defer handle.release();
shared_count += 1;
while (shared_test_index < shared_test_data.len) : (shared_test_index += 1) {
shared_test_data[shared_test_index] = shared_test_data[shared_test_index] + 1;
}
shared_test_index = 0;
}
}
fn readRunner(lock: *RwLock) callconv(.Async) void {
suspend {} // resumed by onNextTick
std.time.sleep(1);
var i: usize = 0;
while (i < shared_test_data.len) : (i += 1) {
const lock_promise = async lock.acquireRead();
const handle = await lock_promise;
defer handle.release();
try testing.expect(shared_test_index == 0);
try testing.expect(shared_test_data[i] == @as(i32, @intCast(shared_count)));
}
}

View File

@ -1,57 +0,0 @@
const std = @import("../std.zig");
const RwLock = std.event.RwLock;
/// Thread-safe async/await RW lock that protects one piece of data.
/// Functions which are waiting for the lock are suspended, and
/// are resumed when the lock is released, in order.
pub fn RwLocked(comptime T: type) type {
return struct {
lock: RwLock,
locked_data: T,
const Self = @This();
pub const HeldReadLock = struct {
value: *const T,
held: RwLock.HeldRead,
pub fn release(self: HeldReadLock) void {
self.held.release();
}
};
pub const HeldWriteLock = struct {
value: *T,
held: RwLock.HeldWrite,
pub fn release(self: HeldWriteLock) void {
self.held.release();
}
};
pub fn init(data: T) Self {
return Self{
.lock = RwLock.init(),
.locked_data = data,
};
}
pub fn deinit(self: *Self) void {
self.lock.deinit();
}
pub fn acquireRead(self: *Self) callconv(.Async) HeldReadLock {
return HeldReadLock{
.held = self.lock.acquireRead(),
.value = &self.locked_data,
};
}
pub fn acquireWrite(self: *Self) callconv(.Async) HeldWriteLock {
return HeldWriteLock{
.held = self.lock.acquireWrite(),
.value = &self.locked_data,
};
}
};
}

View File

@ -1,115 +0,0 @@
const std = @import("../std.zig");
const builtin = @import("builtin");
const Loop = std.event.Loop;
/// A WaitGroup keeps track and waits for a group of async tasks to finish.
/// Call `begin` when creating new tasks, and have tasks call `finish` when done.
/// You can provide a count for both operations to perform them in bulk.
/// Call `wait` to suspend until all tasks are completed.
/// Multiple waiters are supported.
///
/// WaitGroup is an instance of WaitGroupGeneric, which takes in a bitsize
/// for the internal counter. WaitGroup defaults to a `usize` counter.
/// It's also possible to define a max value for the counter so that
/// `begin` will return error.Overflow when the limit is reached, even
/// if the integer type has not has not overflowed.
/// By default `max_value` is set to std.math.maxInt(CounterType).
pub const WaitGroup = WaitGroupGeneric(@bitSizeOf(usize));
pub fn WaitGroupGeneric(comptime counter_size: u16) type {
const CounterType = std.meta.Int(.unsigned, counter_size);
const global_event_loop = Loop.instance orelse
@compileError("std.event.WaitGroup currently only works with event-based I/O");
return struct {
counter: CounterType = 0,
max_counter: CounterType = std.math.maxInt(CounterType),
mutex: std.Thread.Mutex = .{},
waiters: ?*Waiter = null,
const Waiter = struct {
next: ?*Waiter,
tail: *Waiter,
node: Loop.NextTickNode,
};
const Self = @This();
pub fn begin(self: *Self, count: CounterType) error{Overflow}!void {
self.mutex.lock();
defer self.mutex.unlock();
const new_counter = try std.math.add(CounterType, self.counter, count);
if (new_counter > self.max_counter) return error.Overflow;
self.counter = new_counter;
}
pub fn finish(self: *Self, count: CounterType) void {
var waiters = blk: {
self.mutex.lock();
defer self.mutex.unlock();
self.counter = std.math.sub(CounterType, self.counter, count) catch unreachable;
if (self.counter == 0) {
const temp = self.waiters;
self.waiters = null;
break :blk temp;
}
break :blk null;
};
// We don't need to hold the lock to reschedule any potential waiter.
while (waiters) |w| {
const temp_w = w;
waiters = w.next;
global_event_loop.onNextTick(&temp_w.node);
}
}
pub fn wait(self: *Self) void {
self.mutex.lock();
if (self.counter == 0) {
self.mutex.unlock();
return;
}
var self_waiter: Waiter = undefined;
self_waiter.node.data = @frame();
if (self.waiters) |head| {
head.tail.next = &self_waiter;
head.tail = &self_waiter;
} else {
self.waiters = &self_waiter;
self_waiter.tail = &self_waiter;
self_waiter.next = null;
}
suspend {
self.mutex.unlock();
}
}
};
}
test "basic WaitGroup usage" {
if (!std.io.is_async) return error.SkipZigTest;
// TODO https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
// TODO https://github.com/ziglang/zig/issues/3251
if (builtin.os.tag == .freebsd) return error.SkipZigTest;
var initial_wg = WaitGroup{};
var final_wg = WaitGroup{};
try initial_wg.begin(1);
try final_wg.begin(1);
var task_frame = async task(&initial_wg, &final_wg);
initial_wg.finish(1);
final_wg.wait();
await task_frame;
}
fn task(wg_i: *WaitGroup, wg_f: *WaitGroup) void {
wg_i.wait();
wg_f.finish(1);
}

View File

@ -31,8 +31,6 @@ pub const realpathW = os.realpathW;
pub const getAppDataDir = @import("fs/get_app_data_dir.zig").getAppDataDir;
pub const GetAppDataDirError = @import("fs/get_app_data_dir.zig").GetAppDataDirError;
pub const Watch = @import("fs/watch.zig").Watch;
/// This represents the maximum size of a UTF-8 encoded file path that the
/// operating system will accept. Paths, including those returned from file
/// system operations, may be longer than this length, but such paths cannot
@ -641,5 +639,4 @@ test {
_ = &path;
_ = @import("fs/test.zig");
_ = @import("fs/get_app_data_dir.zig");
_ = @import("fs/watch.zig");
}

View File

@ -1,719 +0,0 @@
const std = @import("std");
const builtin = @import("builtin");
const event = std.event;
const assert = std.debug.assert;
const testing = std.testing;
const os = std.os;
const mem = std.mem;
const windows = os.windows;
const Loop = event.Loop;
const fd_t = os.fd_t;
const File = std.fs.File;
const Allocator = mem.Allocator;
const global_event_loop = Loop.instance orelse
@compileError("std.fs.Watch currently only works with event-based I/O");
const WatchEventId = enum {
CloseWrite,
Delete,
};
const WatchEventError = error{
UserResourceLimitReached,
SystemResources,
AccessDenied,
Unexpected, // TODO remove this possibility
};
pub fn Watch(comptime V: type) type {
return struct {
channel: event.Channel(Event.Error!Event),
os_data: OsData,
allocator: Allocator,
const OsData = switch (builtin.os.tag) {
// TODO https://github.com/ziglang/zig/issues/3778
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => KqOsData,
.linux => LinuxOsData,
.windows => WindowsOsData,
else => @compileError("Unsupported OS"),
};
const KqOsData = struct {
table_lock: event.Lock,
file_table: FileTable,
const FileTable = std.StringHashMapUnmanaged(*Put);
const Put = struct {
putter_frame: @Frame(kqPutEvents),
cancelled: bool = false,
value: V,
};
};
const WindowsOsData = struct {
table_lock: event.Lock,
dir_table: DirTable,
cancelled: bool = false,
const DirTable = std.StringHashMapUnmanaged(*Dir);
const FileTable = std.StringHashMapUnmanaged(V);
const Dir = struct {
putter_frame: @Frame(windowsDirReader),
file_table: FileTable,
dir_handle: os.windows.HANDLE,
};
};
const LinuxOsData = struct {
putter_frame: @Frame(linuxEventPutter),
inotify_fd: i32,
wd_table: WdTable,
table_lock: event.Lock,
cancelled: bool = false,
const WdTable = std.AutoHashMapUnmanaged(i32, Dir);
const FileTable = std.StringHashMapUnmanaged(V);
const Dir = struct {
dirname: []const u8,
file_table: FileTable,
};
};
const Self = @This();
pub const Event = struct {
id: Id,
data: V,
dirname: []const u8,
basename: []const u8,
pub const Id = WatchEventId;
pub const Error = WatchEventError;
};
pub fn init(allocator: Allocator, event_buf_count: usize) !*Self {
const self = try allocator.create(Self);
errdefer allocator.destroy(self);
switch (builtin.os.tag) {
.linux => {
const inotify_fd = try os.inotify_init1(os.linux.IN_NONBLOCK | os.linux.IN_CLOEXEC);
errdefer os.close(inotify_fd);
self.* = Self{
.allocator = allocator,
.channel = undefined,
.os_data = OsData{
.putter_frame = undefined,
.inotify_fd = inotify_fd,
.wd_table = OsData.WdTable.init(allocator),
.table_lock = event.Lock{},
},
};
const buf = try allocator.alloc(Event.Error!Event, event_buf_count);
self.channel.init(buf);
self.os_data.putter_frame = async self.linuxEventPutter();
return self;
},
.windows => {
self.* = Self{
.allocator = allocator,
.channel = undefined,
.os_data = OsData{
.table_lock = event.Lock{},
.dir_table = OsData.DirTable.init(allocator),
},
};
const buf = try allocator.alloc(Event.Error!Event, event_buf_count);
self.channel.init(buf);
return self;
},
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => {
self.* = Self{
.allocator = allocator,
.channel = undefined,
.os_data = OsData{
.table_lock = event.Lock{},
.file_table = OsData.FileTable.init(allocator),
},
};
const buf = try allocator.alloc(Event.Error!Event, event_buf_count);
self.channel.init(buf);
return self;
},
else => @compileError("Unsupported OS"),
}
}
pub fn deinit(self: *Self) void {
switch (builtin.os.tag) {
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => {
var it = self.os_data.file_table.iterator();
while (it.next()) |entry| {
const key = entry.key_ptr.*;
const value = entry.value_ptr.*;
value.cancelled = true;
// @TODO Close the fd here?
await value.putter_frame;
self.allocator.free(key);
self.allocator.destroy(value);
}
},
.linux => {
self.os_data.cancelled = true;
{
// Remove all directory watches linuxEventPutter will take care of
// cleaning up the memory and closing the inotify fd.
var dir_it = self.os_data.wd_table.keyIterator();
while (dir_it.next()) |wd_key| {
const rc = os.linux.inotify_rm_watch(self.os_data.inotify_fd, wd_key.*);
// Errno can only be EBADF, EINVAL if either the inotify fs or the wd are invalid
std.debug.assert(rc == 0);
}
}
await self.os_data.putter_frame;
},
.windows => {
self.os_data.cancelled = true;
var dir_it = self.os_data.dir_table.iterator();
while (dir_it.next()) |dir_entry| {
if (windows.kernel32.CancelIoEx(dir_entry.value.dir_handle, null) != 0) {
// We canceled the pending ReadDirectoryChangesW operation, but our
// frame is still suspending, now waiting indefinitely.
// Thus, it is safe to resume it ourslves
resume dir_entry.value.putter_frame;
} else {
std.debug.assert(windows.kernel32.GetLastError() == .NOT_FOUND);
// We are at another suspend point, we can await safely for the
// function to exit the loop
await dir_entry.value.putter_frame;
}
self.allocator.free(dir_entry.key_ptr.*);
var file_it = dir_entry.value.file_table.keyIterator();
while (file_it.next()) |file_entry| {
self.allocator.free(file_entry.*);
}
dir_entry.value.file_table.deinit(self.allocator);
self.allocator.destroy(dir_entry.value_ptr.*);
}
self.os_data.dir_table.deinit(self.allocator);
},
else => @compileError("Unsupported OS"),
}
self.allocator.free(self.channel.buffer_nodes);
self.channel.deinit();
self.allocator.destroy(self);
}
pub fn addFile(self: *Self, file_path: []const u8, value: V) !?V {
switch (builtin.os.tag) {
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => return addFileKEvent(self, file_path, value),
.linux => return addFileLinux(self, file_path, value),
.windows => return addFileWindows(self, file_path, value),
else => @compileError("Unsupported OS"),
}
}
fn addFileKEvent(self: *Self, file_path: []const u8, value: V) !?V {
var realpath_buf: [std.fs.MAX_PATH_BYTES]u8 = undefined;
const realpath = try os.realpath(file_path, &realpath_buf);
const held = self.os_data.table_lock.acquire();
defer held.release();
const gop = try self.os_data.file_table.getOrPut(self.allocator, realpath);
errdefer assert(self.os_data.file_table.remove(realpath));
if (gop.found_existing) {
const prev_value = gop.value_ptr.value;
gop.value_ptr.value = value;
return prev_value;
}
gop.key_ptr.* = try self.allocator.dupe(u8, realpath);
errdefer self.allocator.free(gop.key_ptr.*);
gop.value_ptr.* = try self.allocator.create(OsData.Put);
errdefer self.allocator.destroy(gop.value_ptr.*);
gop.value_ptr.* = .{
.putter_frame = undefined,
.value = value,
};
// @TODO Can I close this fd and get an error from bsdWaitKev?
const flags = if (comptime builtin.target.isDarwin()) os.O.SYMLINK | os.O.EVTONLY else 0;
const fd = try os.open(realpath, flags, 0);
gop.value_ptr.putter_frame = async self.kqPutEvents(fd, gop.key_ptr.*, gop.value_ptr.*);
return null;
}
fn kqPutEvents(self: *Self, fd: os.fd_t, file_path: []const u8, put: *OsData.Put) void {
global_event_loop.beginOneEvent();
defer {
global_event_loop.finishOneEvent();
// @TODO: Remove this if we force close otherwise
os.close(fd);
}
// We need to manually do a bsdWaitKev to access the fflags.
var resume_node = event.Loop.ResumeNode.Basic{
.base = .{
.id = .Basic,
.handle = @frame(),
.overlapped = event.Loop.ResumeNode.overlapped_init,
},
.kev = undefined,
};
var kevs = [1]os.Kevent{undefined};
const kev = &kevs[0];
while (!put.cancelled) {
kev.* = os.Kevent{
.ident = @as(usize, @intCast(fd)),
.filter = os.EVFILT_VNODE,
.flags = os.EV_ADD | os.EV_ENABLE | os.EV_CLEAR | os.EV_ONESHOT |
os.NOTE_WRITE | os.NOTE_DELETE | os.NOTE_REVOKE,
.fflags = 0,
.data = 0,
.udata = @intFromPtr(&resume_node.base),
};
suspend {
global_event_loop.beginOneEvent();
errdefer global_event_loop.finishOneEvent();
const empty_kevs = &[0]os.Kevent{};
_ = os.kevent(global_event_loop.os_data.kqfd, &kevs, empty_kevs, null) catch |err| switch (err) {
error.EventNotFound,
error.ProcessNotFound,
error.Overflow,
=> unreachable,
error.AccessDenied, error.SystemResources => |e| {
self.channel.put(e);
continue;
},
};
}
if (kev.flags & os.EV_ERROR != 0) {
self.channel.put(os.unexpectedErrno(os.errno(kev.data)));
continue;
}
if (kev.fflags & os.NOTE_DELETE != 0 or kev.fflags & os.NOTE_REVOKE != 0) {
self.channel.put(Self.Event{
.id = .Delete,
.data = put.value,
.dirname = std.fs.path.dirname(file_path) orelse "/",
.basename = std.fs.path.basename(file_path),
});
} else if (kev.fflags & os.NOTE_WRITE != 0) {
self.channel.put(Self.Event{
.id = .CloseWrite,
.data = put.value,
.dirname = std.fs.path.dirname(file_path) orelse "/",
.basename = std.fs.path.basename(file_path),
});
}
}
}
fn addFileLinux(self: *Self, file_path: []const u8, value: V) !?V {
const dirname = std.fs.path.dirname(file_path) orelse if (file_path[0] == '/') "/" else ".";
const basename = std.fs.path.basename(file_path);
const wd = try os.inotify_add_watch(
self.os_data.inotify_fd,
dirname,
os.linux.IN_CLOSE_WRITE | os.linux.IN_ONLYDIR | os.linux.IN_DELETE | os.linux.IN_EXCL_UNLINK,
);
// wd is either a newly created watch or an existing one.
const held = self.os_data.table_lock.acquire();
defer held.release();
const gop = try self.os_data.wd_table.getOrPut(self.allocator, wd);
errdefer assert(self.os_data.wd_table.remove(wd));
if (!gop.found_existing) {
gop.value_ptr.* = OsData.Dir{
.dirname = try self.allocator.dupe(u8, dirname),
.file_table = OsData.FileTable.init(self.allocator),
};
}
const dir = gop.value_ptr;
const file_table_gop = try dir.file_table.getOrPut(self.allocator, basename);
errdefer assert(dir.file_table.remove(basename));
if (file_table_gop.found_existing) {
const prev_value = file_table_gop.value_ptr.*;
file_table_gop.value_ptr.* = value;
return prev_value;
} else {
file_table_gop.key_ptr.* = try self.allocator.dupe(u8, basename);
file_table_gop.value_ptr.* = value;
return null;
}
}
fn addFileWindows(self: *Self, file_path: []const u8, value: V) !?V {
// TODO we might need to convert dirname and basename to canonical file paths ("short"?)
const dirname = std.fs.path.dirname(file_path) orelse if (file_path[0] == '/') "/" else ".";
var dirname_path_space: windows.PathSpace = undefined;
dirname_path_space.len = try std.unicode.utf8ToUtf16Le(&dirname_path_space.data, dirname);
dirname_path_space.data[dirname_path_space.len] = 0;
const basename = std.fs.path.basename(file_path);
var basename_path_space: windows.PathSpace = undefined;
basename_path_space.len = try std.unicode.utf8ToUtf16Le(&basename_path_space.data, basename);
basename_path_space.data[basename_path_space.len] = 0;
const held = self.os_data.table_lock.acquire();
defer held.release();
const gop = try self.os_data.dir_table.getOrPut(self.allocator, dirname);
errdefer assert(self.os_data.dir_table.remove(dirname));
if (gop.found_existing) {
const dir = gop.value_ptr.*;
const file_gop = try dir.file_table.getOrPut(self.allocator, basename);
errdefer assert(dir.file_table.remove(basename));
if (file_gop.found_existing) {
const prev_value = file_gop.value_ptr.*;
file_gop.value_ptr.* = value;
return prev_value;
} else {
file_gop.value_ptr.* = value;
file_gop.key_ptr.* = try self.allocator.dupe(u8, basename);
return null;
}
} else {
const dir_handle = try windows.OpenFile(dirname_path_space.span(), .{
.dir = std.fs.cwd().fd,
.access_mask = windows.FILE_LIST_DIRECTORY,
.creation = windows.FILE_OPEN,
.io_mode = .evented,
.filter = .dir_only,
});
errdefer windows.CloseHandle(dir_handle);
const dir = try self.allocator.create(OsData.Dir);
errdefer self.allocator.destroy(dir);
gop.key_ptr.* = try self.allocator.dupe(u8, dirname);
errdefer self.allocator.free(gop.key_ptr.*);
dir.* = OsData.Dir{
.file_table = OsData.FileTable.init(self.allocator),
.putter_frame = undefined,
.dir_handle = dir_handle,
};
gop.value_ptr.* = dir;
try dir.file_table.put(self.allocator, try self.allocator.dupe(u8, basename), value);
dir.putter_frame = async self.windowsDirReader(dir, gop.key_ptr.*);
return null;
}
}
fn windowsDirReader(self: *Self, dir: *OsData.Dir, dirname: []const u8) void {
defer os.close(dir.dir_handle);
var resume_node = Loop.ResumeNode.Basic{
.base = Loop.ResumeNode{
.id = .Basic,
.handle = @frame(),
.overlapped = windows.OVERLAPPED{
.Internal = 0,
.InternalHigh = 0,
.DUMMYUNIONNAME = .{
.DUMMYSTRUCTNAME = .{
.Offset = 0,
.OffsetHigh = 0,
},
},
.hEvent = null,
},
},
};
var event_buf: [4096]u8 align(@alignOf(windows.FILE_NOTIFY_INFORMATION)) = undefined;
global_event_loop.beginOneEvent();
defer global_event_loop.finishOneEvent();
while (!self.os_data.cancelled) main_loop: {
suspend {
_ = windows.kernel32.ReadDirectoryChangesW(
dir.dir_handle,
&event_buf,
event_buf.len,
windows.FALSE, // watch subtree
windows.FILE_NOTIFY_CHANGE_FILE_NAME | windows.FILE_NOTIFY_CHANGE_DIR_NAME |
windows.FILE_NOTIFY_CHANGE_ATTRIBUTES | windows.FILE_NOTIFY_CHANGE_SIZE |
windows.FILE_NOTIFY_CHANGE_LAST_WRITE | windows.FILE_NOTIFY_CHANGE_LAST_ACCESS |
windows.FILE_NOTIFY_CHANGE_CREATION | windows.FILE_NOTIFY_CHANGE_SECURITY,
null, // number of bytes transferred (unused for async)
&resume_node.base.overlapped,
null, // completion routine - unused because we use IOCP
);
}
var bytes_transferred: windows.DWORD = undefined;
if (windows.kernel32.GetOverlappedResult(
dir.dir_handle,
&resume_node.base.overlapped,
&bytes_transferred,
windows.FALSE,
) == 0) {
const potential_error = windows.kernel32.GetLastError();
const err = switch (potential_error) {
.OPERATION_ABORTED, .IO_INCOMPLETE => err_blk: {
if (self.os_data.cancelled)
break :main_loop
else
break :err_blk windows.unexpectedError(potential_error);
},
else => |err| windows.unexpectedError(err),
};
self.channel.put(err);
} else {
var ptr: [*]u8 = &event_buf;
const end_ptr = ptr + bytes_transferred;
while (@intFromPtr(ptr) < @intFromPtr(end_ptr)) {
const ev = @as(*const windows.FILE_NOTIFY_INFORMATION, @ptrCast(ptr));
const emit = switch (ev.Action) {
windows.FILE_ACTION_REMOVED => WatchEventId.Delete,
windows.FILE_ACTION_MODIFIED => .CloseWrite,
else => null,
};
if (emit) |id| {
const basename_ptr = @as([*]u16, @ptrCast(ptr + @sizeOf(windows.FILE_NOTIFY_INFORMATION)));
const basename_utf16le = basename_ptr[0 .. ev.FileNameLength / 2];
var basename_data: [std.fs.MAX_PATH_BYTES]u8 = undefined;
const basename = basename_data[0 .. std.unicode.utf16leToUtf8(&basename_data, basename_utf16le) catch unreachable];
if (dir.file_table.getEntry(basename)) |entry| {
self.channel.put(Event{
.id = id,
.data = entry.value_ptr.*,
.dirname = dirname,
.basename = entry.key_ptr.*,
});
}
}
if (ev.NextEntryOffset == 0) break;
ptr = @alignCast(ptr + ev.NextEntryOffset);
}
}
}
}
pub fn removeFile(self: *Self, file_path: []const u8) !?V {
switch (builtin.os.tag) {
.linux => {
const dirname = std.fs.path.dirname(file_path) orelse if (file_path[0] == '/') "/" else ".";
const basename = std.fs.path.basename(file_path);
const held = self.os_data.table_lock.acquire();
defer held.release();
const dir = self.os_data.wd_table.get(dirname) orelse return null;
if (dir.file_table.fetchRemove(basename)) |file_entry| {
self.allocator.free(file_entry.key);
return file_entry.value;
}
return null;
},
.windows => {
const dirname = std.fs.path.dirname(file_path) orelse if (file_path[0] == '/') "/" else ".";
const basename = std.fs.path.basename(file_path);
const held = self.os_data.table_lock.acquire();
defer held.release();
const dir = self.os_data.dir_table.get(dirname) orelse return null;
if (dir.file_table.fetchRemove(basename)) |file_entry| {
self.allocator.free(file_entry.key);
return file_entry.value;
}
return null;
},
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => {
var realpath_buf: [std.fs.MAX_PATH_BYTES]u8 = undefined;
const realpath = try os.realpath(file_path, &realpath_buf);
const held = self.os_data.table_lock.acquire();
defer held.release();
const entry = self.os_data.file_table.getEntry(realpath) orelse return null;
entry.value_ptr.cancelled = true;
// @TODO Close the fd here?
await entry.value_ptr.putter_frame;
self.allocator.free(entry.key_ptr.*);
self.allocator.destroy(entry.value_ptr.*);
assert(self.os_data.file_table.remove(realpath));
},
else => @compileError("Unsupported OS"),
}
}
fn linuxEventPutter(self: *Self) void {
global_event_loop.beginOneEvent();
defer {
std.debug.assert(self.os_data.wd_table.count() == 0);
self.os_data.wd_table.deinit(self.allocator);
os.close(self.os_data.inotify_fd);
self.allocator.free(self.channel.buffer_nodes);
self.channel.deinit();
global_event_loop.finishOneEvent();
}
var event_buf: [4096]u8 align(@alignOf(os.linux.inotify_event)) = undefined;
while (!self.os_data.cancelled) {
const bytes_read = global_event_loop.read(self.os_data.inotify_fd, &event_buf, false) catch unreachable;
var ptr: [*]u8 = &event_buf;
const end_ptr = ptr + bytes_read;
while (@intFromPtr(ptr) < @intFromPtr(end_ptr)) {
const ev = @as(*const os.linux.inotify_event, @ptrCast(ptr));
if (ev.mask & os.linux.IN_CLOSE_WRITE == os.linux.IN_CLOSE_WRITE) {
const basename_ptr = ptr + @sizeOf(os.linux.inotify_event);
const basename = std.mem.span(@as([*:0]u8, @ptrCast(basename_ptr)));
const dir = &self.os_data.wd_table.get(ev.wd).?;
if (dir.file_table.getEntry(basename)) |file_value| {
self.channel.put(Event{
.id = .CloseWrite,
.data = file_value.value_ptr.*,
.dirname = dir.dirname,
.basename = file_value.key_ptr.*,
});
}
} else if (ev.mask & os.linux.IN_IGNORED == os.linux.IN_IGNORED) {
// Directory watch was removed
const held = self.os_data.table_lock.acquire();
defer held.release();
if (self.os_data.wd_table.fetchRemove(ev.wd)) |wd_entry| {
var file_it = wd_entry.value.file_table.keyIterator();
while (file_it.next()) |file_entry| {
self.allocator.free(file_entry.*);
}
self.allocator.free(wd_entry.value.dirname);
wd_entry.value.file_table.deinit(self.allocator);
}
} else if (ev.mask & os.linux.IN_DELETE == os.linux.IN_DELETE) {
// File or directory was removed or deleted
const basename_ptr = ptr + @sizeOf(os.linux.inotify_event);
const basename = std.mem.span(@as([*:0]u8, @ptrCast(basename_ptr)));
const dir = &self.os_data.wd_table.get(ev.wd).?;
if (dir.file_table.getEntry(basename)) |file_value| {
self.channel.put(Event{
.id = .Delete,
.data = file_value.value_ptr.*,
.dirname = dir.dirname,
.basename = file_value.key_ptr.*,
});
}
}
ptr = @alignCast(ptr + @sizeOf(os.linux.inotify_event) + ev.len);
}
}
}
};
}
const test_tmp_dir = "std_event_fs_test";
test "write a file, watch it, write it again, delete it" {
if (!std.io.is_async) return error.SkipZigTest;
// TODO https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
try std.fs.cwd().makePath(test_tmp_dir);
defer std.fs.cwd().deleteTree(test_tmp_dir) catch {};
return testWriteWatchWriteDelete(std.testing.allocator);
}
fn testWriteWatchWriteDelete(allocator: Allocator) !void {
const file_path = try std.fs.path.join(allocator, &[_][]const u8{ test_tmp_dir, "file.txt" });
defer allocator.free(file_path);
const contents =
\\line 1
\\line 2
;
const line2_offset = 7;
// first just write then read the file
try std.fs.cwd().writeFile(file_path, contents);
const read_contents = try std.fs.cwd().readFileAlloc(allocator, file_path, 1024 * 1024);
defer allocator.free(read_contents);
try testing.expectEqualSlices(u8, contents, read_contents);
// now watch the file
var watch = try Watch(void).init(allocator, 0);
defer watch.deinit();
try testing.expect((try watch.addFile(file_path, {})) == null);
var ev = async watch.channel.get();
var ev_consumed = false;
defer if (!ev_consumed) {
_ = await ev;
};
// overwrite line 2
const file = try std.fs.cwd().openFile(file_path, .{ .mode = .read_write });
{
defer file.close();
const write_contents = "lorem ipsum";
var iovec = [_]os.iovec_const{.{
.iov_base = write_contents,
.iov_len = write_contents.len,
}};
_ = try file.pwritevAll(&iovec, line2_offset);
}
switch ((try await ev).id) {
.CloseWrite => {
ev_consumed = true;
},
.Delete => @panic("wrong event"),
}
const contents_updated = try std.fs.cwd().readFileAlloc(allocator, file_path, 1024 * 1024);
defer allocator.free(contents_updated);
try testing.expectEqualSlices(u8,
\\line 1
\\lorem ipsum
, contents_updated);
ev = async watch.channel.get();
ev_consumed = false;
try std.fs.cwd().deleteFile(file_path);
switch ((try await ev).id) {
.Delete => {
ev_consumed = true;
},
.CloseWrite => @panic("wrong event"),
}
}
// TODO Test: Add another file watch, remove the old file watch, get an event in the new

View File

@ -92,9 +92,6 @@ pub const elf = @import("elf.zig");
/// Enum-related metaprogramming helpers.
pub const enums = @import("enums.zig");
/// Evented I/O data structures.
pub const event = @import("event.zig");
/// First in, first out data structures.
pub const fifo = @import("fifo.zig");