const std = @import("std"); pub const LE = enum(i32) { Less = -1, Equal = 0, Greater = 1, const Unordered: LE = .Greater; }; pub const GE = enum(i32) { Less = -1, Equal = 0, Greater = 1, const Unordered: GE = .Less; }; pub inline fn cmpf2(comptime T: type, comptime RT: type, a: T, b: T) RT { const bits = @typeInfo(T).float.bits; const srep_t = std.meta.Int(.signed, bits); const rep_t = std.meta.Int(.unsigned, bits); const significandBits = std.math.floatMantissaBits(T); const exponentBits = std.math.floatExponentBits(T); const signBit = (@as(rep_t, 1) << (significandBits + exponentBits)); const absMask = signBit - 1; const infT = comptime std.math.inf(T); const infRep = @as(rep_t, @bitCast(infT)); const aInt = @as(srep_t, @bitCast(a)); const bInt = @as(srep_t, @bitCast(b)); const aAbs = @as(rep_t, @bitCast(aInt)) & absMask; const bAbs = @as(rep_t, @bitCast(bInt)) & absMask; // If either a or b is NaN, they are unordered. if (aAbs > infRep or bAbs > infRep) return RT.Unordered; // If a and b are both zeros, they are equal. if ((aAbs | bAbs) == 0) return .Equal; // If at least one of a and b is positive, we get the same result comparing // a and b as signed integers as we would with a floating-point compare. if ((aInt & bInt) >= 0) { if (aInt < bInt) { return .Less; } else if (aInt == bInt) { return .Equal; } else return .Greater; } else { // Otherwise, both are negative, so we need to flip the sense of the // comparison to get the correct result. (This assumes a twos- or ones- // complement integer representation; if integers are represented in a // sign-magnitude representation, then this flip is incorrect). if (aInt > bInt) { return .Less; } else if (aInt == bInt) { return .Equal; } else return .Greater; } } pub inline fn cmp_f80(comptime RT: type, a: f80, b: f80) RT { const a_rep = std.math.F80.fromFloat(a); const b_rep = std.math.F80.fromFloat(b); const sig_bits = std.math.floatMantissaBits(f80); const int_bit = 0x8000000000000000; const sign_bit = 0x8000; const special_exp = 0x7FFF; // If either a or b is NaN, they are unordered. if ((a_rep.exp & special_exp == special_exp and a_rep.fraction ^ int_bit != 0) or (b_rep.exp & special_exp == special_exp and b_rep.fraction ^ int_bit != 0)) return RT.Unordered; // If a and b are both zeros, they are equal. if ((a_rep.fraction | b_rep.fraction) | ((a_rep.exp | b_rep.exp) & special_exp) == 0) return .Equal; if (@intFromBool(a_rep.exp == b_rep.exp) & @intFromBool(a_rep.fraction == b_rep.fraction) != 0) { return .Equal; } else if (a_rep.exp & sign_bit != b_rep.exp & sign_bit) { // signs are different if (@as(i16, @bitCast(a_rep.exp)) < @as(i16, @bitCast(b_rep.exp))) { return .Less; } else { return .Greater; } } else { const a_fraction = a_rep.fraction | (@as(u80, a_rep.exp) << sig_bits); const b_fraction = b_rep.fraction | (@as(u80, b_rep.exp) << sig_bits); if ((a_fraction < b_fraction) == (a_rep.exp & sign_bit == 0)) { return .Less; } else { return .Greater; } } } test "cmp_f80" { inline for (.{ LE, GE }) |RT| { try std.testing.expect(cmp_f80(RT, 1.0, 1.0) == RT.Equal); try std.testing.expect(cmp_f80(RT, 0.0, -0.0) == RT.Equal); try std.testing.expect(cmp_f80(RT, 2.0, 4.0) == RT.Less); try std.testing.expect(cmp_f80(RT, 2.0, -4.0) == RT.Greater); try std.testing.expect(cmp_f80(RT, -2.0, -4.0) == RT.Greater); try std.testing.expect(cmp_f80(RT, -2.0, 4.0) == RT.Less); } } pub inline fn unordcmp(comptime T: type, a: T, b: T) i32 { const rep_t = std.meta.Int(.unsigned, @typeInfo(T).float.bits); const significandBits = std.math.floatMantissaBits(T); const exponentBits = std.math.floatExponentBits(T); const signBit = (@as(rep_t, 1) << (significandBits + exponentBits)); const absMask = signBit - 1; const infRep = @as(rep_t, @bitCast(std.math.inf(T))); const aAbs: rep_t = @as(rep_t, @bitCast(a)) & absMask; const bAbs: rep_t = @as(rep_t, @bitCast(b)) & absMask; return @intFromBool(aAbs > infRep or bAbs > infRep); } test { _ = @import("comparesf2_test.zig"); _ = @import("comparedf2_test.zig"); }