* Rely on libSystem when targeting macOS.
* Make tools/gen_outline_atomics.zig more idiomatic.
* Remove the CPU detection / auxval checking from compiler_rt. This
functionality belongs in a different component. Zig's compiler_rt
must not rely on constructors. Instead it will export a symbol for
setting the value, and start code can detect and activate it.
* Remove the separate logic for inline assembly when the target does or
does not have lse support. `.inst` works in both cases.
enums so that we can branch to set `link_mode` properly when we iterate
over the clang arguments. also replaced `dynamic` flag in
clang_options_data.zig with proper definition similarly to `static`."
This reverts commit 6af0eeb58d.
This change needs more careful consideration. It regressed
zig-bootstrap due to cmake passing `-static -lkernel32` and zig failing
with error.UnableToStaticLink.
See https://github.com/ziglang/zig-bootstrap/issues/134
* make the setting in the linker backend be non-optional; by this time
all defaults are supposed to be resolved.
* integrate with `zig cc`
* change the CLI parsing to match C compiler parsing, allowing
`--compress-debug-sections` alone to choose a default encoding of
zlib.
Notable changes:
`_i386`, `_i486`, and `_i686` are renamed to `i386`, `i486`,
and `i686` respectively. `std.zig.fmtId` is enhanced to support
formatting `i386` as `@"i386"`.
Some CPU features which are actually CPU models have been
properly flattened, such as `apple_a12`, `apple_a13`, `apple_a7`,
`cortex_a78c`, `exynos_m4`, `neoverse_e1`, `neoverse_n1`,
`neoverse_n2`, `neoverse_v1`.
Some CPU features have been added and some have been removed, following
LLVM's lead.
CSky CPU features support is added.
Previously, updating the `SYS` enum for each architecture required
manually looking at the syscall tables and inserting any new additions.
This commit adds a tool, `generate_linux_syscalls.zig`, that automates
this process using the syscall tables in the Linux source tree. On
architectures without a table, it runs `zig cc` as a pre-processor to
extract the system-call numbers from the Linux headers.
Rename all references of sparcv9 to sparc64, to make Zig align more with
other projects. Also, added new function to convert glibc arch name to Zig
arch name, since it refers to the architecture as sparcv9.
This is based on the suggestion by @kubkon in PR 11847.
(https://github.com/ziglang/zig/pull/11487#pullrequestreview-963761757)
This was a bit trickier than it should be due to symbol conflicts with
zig's compiler-rt implementation. We attempt to use weak linkage in
our compiler-rt, but this does not seem to be working in all cases. I
manually disabled export of the problematic compiler-rt math functions
in order to cross compile musl's libc.so for all targets as input to
`tools/gen_stubs.zig`.
Other than that, this update went fairly smoothly. Quite a few
additional symbols were added to the blacklist in `tools/gen_stubs.zig`
due to recent reorganization of zig's compiler-rt.
The spirv spec generator now also generates some support information:
Opcode gains a function to query a Zig type representing the operands
of the opcode. The idea is that this will enable a richer interface for
emitting spirv instructions.
Zig calls it aarch64. Linux calls it arm64. Currently lib/libc/include
has both arm64 and aarch64, which is quite confusing.
tools/update-linux-headers.zig was executed against the latest stable
linux patch version, therefore some other minor header updates. I will
update the wiki on how to do it once this PR is accepted.
* rename `entry` to `entry_symbol_name` for the zig build API
* integrate with `zig cc` command line options
* integrate with COFF linking with LLD
* integrate with self-hosted ELF linker
* don't put it in the hash for MachO since it is ignored
Prior to this change, even if the use specified the sysroot on the
compiler line like so
```
zig cc --sysroot=/path/to/sdk
```
it would only be used as a prefix to include paths and not as a prefix
for `zig ld` linker.
Before this commit, glibc headers did the following mapping:
* (zig) mipsel-linux-gnu => (glibc) mipsel-linux-gnu
* (zig) mipsel-linux-gnu-soft => (glibc) (none)
* (zig) mips-linux-gnu => (glibc) mips-linux-gnu
* (zig) mips-linux-gnu-soft => (glibc) (none)
While the glibc ABI stubs used the (zig) gnueabi and gnueabihf ABIs,
and the stage2 available_libcs array listed:
* (zig) mipsel-linux-gnu
* (zig) mips-linux-gnu
The problem is the mismatch between the ABI component of the headers and
the stubs.
This commit makes the following clarifications:
* (zig) mips-linux-gnueabi means soft-float
* (zig) mipsel-linux-gnueabi means soft-float
* (zig) mips-linux-gnueabihf means hard-float
* (zig) mipsel-linux-gnueabihf means hard-float
Consequently, the glibc headers now do this mapping:
* (zig) mips-linux-gnueabihf => (glibc) mips-linux-gnu
* (zig) mipsel-linux-gnueabihf => (glibc) mipsel-linux-gnu
* (zig) mips-linux-gnueabi => (glibc) mips-linux-gnu-soft
* (zig) mipsel-linux-gnueabi => (glibc) mipsel-linux-gnu-soft
The glibc ABI stubs are unchanged, and the stage2 available_libcs
array's 2 entries are modified and it gains 2 more:
* (zig) mipsel-linux-gnueabi
* (zig) mipsel-linux-gnueabihf
* (zig) mips-linux-gnueabi
* (zig) mips-linux-gnueabihf
Now everything is consistent. Zig no longer recognizes a `mips-linux-gnu`
triple; one must use `mips-linux-gnueabi` (soft float) or
`mips-linux-gnueabihf` (hard float).
This commit introduces tools/update_glibc.zig to update the start files
for next time.
Some notable changes in recent glibc:
* abi-note.S has been changed to abi-note.c but we resist the change to
keep it easier to compile the start files.
* elf-init.c has been deleted upstream. Further testing should be done
to verify that binaries against glibc omitting elf-init.c still run
properly on oldel glibc linux systems.
Closes#4926