Introduce the concept of "target query" and "resolved target". A target
query is what the user specifies, with some things left to default. A
resolved target has the default things discovered and populated.
In the future, std.zig.CrossTarget will be rename to std.Target.Query.
Introduces `std.Build.resolveTargetQuery` to get from one to the other.
The concept of `main_mod_path` is gone, no longer supported. You have to
put the root source file at the module root now.
* remove deprecated API
* update build.zig for the breaking API changes in this branch
* move std.Build.Step.Compile.BuildId to std.zig.BuildId
* add more options to std.Build.ExecutableOptions, std.Build.ObjectOptions,
std.Build.SharedLibraryOptions, std.Build.StaticLibraryOptions, and
std.Build.TestOptions.
* remove `std.Build.constructCMacro`. There is no use for this API.
* deprecate `std.Build.Step.Compile.defineCMacro`. Instead,
`std.Build.Module.addCMacro` is provided.
- remove `std.Build.Step.Compile.defineCMacroRaw`.
* deprecate `std.Build.Step.Compile.linkFrameworkNeeded`
- use `std.Build.Module.linkFramework`
* deprecate `std.Build.Step.Compile.linkFrameworkWeak`
- use `std.Build.Module.linkFramework`
* move more logic into `std.Build.Module`
* allow `target` and `optimize` to be `null` when creating a Module.
Along with other fields, those unspecified options will be inherited
from parent `Module` when inserted into an import table.
* the `target` field of `addExecutable` is now required. pass `b.host`
to get the host target.
This commit introduces the new `ref_coerced_ty` result type into AstGen.
This represents a expression which we want to treat as an lvalue, and
the pointer will be coerced to a given type.
This change gives known result types to many expressions, in particular
struct and array initializations. This allows certain casts to work
which previously required explicitly specifying types via `@as`. It also
eliminates our dependence on anonymous struct types for expressions of
the form `&.{ ... }` - this paves the way for #16865, and also results
in less Sema magic happening for such initializations, also leading to
potentially better runtime code.
As part of these changes, this commit also implements #17194 by
disallowing RLS on explicitly-typed struct and array initializations.
Apologies for linking these changes - it seemed rather pointless to try
and separate them, since they both make big changes to struct and array
initializations in AstGen. The rationale for this change can be found in
the proposal - in essence, performing RLS whilst maintaining the
semantics of the intermediary type is a very difficult problem to solve.
This allowed the problematic `coerce_result_ptr` ZIR instruction to be
completely eliminated, which in turn also simplified the logic for
inferred allocations in Sema - thanks to this, we almost break even on
line count!
In doing this, the ZIR instructions surrounding these initializations
have been restructured - some have been added and removed, and others
renamed for clarity (and their semantics changed slightly). In order to
optimize ZIR tag count, the `struct_init_anon_ref` and
`array_init_anon_ref` instructions have been removed in favour of using
`ref` on a standard anonymous value initialization, since these
instructions are now virtually never used.
Lastly, it's worth noting that this commit introduces a slightly strange
source of generic poison types: in the expression `@as(*anyopaque, &x)`,
the sub-expression `x` has a generic poison result type, despite no
generic code being involved. This turns out to be a logical choice,
because we don't know the result type for `x`, and the generic poison
type represents precisely this case, providing the semantics we need.
Resolves: #16512Resolves: #17194
The changes to result locations and generic calls has caused mild
changes to some compile errors. Some are slightly better, some slightly
worse, but none of the changes are major.
There are now very few stage1 cases remaining:
* `cases/compile_errors/stage1/obj/*` currently don't work correctly on
stage2. There are 6 of these, and most of them are probably fairly
simple to fix.
* `cases/compile_errors/async/*` and all remaining `safety/*` depend on
async; see #6025.
Resolves: #14849
Instead of using `zig test` to build a special version of the compiler
that runs all the test-cases, the zig build system is now used as much
as possible - all with the basic steps found in the standard library.
For incremental compilation tests (the ones that look like foo.0.zig,
foo.1.zig, foo.2.zig, etc.), a special version of the compiler is
compiled into a utility executable called "check-case" which checks
exactly one sequence of incremental updates in an independent
subprocess. Previously, all incremental and non-incremental test cases
were done in the same test runner process.
The compile error checking code is now simpler, but also a bit
rudimentary, and so it additionally makes sure that the actual compile
errors do not include *extra* messages, and it makes sure that the
actual compile errors output in the same order as expected. It is also
based on the "ends-with" property of each line rather than the previous
logic, which frankly I didn't want to touch with a ten-meter pole. The
compile error test cases have been updated to pass in light of these
differences.
Previously, 'error' mode with 0 compile errors was used to shoehorn in a
different kind of test-case - one that only checks if a piece of code
compiles without errors. Now there is a 'compile' mode of test-cases,
and 'error' must be only used when there are greater than 0 errors.
link test cases are updated to omit the target object format argument
when calling checkObject since that is no longer needed.
The test/stage2 directory is removed; the 2 files within are moved to be
directly in the test/ directory.
* Scan from line start when finding tag in tokenizer
This resolves a crash that can occur for invalid bytes like carriage
returns that are valid characters when not parsed from within literals.
There are potentially other edge cases this could resolve as well, as
the calling code for this function didn't account for any potential
'pending_invalid_tokens' that could be queued up by the tokenizer from
within another state.
* Fix carriage return crash in multiline string
Follow the guidance of #38:
> However CR directly before NL is interpreted as only a newline and not part of the multiline string. zig fmt will delete the CR.
Zig fmt already had code for deleting carriage returns, but would still
crash - now it no longer does so. Carriage returns encountered before
line-feeds are now appropriately removed on program compilation as well.
* Only accept carriage returns before line feeds
Previous commit was much less strict about this, this more closely
matches the desired spec of only allow CR characters in a CRLF pair, but
not otherwise.
* Fix CR being rejected when used as whitespace
Missed this comment from ziglang/zig-spec#83:
> CR used as whitespace, whether directly preceding NL or stray, is still unambiguously whitespace. It is accepted by the grammar and replaced by the canonical whitespace by zig fmt.
* Add tests for carriage return handling
The container we want to get the fields from might not be declared in the
same file as the block we are analyzing, so we should get the AST from
the decl's file instead.
* `-Dskip-compile-errors` is removed; `-Dskip-stage1` is added.
* Use `std.testing.allocator` instead of a new instance of GPA.
- Fix the memory leaks this revealed.
* Show the file name when it is not parsed correctly such as when the
manifest is missing.
- Better error messages when test files are not parsed correctly.
* Ignore unknown files such as swap files.
* Move logic from declarative file to the test harness implementation.
* Move stage1 tests to stage2 tests where appropriate.
Some cases had to stay behind, either because they required complex case
configuration that we don't support in independent files yet, or because
they have associated comments which we don't want to lose track of.
To make sure I didn't drop any tests in the process, I logged all
obj/test/exe test cases from a run of "zig build test" and compared
before/after this change.
All of the test cases match, with two exceptions:
- "use of comptime-known undefined function value" was deleted, since
it was a duplicate
- "slice sentinel mismatch" was renamed to "vector index out of
bounds", since it was incorrectly named
This brings two quality-of-life improvements for folks working on
compile error test cases:
- test cases can be added/changed without re-building Zig
- wrapping the source in a multi-line string literal is not necessary
I decided to keep things as simple as possible for this initial
implementation. The test "manifest" is a contiguous comment block at the
end of the test file:
1. The first line is the test case name
2. The second line is a blank comment
2. The following lines are expected errors
Here's an example:
```zig
const U = union(enum(u2)) {
A: u8,
B: u8,
C: u8,
D: u8,
E: u8,
};
export fn entry() void {
_ = U{ .E = 1 };
}
// union with too small explicit unsigned tag type
//
// tmp.zig:1:22: error: specified integer tag type cannot represent every field
// tmp.zig:1:22: note: type u2 cannot fit values in range 0...4
```
The mode of the test (obj/exe/test), as well as the target
(stage1/stage2) is determined based on the directory containing the
test.
We'll probably eventually want to support embedding this information
in the test files themselves, similar to the arocc test runner, but
that enhancement can be tackled later.
The runtime behavior allowed this in both stage1 and stage2, but stage1
fails with index out of bounds during comptime. This behavior makes
sense to support, and comptime behavior should match runtime behavior. I
implement this fix only in stage2.
If a '(' is found where the continue expression was expected and it is
on the same line as the previous token issue an error about missing
colon before the continue expression.
For some errors if the found token is not on the same line as
the previous token, point to the end of the previous token.
This usually results in more helpful errors.
The main problem was that the loop body was treated as an expression
that was one of the peer result values of a loop, when in reality the
loop body is noreturn and only the `break` operands are the result
values of loops.
This was solved by introducing an override that prevents rvalue() from
emitting a store to result location instruction for loop bodies.
An orthogonal change also included in this commit is switching
`elem_val` index expressions to using `coerced_ty` and doing the
coercion to `usize` inside `Sema`, resulting in smaller ZIR (since the
cast becomes implied).
I also changed the break operand expression to use `reachableExpr`,
introducing a new compile error for double break.
This makes a few more behavior tests pass for `while` and `for` loops.
The previous commit (38b2d62092) regressed
the compile error test case for when doing saturating shift left of a
comptime-known negative RHS.
This commit additionally fixes the error for regular shifts in addition
to saturating shifts.