zig1.c: decompress zig1.wasm.zst with zstd

This commit is contained in:
Andrew Kelley 2022-11-15 21:51:33 -07:00
parent d1b3409df1
commit fb9a6084e2
3 changed files with 77 additions and 644 deletions

View File

@ -181,6 +181,16 @@ set(ZIG_CONFIG_ZIG_OUT "${CMAKE_BINARY_DIR}/config.zig")
set(STAGE1_SOURCES
"${CMAKE_SOURCE_DIR}/stage1/zig1.c"
"${CMAKE_SOURCE_DIR}/stage1/zstd/lib/decompress/huf_decompress.c"
"${CMAKE_SOURCE_DIR}/stage1/zstd/lib/decompress/zstd_ddict.c"
"${CMAKE_SOURCE_DIR}/stage1/zstd/lib/decompress/zstd_decompress.c"
"${CMAKE_SOURCE_DIR}/stage1/zstd/lib/decompress/zstd_decompress_block.c"
"${CMAKE_SOURCE_DIR}/stage1/zstd/lib/common/entropy_common.c"
"${CMAKE_SOURCE_DIR}/stage1/zstd/lib/common/error_private.c"
"${CMAKE_SOURCE_DIR}/stage1/zstd/lib/common/fse_decompress.c"
"${CMAKE_SOURCE_DIR}/stage1/zstd/lib/common/pool.c"
"${CMAKE_SOURCE_DIR}/stage1/zstd/lib/common/xxhash.c"
"${CMAKE_SOURCE_DIR}/stage1/zstd/lib/common/zstd_common.c"
)
set(ZIG_CPP_SOURCES
# These are planned to stay even when we are self-hosted.
@ -710,14 +720,15 @@ endif()
add_executable(zig1 ${STAGE1_SOURCES})
set_target_properties(zig1 PROPERTIES COMPILE_FLAGS ${ZIG1_COMPILE_FLAGS})
target_link_libraries(zig1 LINK_PUBLIC m)
target_include_directories(zig1 PUBLIC "${CMAKE_SOURCE_DIR}/stage1/zstd/lib")
target_compile_definitions(zig1 PRIVATE ZSTD_DISABLE_ASM)
set(ZIG2_C_SOURCE "${CMAKE_BINARY_DIR}/zig2.c")
set(BUILD_ZIG2_ARGS
"${CMAKE_SOURCE_DIR}/lib"
"${CMAKE_BINARY_DIR}"
zig2
"${CMAKE_SOURCE_DIR}/stage1/zig1.wasm"
"${CMAKE_SOURCE_DIR}/stage1/zig1.wasm.zst"
build-exe src/main.zig -ofmt=c -lc
-target x86_64-linux-musl # TODO: autodetect in zig1.c
-OReleaseFast
@ -736,7 +747,7 @@ set(BUILD_COMPILER_RT_ARGS
"${CMAKE_SOURCE_DIR}/lib"
"${CMAKE_BINARY_DIR}"
compiler_rt
"${CMAKE_SOURCE_DIR}/stage1/zig1.wasm"
"${CMAKE_SOURCE_DIR}/stage1/zig1.wasm.zst"
build-obj lib/compiler_rt.zig -ofmt=c
-target x86_64-linux-musl # TODO: autodetect in zig1.c
-OReleaseFast

View File

@ -20,6 +20,8 @@
#include <sys/random.h>
#endif
#include <zstd.h>
enum wasi_errno_t {
WASI_ESUCCESS = 0,
WASI_E2BIG = 1,
@ -4122,7 +4124,12 @@ int main(int argc, char **argv) {
new_argv[new_argv_i] = NULL;
const struct ByteSlice mod = read_file_alloc(wasm_file);
const struct ByteSlice compressed_bytes = read_file_alloc(wasm_file);
const size_t max_uncompressed_size = 2500000;
char *mod_ptr = arena_alloc(max_uncompressed_size);
size_t mod_len = ZSTD_decompress(mod_ptr, max_uncompressed_size,
compressed_bytes.ptr, compressed_bytes.len);
int cwd = err_wrap("opening cwd", open(".", O_DIRECTORY|O_RDONLY|O_CLOEXEC|O_PATH));
int zig_lib_dir = err_wrap("opening zig lib dir", open(zig_lib_dir_path, O_DIRECTORY|O_RDONLY|O_CLOEXEC|O_PATH));
@ -4136,22 +4143,22 @@ int main(int argc, char **argv) {
uint32_t i = 0;
if (mod.ptr[0] != 0 || mod.ptr[1] != 'a' || mod.ptr[2] != 's' || mod.ptr[3] != 'm') {
if (mod_ptr[0] != 0 || mod_ptr[1] != 'a' || mod_ptr[2] != 's' || mod_ptr[3] != 'm') {
panic("bad magic");
}
i += 4;
uint32_t version = read_u32_le(mod.ptr + i);
uint32_t version = read_u32_le(mod_ptr + i);
i += 4;
if (version != 1) panic("bad wasm version");
uint32_t section_starts[13];
memset(&section_starts, 0, sizeof(uint32_t) * 13);
while (i < mod.len) {
uint8_t section_id = mod.ptr[i];
while (i < mod_len) {
uint8_t section_id = mod_ptr[i];
i += 1;
uint32_t section_len = read32_uleb128(mod.ptr, &i);
uint32_t section_len = read32_uleb128(mod_ptr, &i);
section_starts[section_id] = i;
i += section_len;
}
@ -4160,18 +4167,18 @@ int main(int argc, char **argv) {
struct TypeInfo *types;
{
i = section_starts[Section_type];
uint32_t types_len = read32_uleb128(mod.ptr, &i);
uint32_t types_len = read32_uleb128(mod_ptr, &i);
types = arena_alloc(sizeof(struct TypeInfo) * types_len);
for (size_t type_i = 0; type_i < types_len; type_i += 1) {
struct TypeInfo *info = &types[type_i];
if (mod.ptr[i] != 0x60) panic("bad type byte");
if (mod_ptr[i] != 0x60) panic("bad type byte");
i += 1;
info->param_count = read32_uleb128(mod.ptr, &i);
info->param_count = read32_uleb128(mod_ptr, &i);
if (info->param_count > 32) panic("found a type with over 32 parameters");
info->param_types = 0;
for (uint32_t param_i = 0; param_i < info->param_count; param_i += 1) {
int64_t param_type = read64_ileb128(mod.ptr, &i);
int64_t param_type = read64_ileb128(mod_ptr, &i);
switch (param_type) {
case -1: case -3: bs_unset(&info->param_types, param_i); break;
case -2: case -4: bs_set(&info->param_types, param_i); break;
@ -4179,10 +4186,10 @@ int main(int argc, char **argv) {
}
}
info->result_count = read32_uleb128(mod.ptr, &i);
info->result_count = read32_uleb128(mod_ptr, &i);
info->result_types = 0;
for (uint32_t result_i = 0; result_i < info->result_count; result_i += 1) {
int64_t result_type = read64_ileb128(mod.ptr, &i);
int64_t result_type = read64_ileb128(mod_ptr, &i);
switch (result_type) {
case -1: case -3: bs_unset(&info->result_types, result_i); break;
case -2: case -4: bs_set(&info->result_types, result_i); break;
@ -4197,18 +4204,18 @@ int main(int argc, char **argv) {
uint32_t imports_len;
{
i = section_starts[Section_import];
imports_len = read32_uleb128(mod.ptr, &i);
imports_len = read32_uleb128(mod_ptr, &i);
imports = arena_alloc(sizeof(struct Import) * imports_len);
for (size_t imp_i = 0; imp_i < imports_len; imp_i += 1) {
struct Import *imp = &imports[imp_i];
struct ByteSlice mod_name = read_name(mod.ptr, &i);
struct ByteSlice mod_name = read_name(mod_ptr, &i);
if (mod_name.len == strlen("wasi_snapshot_preview1") &&
memcmp(mod_name.ptr, "wasi_snapshot_preview1", mod_name.len) == 0) {
imp->mod = ImpMod_wasi_snapshot_preview1;
} else panic("unknown import module");
struct ByteSlice sym_name = read_name(mod.ptr, &i);
struct ByteSlice sym_name = read_name(mod_ptr, &i);
if (sym_name.len == strlen("args_get") &&
memcmp(sym_name.ptr, "args_get", sym_name.len) == 0) {
imp->name = ImpName_args_get;
@ -4292,9 +4299,9 @@ int main(int argc, char **argv) {
imp->name = ImpName_random_get;
} else panic("unknown import name");
uint32_t desc = read32_uleb128(mod.ptr, &i);
uint32_t desc = read32_uleb128(mod_ptr, &i);
if (desc != 0) panic("external kind not function");
imp->type_idx = read32_uleb128(mod.ptr, &i);
imp->type_idx = read32_uleb128(mod_ptr, &i);
}
}
@ -4302,11 +4309,11 @@ int main(int argc, char **argv) {
uint32_t start_fn_idx;
{
i = section_starts[Section_export];
uint32_t count = read32_uleb128(mod.ptr, &i);
uint32_t count = read32_uleb128(mod_ptr, &i);
for (; count > 0; count -= 1) {
struct ByteSlice name = read_name(mod.ptr, &i);
uint32_t desc = read32_uleb128(mod.ptr, &i);
start_fn_idx = read32_uleb128(mod.ptr, &i);
struct ByteSlice name = read_name(mod_ptr, &i);
uint32_t desc = read32_uleb128(mod_ptr, &i);
start_fn_idx = read32_uleb128(mod_ptr, &i);
if (desc == 0 && name.len == strlen("_start") &&
memcmp(name.ptr, "_start", name.len) == 0)
{
@ -4321,11 +4328,11 @@ int main(int argc, char **argv) {
uint32_t functions_len;
{
i = section_starts[Section_function];
functions_len = read32_uleb128(mod.ptr, &i);
functions_len = read32_uleb128(mod_ptr, &i);
functions = arena_alloc(sizeof(struct Function) * functions_len);
for (size_t func_i = 0; func_i < functions_len; func_i += 1) {
struct Function *func = &functions[func_i];
func->type_idx = read32_uleb128(mod.ptr, &i);
func->type_idx = read32_uleb128(mod_ptr, &i);
}
}
@ -4333,18 +4340,18 @@ int main(int argc, char **argv) {
uint64_t *globals;
{
i = section_starts[Section_global];
uint32_t globals_len = read32_uleb128(mod.ptr, &i);
uint32_t globals_len = read32_uleb128(mod_ptr, &i);
globals = arena_alloc(sizeof(uint64_t) * globals_len);
for (size_t glob_i = 0; glob_i < globals_len; glob_i += 1) {
uint64_t *global = &globals[glob_i];
uint32_t content_type = read32_uleb128(mod.ptr, &i);
uint32_t mutability = read32_uleb128(mod.ptr, &i);
uint32_t content_type = read32_uleb128(mod_ptr, &i);
uint32_t mutability = read32_uleb128(mod_ptr, &i);
if (mutability != 1) panic("expected mutable global");
if (content_type != 0x7f) panic("unexpected content type");
uint8_t opcode = mod.ptr[i];
uint8_t opcode = mod_ptr[i];
i += 1;
if (opcode != WasmOp_i32_const) panic("expected i32_const op");
uint32_t init = read32_ileb128(mod.ptr, &i);
uint32_t init = read32_ileb128(mod_ptr, &i);
*global = (uint32_t)init;
}
}
@ -4353,26 +4360,26 @@ int main(int argc, char **argv) {
uint32_t memory_len;
{
i = section_starts[Section_memory];
uint32_t memories_len = read32_uleb128(mod.ptr, &i);
uint32_t memories_len = read32_uleb128(mod_ptr, &i);
if (memories_len != 1) panic("unexpected memory count");
uint32_t flags = read32_uleb128(mod.ptr, &i);
uint32_t flags = read32_uleb128(mod_ptr, &i);
(void)flags;
memory_len = read32_uleb128(mod.ptr, &i) * wasm_page_size;
memory_len = read32_uleb128(mod_ptr, &i) * wasm_page_size;
i = section_starts[Section_data];
uint32_t datas_count = read32_uleb128(mod.ptr, &i);
uint32_t datas_count = read32_uleb128(mod_ptr, &i);
for (; datas_count > 0; datas_count -= 1) {
uint32_t mode = read32_uleb128(mod.ptr, &i);
uint32_t mode = read32_uleb128(mod_ptr, &i);
if (mode != 0) panic("expected mode 0");
enum WasmOp opcode = mod.ptr[i];
enum WasmOp opcode = mod_ptr[i];
i += 1;
if (opcode != WasmOp_i32_const) panic("expected opcode i32_const");
uint32_t offset = read32_uleb128(mod.ptr, &i);
enum WasmOp end = mod.ptr[i];
uint32_t offset = read32_uleb128(mod_ptr, &i);
enum WasmOp end = mod_ptr[i];
if (end != WasmOp_end) panic("expected end opcode");
i += 1;
uint32_t bytes_len = read32_uleb128(mod.ptr, &i);
memcpy(memory + offset, mod.ptr + i, bytes_len);
uint32_t bytes_len = read32_uleb128(mod_ptr, &i);
memcpy(memory + offset, mod_ptr + i, bytes_len);
i += bytes_len;
}
}
@ -4380,37 +4387,37 @@ int main(int argc, char **argv) {
uint32_t *table = NULL;
{
i = section_starts[Section_table];
uint32_t table_count = read32_uleb128(mod.ptr, &i);
uint32_t table_count = read32_uleb128(mod_ptr, &i);
if (table_count > 1) {
panic("expected only one table section");
} else if (table_count == 1) {
uint32_t element_type = read32_uleb128(mod.ptr, &i);
uint32_t element_type = read32_uleb128(mod_ptr, &i);
(void)element_type;
uint32_t has_max = read32_uleb128(mod.ptr, &i);
uint32_t has_max = read32_uleb128(mod_ptr, &i);
if (has_max != 1) panic("expected has_max==1");
uint32_t initial = read32_uleb128(mod.ptr, &i);
uint32_t initial = read32_uleb128(mod_ptr, &i);
(void)initial;
uint32_t maximum = read32_uleb128(mod.ptr, &i);
uint32_t maximum = read32_uleb128(mod_ptr, &i);
i = section_starts[Section_element];
uint32_t element_section_count = read32_uleb128(mod.ptr, &i);
uint32_t element_section_count = read32_uleb128(mod_ptr, &i);
if (element_section_count != 1) panic("expected one element section");
uint32_t flags = read32_uleb128(mod.ptr, &i);
uint32_t flags = read32_uleb128(mod_ptr, &i);
(void)flags;
enum WasmOp opcode = mod.ptr[i];
enum WasmOp opcode = mod_ptr[i];
i += 1;
if (opcode != WasmOp_i32_const) panic("expected op i32_const");
uint32_t offset = read32_uleb128(mod.ptr, &i);
enum WasmOp end = mod.ptr[i];
uint32_t offset = read32_uleb128(mod_ptr, &i);
enum WasmOp end = mod_ptr[i];
if (end != WasmOp_end) panic("expected op end");
i += 1;
uint32_t elem_count = read32_uleb128(mod.ptr, &i);
uint32_t elem_count = read32_uleb128(mod_ptr, &i);
table = arena_alloc(sizeof(uint32_t) * maximum);
memset(table, 0, sizeof(uint32_t) * maximum);
for (uint32_t elem_i = 0; elem_i < elem_count; elem_i += 1) {
table[elem_i + offset] = read32_uleb128(mod.ptr, &i);
table[elem_i + offset] = read32_uleb128(mod_ptr, &i);
}
}
}
@ -4420,7 +4427,7 @@ int main(int argc, char **argv) {
memset(&vm, 0xaa, sizeof(struct VirtualMachine)); // to match the zig version
#endif
vm.stack = arena_alloc(sizeof(uint64_t) * 10000000),
vm.mod_ptr = mod.ptr;
vm.mod_ptr = mod_ptr;
vm.opcodes = arena_alloc(2000000);
vm.operands = arena_alloc(sizeof(uint32_t) * 2000000);
vm.stack_top = 0;
@ -4436,14 +4443,14 @@ int main(int argc, char **argv) {
{
uint32_t code_i = section_starts[Section_code];
uint32_t codes_len = read32_uleb128(mod.ptr, &code_i);
uint32_t codes_len = read32_uleb128(mod_ptr, &code_i);
if (codes_len != functions_len) panic("code/function length mismatch");
struct ProgramCounter pc;
pc.opcode = 0;
pc.operand = 0;
for (uint32_t func_i = 0; func_i < functions_len; func_i += 1) {
struct Function *func = &functions[func_i];
uint32_t size = read32_uleb128(mod.ptr, &code_i);
uint32_t size = read32_uleb128(mod_ptr, &code_i);
uint32_t code_begin = code_i;
struct TypeInfo *type_info = &vm.types[func->type_idx];
@ -4451,11 +4458,11 @@ int main(int argc, char **argv) {
func->local_types = malloc(sizeof(uint32_t) * ((type_info->param_count + func->locals_count + 31) / 32));
func->local_types[0] = type_info->param_types;
for (uint32_t local_sets_count = read32_uleb128(mod.ptr, &code_i);
for (uint32_t local_sets_count = read32_uleb128(mod_ptr, &code_i);
local_sets_count > 0; local_sets_count -= 1)
{
uint32_t set_count = read32_uleb128(mod.ptr, &code_i);
int64_t local_type = read64_ileb128(mod.ptr, &code_i);
uint32_t set_count = read32_uleb128(mod_ptr, &code_i);
int64_t local_type = read64_ileb128(mod_ptr, &code_i);
uint32_t i = type_info->param_count + func->locals_count;
func->locals_count += set_count;

View File

@ -1,585 +0,0 @@
/*
* Copyright (c) Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include "../common/portability_macros.h"
/* Stack marking
* ref: https://wiki.gentoo.org/wiki/Hardened/GNU_stack_quickstart
*/
#if defined(__ELF__) && defined(__GNUC__)
.section .note.GNU-stack,"",%progbits
#endif
#if ZSTD_ENABLE_ASM_X86_64_BMI2
/* Calling convention:
*
* %rdi contains the first argument: HUF_DecompressAsmArgs*.
* %rbp isn't maintained (no frame pointer).
* %rsp contains the stack pointer that grows down.
* No red-zone is assumed, only addresses >= %rsp are used.
* All register contents are preserved.
*
* TODO: Support Windows calling convention.
*/
ZSTD_HIDE_ASM_FUNCTION(HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop)
ZSTD_HIDE_ASM_FUNCTION(HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop)
ZSTD_HIDE_ASM_FUNCTION(_HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop)
ZSTD_HIDE_ASM_FUNCTION(_HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop)
.global HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop
.global HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop
.global _HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop
.global _HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop
.text
/* Sets up register mappings for clarity.
* op[], bits[], dtable & ip[0] each get their own register.
* ip[1,2,3] & olimit alias var[].
* %rax is a scratch register.
*/
#define op0 rsi
#define op1 rbx
#define op2 rcx
#define op3 rdi
#define ip0 r8
#define ip1 r9
#define ip2 r10
#define ip3 r11
#define bits0 rbp
#define bits1 rdx
#define bits2 r12
#define bits3 r13
#define dtable r14
#define olimit r15
/* var[] aliases ip[1,2,3] & olimit
* ip[1,2,3] are saved every iteration.
* olimit is only used in compute_olimit.
*/
#define var0 r15
#define var1 r9
#define var2 r10
#define var3 r11
/* 32-bit var registers */
#define vard0 r15d
#define vard1 r9d
#define vard2 r10d
#define vard3 r11d
/* Calls X(N) for each stream 0, 1, 2, 3. */
#define FOR_EACH_STREAM(X) \
X(0); \
X(1); \
X(2); \
X(3)
/* Calls X(N, idx) for each stream 0, 1, 2, 3. */
#define FOR_EACH_STREAM_WITH_INDEX(X, idx) \
X(0, idx); \
X(1, idx); \
X(2, idx); \
X(3, idx)
/* Define both _HUF_* & HUF_* symbols because MacOS
* C symbols are prefixed with '_' & Linux symbols aren't.
*/
_HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop:
HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop:
/* Save all registers - even if they are callee saved for simplicity. */
push %rax
push %rbx
push %rcx
push %rdx
push %rbp
push %rsi
push %rdi
push %r8
push %r9
push %r10
push %r11
push %r12
push %r13
push %r14
push %r15
/* Read HUF_DecompressAsmArgs* args from %rax */
movq %rdi, %rax
movq 0(%rax), %ip0
movq 8(%rax), %ip1
movq 16(%rax), %ip2
movq 24(%rax), %ip3
movq 32(%rax), %op0
movq 40(%rax), %op1
movq 48(%rax), %op2
movq 56(%rax), %op3
movq 64(%rax), %bits0
movq 72(%rax), %bits1
movq 80(%rax), %bits2
movq 88(%rax), %bits3
movq 96(%rax), %dtable
push %rax /* argument */
push 104(%rax) /* ilimit */
push 112(%rax) /* oend */
push %olimit /* olimit space */
subq $24, %rsp
.L_4X1_compute_olimit:
/* Computes how many iterations we can do safely
* %r15, %rax may be clobbered
* rbx, rdx must be saved
* op3 & ip0 mustn't be clobbered
*/
movq %rbx, 0(%rsp)
movq %rdx, 8(%rsp)
movq 32(%rsp), %rax /* rax = oend */
subq %op3, %rax /* rax = oend - op3 */
/* r15 = (oend - op3) / 5 */
movabsq $-3689348814741910323, %rdx
mulq %rdx
movq %rdx, %r15
shrq $2, %r15
movq %ip0, %rax /* rax = ip0 */
movq 40(%rsp), %rdx /* rdx = ilimit */
subq %rdx, %rax /* rax = ip0 - ilimit */
movq %rax, %rbx /* rbx = ip0 - ilimit */
/* rdx = (ip0 - ilimit) / 7 */
movabsq $2635249153387078803, %rdx
mulq %rdx
subq %rdx, %rbx
shrq %rbx
addq %rbx, %rdx
shrq $2, %rdx
/* r15 = min(%rdx, %r15) */
cmpq %rdx, %r15
cmova %rdx, %r15
/* r15 = r15 * 5 */
leaq (%r15, %r15, 4), %r15
/* olimit = op3 + r15 */
addq %op3, %olimit
movq 8(%rsp), %rdx
movq 0(%rsp), %rbx
/* If (op3 + 20 > olimit) */
movq %op3, %rax /* rax = op3 */
addq $20, %rax /* rax = op3 + 20 */
cmpq %rax, %olimit /* op3 + 20 > olimit */
jb .L_4X1_exit
/* If (ip1 < ip0) go to exit */
cmpq %ip0, %ip1
jb .L_4X1_exit
/* If (ip2 < ip1) go to exit */
cmpq %ip1, %ip2
jb .L_4X1_exit
/* If (ip3 < ip2) go to exit */
cmpq %ip2, %ip3
jb .L_4X1_exit
/* Reads top 11 bits from bits[n]
* Loads dt[bits[n]] into var[n]
*/
#define GET_NEXT_DELT(n) \
movq $53, %var##n; \
shrxq %var##n, %bits##n, %var##n; \
movzwl (%dtable,%var##n,2),%vard##n
/* var[n] must contain the DTable entry computed with GET_NEXT_DELT
* Moves var[n] to %rax
* bits[n] <<= var[n] & 63
* op[n][idx] = %rax >> 8
* %ah is a way to access bits [8, 16) of %rax
*/
#define DECODE_FROM_DELT(n, idx) \
movq %var##n, %rax; \
shlxq %var##n, %bits##n, %bits##n; \
movb %ah, idx(%op##n)
/* Assumes GET_NEXT_DELT has been called.
* Calls DECODE_FROM_DELT then GET_NEXT_DELT
*/
#define DECODE_AND_GET_NEXT(n, idx) \
DECODE_FROM_DELT(n, idx); \
GET_NEXT_DELT(n) \
/* // ctz & nbBytes is stored in bits[n]
* // nbBits is stored in %rax
* ctz = CTZ[bits[n]]
* nbBits = ctz & 7
* nbBytes = ctz >> 3
* op[n] += 5
* ip[n] -= nbBytes
* // Note: x86-64 is little-endian ==> no bswap
* bits[n] = MEM_readST(ip[n]) | 1
* bits[n] <<= nbBits
*/
#define RELOAD_BITS(n) \
bsfq %bits##n, %bits##n; \
movq %bits##n, %rax; \
andq $7, %rax; \
shrq $3, %bits##n; \
leaq 5(%op##n), %op##n; \
subq %bits##n, %ip##n; \
movq (%ip##n), %bits##n; \
orq $1, %bits##n; \
shlx %rax, %bits##n, %bits##n
/* Store clobbered variables on the stack */
movq %olimit, 24(%rsp)
movq %ip1, 0(%rsp)
movq %ip2, 8(%rsp)
movq %ip3, 16(%rsp)
/* Call GET_NEXT_DELT for each stream */
FOR_EACH_STREAM(GET_NEXT_DELT)
.p2align 6
.L_4X1_loop_body:
/* Decode 5 symbols in each of the 4 streams (20 total)
* Must have called GET_NEXT_DELT for each stream
*/
FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 0)
FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 1)
FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 2)
FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 3)
FOR_EACH_STREAM_WITH_INDEX(DECODE_FROM_DELT, 4)
/* Load ip[1,2,3] from stack (var[] aliases them)
* ip[] is needed for RELOAD_BITS
* Each will be stored back to the stack after RELOAD
*/
movq 0(%rsp), %ip1
movq 8(%rsp), %ip2
movq 16(%rsp), %ip3
/* Reload each stream & fetch the next table entry
* to prepare for the next iteration
*/
RELOAD_BITS(0)
GET_NEXT_DELT(0)
RELOAD_BITS(1)
movq %ip1, 0(%rsp)
GET_NEXT_DELT(1)
RELOAD_BITS(2)
movq %ip2, 8(%rsp)
GET_NEXT_DELT(2)
RELOAD_BITS(3)
movq %ip3, 16(%rsp)
GET_NEXT_DELT(3)
/* If op3 < olimit: continue the loop */
cmp %op3, 24(%rsp)
ja .L_4X1_loop_body
/* Reload ip[1,2,3] from stack */
movq 0(%rsp), %ip1
movq 8(%rsp), %ip2
movq 16(%rsp), %ip3
/* Re-compute olimit */
jmp .L_4X1_compute_olimit
#undef GET_NEXT_DELT
#undef DECODE_FROM_DELT
#undef DECODE
#undef RELOAD_BITS
.L_4X1_exit:
addq $24, %rsp
/* Restore stack (oend & olimit) */
pop %rax /* olimit */
pop %rax /* oend */
pop %rax /* ilimit */
pop %rax /* arg */
/* Save ip / op / bits */
movq %ip0, 0(%rax)
movq %ip1, 8(%rax)
movq %ip2, 16(%rax)
movq %ip3, 24(%rax)
movq %op0, 32(%rax)
movq %op1, 40(%rax)
movq %op2, 48(%rax)
movq %op3, 56(%rax)
movq %bits0, 64(%rax)
movq %bits1, 72(%rax)
movq %bits2, 80(%rax)
movq %bits3, 88(%rax)
/* Restore registers */
pop %r15
pop %r14
pop %r13
pop %r12
pop %r11
pop %r10
pop %r9
pop %r8
pop %rdi
pop %rsi
pop %rbp
pop %rdx
pop %rcx
pop %rbx
pop %rax
ret
_HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop:
HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop:
/* Save all registers - even if they are callee saved for simplicity. */
push %rax
push %rbx
push %rcx
push %rdx
push %rbp
push %rsi
push %rdi
push %r8
push %r9
push %r10
push %r11
push %r12
push %r13
push %r14
push %r15
movq %rdi, %rax
movq 0(%rax), %ip0
movq 8(%rax), %ip1
movq 16(%rax), %ip2
movq 24(%rax), %ip3
movq 32(%rax), %op0
movq 40(%rax), %op1
movq 48(%rax), %op2
movq 56(%rax), %op3
movq 64(%rax), %bits0
movq 72(%rax), %bits1
movq 80(%rax), %bits2
movq 88(%rax), %bits3
movq 96(%rax), %dtable
push %rax /* argument */
push %rax /* olimit */
push 104(%rax) /* ilimit */
movq 112(%rax), %rax
push %rax /* oend3 */
movq %op3, %rax
push %rax /* oend2 */
movq %op2, %rax
push %rax /* oend1 */
movq %op1, %rax
push %rax /* oend0 */
/* Scratch space */
subq $8, %rsp
.L_4X2_compute_olimit:
/* Computes how many iterations we can do safely
* %r15, %rax may be clobbered
* rdx must be saved
* op[1,2,3,4] & ip0 mustn't be clobbered
*/
movq %rdx, 0(%rsp)
/* We can consume up to 7 input bytes each iteration. */
movq %ip0, %rax /* rax = ip0 */
movq 40(%rsp), %rdx /* rdx = ilimit */
subq %rdx, %rax /* rax = ip0 - ilimit */
movq %rax, %r15 /* r15 = ip0 - ilimit */
/* rdx = rax / 7 */
movabsq $2635249153387078803, %rdx
mulq %rdx
subq %rdx, %r15
shrq %r15
addq %r15, %rdx
shrq $2, %rdx
/* r15 = (ip0 - ilimit) / 7 */
movq %rdx, %r15
movabsq $-3689348814741910323, %rdx
movq 8(%rsp), %rax /* rax = oend0 */
subq %op0, %rax /* rax = oend0 - op0 */
mulq %rdx
shrq $3, %rdx /* rdx = rax / 10 */
/* r15 = min(%rdx, %r15) */
cmpq %rdx, %r15
cmova %rdx, %r15
movabsq $-3689348814741910323, %rdx
movq 16(%rsp), %rax /* rax = oend1 */
subq %op1, %rax /* rax = oend1 - op1 */
mulq %rdx
shrq $3, %rdx /* rdx = rax / 10 */
/* r15 = min(%rdx, %r15) */
cmpq %rdx, %r15
cmova %rdx, %r15
movabsq $-3689348814741910323, %rdx
movq 24(%rsp), %rax /* rax = oend2 */
subq %op2, %rax /* rax = oend2 - op2 */
mulq %rdx
shrq $3, %rdx /* rdx = rax / 10 */
/* r15 = min(%rdx, %r15) */
cmpq %rdx, %r15
cmova %rdx, %r15
movabsq $-3689348814741910323, %rdx
movq 32(%rsp), %rax /* rax = oend3 */
subq %op3, %rax /* rax = oend3 - op3 */
mulq %rdx
shrq $3, %rdx /* rdx = rax / 10 */
/* r15 = min(%rdx, %r15) */
cmpq %rdx, %r15
cmova %rdx, %r15
/* olimit = op3 + 5 * r15 */
movq %r15, %rax
leaq (%op3, %rax, 4), %olimit
addq %rax, %olimit
movq 0(%rsp), %rdx
/* If (op3 + 10 > olimit) */
movq %op3, %rax /* rax = op3 */
addq $10, %rax /* rax = op3 + 10 */
cmpq %rax, %olimit /* op3 + 10 > olimit */
jb .L_4X2_exit
/* If (ip1 < ip0) go to exit */
cmpq %ip0, %ip1
jb .L_4X2_exit
/* If (ip2 < ip1) go to exit */
cmpq %ip1, %ip2
jb .L_4X2_exit
/* If (ip3 < ip2) go to exit */
cmpq %ip2, %ip3
jb .L_4X2_exit
#define DECODE(n, idx) \
movq %bits##n, %rax; \
shrq $53, %rax; \
movzwl 0(%dtable,%rax,4),%r8d; \
movzbl 2(%dtable,%rax,4),%r15d; \
movzbl 3(%dtable,%rax,4),%eax; \
movw %r8w, (%op##n); \
shlxq %r15, %bits##n, %bits##n; \
addq %rax, %op##n
#define RELOAD_BITS(n) \
bsfq %bits##n, %bits##n; \
movq %bits##n, %rax; \
shrq $3, %bits##n; \
andq $7, %rax; \
subq %bits##n, %ip##n; \
movq (%ip##n), %bits##n; \
orq $1, %bits##n; \
shlxq %rax, %bits##n, %bits##n
movq %olimit, 48(%rsp)
.p2align 6
.L_4X2_loop_body:
/* We clobber r8, so store it on the stack */
movq %r8, 0(%rsp)
/* Decode 5 symbols from each of the 4 streams (20 symbols total). */
FOR_EACH_STREAM_WITH_INDEX(DECODE, 0)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 1)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 2)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 3)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 4)
/* Reload r8 */
movq 0(%rsp), %r8
FOR_EACH_STREAM(RELOAD_BITS)
cmp %op3, 48(%rsp)
ja .L_4X2_loop_body
jmp .L_4X2_compute_olimit
#undef DECODE
#undef RELOAD_BITS
.L_4X2_exit:
addq $8, %rsp
/* Restore stack (oend & olimit) */
pop %rax /* oend0 */
pop %rax /* oend1 */
pop %rax /* oend2 */
pop %rax /* oend3 */
pop %rax /* ilimit */
pop %rax /* olimit */
pop %rax /* arg */
/* Save ip / op / bits */
movq %ip0, 0(%rax)
movq %ip1, 8(%rax)
movq %ip2, 16(%rax)
movq %ip3, 24(%rax)
movq %op0, 32(%rax)
movq %op1, 40(%rax)
movq %op2, 48(%rax)
movq %op3, 56(%rax)
movq %bits0, 64(%rax)
movq %bits1, 72(%rax)
movq %bits2, 80(%rax)
movq %bits3, 88(%rax)
/* Restore registers */
pop %r15
pop %r14
pop %r13
pop %r12
pop %r11
pop %r10
pop %r9
pop %r8
pop %rdi
pop %rsi
pop %rbp
pop %rdx
pop %rcx
pop %rbx
pop %rax
ret
#endif