const std = @import("std.zig"); const builtin = @import("builtin"); const debug = std.debug; const assert = debug.assert; const math = std.math; const mem = @This(); const testing = std.testing; const Endian = std.builtin.Endian; const native_endian = builtin.cpu.arch.endian(); /// Compile time known minimum page size. /// https://github.com/ziglang/zig/issues/4082 pub const page_size = switch (builtin.cpu.arch) { .wasm32, .wasm64 => 64 * 1024, .aarch64 => switch (builtin.os.tag) { .macos, .ios, .watchos, .tvos, .visionos => 16 * 1024, else => 4 * 1024, }, .sparc64 => 8 * 1024, .loongarch32, .loongarch64 => switch (builtin.os.tag) { // Linux default KConfig value is 16KiB .linux => 16 * 1024, // FIXME: // There is no other OS supported yet. Use the same value // as Linux for now. else => 16 * 1024, }, else => 4 * 1024, }; /// The standard library currently thoroughly depends on byte size /// being 8 bits. (see the use of u8 throughout allocation code as /// the "byte" type.) Code which depends on this can reference this /// declaration. If we ever try to port the standard library to a /// non-8-bit-byte platform, this will allow us to search for things /// which need to be updated. pub const byte_size_in_bits = 8; pub const Allocator = @import("mem/Allocator.zig"); /// Detects and asserts if the std.mem.Allocator interface is violated by the caller /// or the allocator. pub fn ValidationAllocator(comptime T: type) type { return struct { const Self = @This(); underlying_allocator: T, pub fn init(underlying_allocator: T) @This() { return .{ .underlying_allocator = underlying_allocator, }; } pub fn allocator(self: *Self) Allocator { return .{ .ptr = self, .vtable = &.{ .alloc = alloc, .resize = resize, .free = free, }, }; } fn getUnderlyingAllocatorPtr(self: *Self) Allocator { if (T == Allocator) return self.underlying_allocator; return self.underlying_allocator.allocator(); } pub fn alloc( ctx: *anyopaque, n: usize, log2_ptr_align: u8, ret_addr: usize, ) ?[*]u8 { assert(n > 0); const self: *Self = @ptrCast(@alignCast(ctx)); const underlying = self.getUnderlyingAllocatorPtr(); const result = underlying.rawAlloc(n, log2_ptr_align, ret_addr) orelse return null; assert(mem.isAlignedLog2(@intFromPtr(result), log2_ptr_align)); return result; } pub fn resize( ctx: *anyopaque, buf: []u8, log2_buf_align: u8, new_len: usize, ret_addr: usize, ) bool { const self: *Self = @ptrCast(@alignCast(ctx)); assert(buf.len > 0); const underlying = self.getUnderlyingAllocatorPtr(); return underlying.rawResize(buf, log2_buf_align, new_len, ret_addr); } pub fn free( ctx: *anyopaque, buf: []u8, log2_buf_align: u8, ret_addr: usize, ) void { const self: *Self = @ptrCast(@alignCast(ctx)); assert(buf.len > 0); const underlying = self.getUnderlyingAllocatorPtr(); underlying.rawFree(buf, log2_buf_align, ret_addr); } pub fn reset(self: *Self) void { self.underlying_allocator.reset(); } }; } pub fn validationWrap(allocator: anytype) ValidationAllocator(@TypeOf(allocator)) { return ValidationAllocator(@TypeOf(allocator)).init(allocator); } /// An allocator helper function. Adjusts an allocation length satisfy `len_align`. /// `full_len` should be the full capacity of the allocation which may be greater /// than the `len` that was requested. This function should only be used by allocators /// that are unaffected by `len_align`. pub fn alignAllocLen(full_len: usize, alloc_len: usize, len_align: u29) usize { assert(alloc_len > 0); assert(alloc_len >= len_align); assert(full_len >= alloc_len); if (len_align == 0) return alloc_len; const adjusted = alignBackwardAnyAlign(usize, full_len, len_align); assert(adjusted >= alloc_len); return adjusted; } const fail_allocator = Allocator{ .ptr = undefined, .vtable = &failAllocator_vtable, }; const failAllocator_vtable = Allocator.VTable{ .alloc = failAllocatorAlloc, .resize = Allocator.noResize, .free = Allocator.noFree, }; fn failAllocatorAlloc(_: *anyopaque, n: usize, log2_alignment: u8, ra: usize) ?[*]u8 { _ = n; _ = log2_alignment; _ = ra; return null; } test "Allocator basics" { try testing.expectError(error.OutOfMemory, fail_allocator.alloc(u8, 1)); try testing.expectError(error.OutOfMemory, fail_allocator.allocSentinel(u8, 1, 0)); } test "Allocator.resize" { const primitiveIntTypes = .{ i8, u8, i16, u16, i32, u32, i64, u64, i128, u128, isize, usize, }; inline for (primitiveIntTypes) |T| { var values = try testing.allocator.alloc(T, 100); defer testing.allocator.free(values); for (values, 0..) |*v, i| v.* = @as(T, @intCast(i)); if (!testing.allocator.resize(values, values.len + 10)) return error.OutOfMemory; values = values.ptr[0 .. values.len + 10]; try testing.expect(values.len == 110); } const primitiveFloatTypes = .{ f16, f32, f64, f128, }; inline for (primitiveFloatTypes) |T| { var values = try testing.allocator.alloc(T, 100); defer testing.allocator.free(values); for (values, 0..) |*v, i| v.* = @as(T, @floatFromInt(i)); if (!testing.allocator.resize(values, values.len + 10)) return error.OutOfMemory; values = values.ptr[0 .. values.len + 10]; try testing.expect(values.len == 110); } } /// Copy all of source into dest at position 0. /// dest.len must be >= source.len. /// If the slices overlap, dest.ptr must be <= src.ptr. pub fn copyForwards(comptime T: type, dest: []T, source: []const T) void { for (dest[0..source.len], source) |*d, s| d.* = s; } /// Copy all of source into dest at position 0. /// dest.len must be >= source.len. /// If the slices overlap, dest.ptr must be >= src.ptr. pub fn copyBackwards(comptime T: type, dest: []T, source: []const T) void { // TODO instead of manually doing this check for the whole array // and turning off runtime safety, the compiler should detect loops like // this and automatically omit safety checks for loops @setRuntimeSafety(false); assert(dest.len >= source.len); var i = source.len; while (i > 0) { i -= 1; dest[i] = source[i]; } } /// Generally, Zig users are encouraged to explicitly initialize all fields of a struct explicitly rather than using this function. /// However, it is recognized that there are sometimes use cases for initializing all fields to a "zero" value. For example, when /// interfacing with a C API where this practice is more common and relied upon. If you are performing code review and see this /// function used, examine closely - it may be a code smell. /// Zero initializes the type. /// This can be used to zero-initialize any type for which it makes sense. Structs will be initialized recursively. pub fn zeroes(comptime T: type) T { switch (@typeInfo(T)) { .comptime_int, .int, .comptime_float, .float => { return @as(T, 0); }, .@"enum" => { return @as(T, @enumFromInt(0)); }, .void => { return {}; }, .bool => { return false; }, .optional, .null => { return null; }, .@"struct" => |struct_info| { if (@sizeOf(T) == 0) return undefined; if (struct_info.layout == .@"extern") { var item: T = undefined; @memset(asBytes(&item), 0); return item; } else { var structure: T = undefined; inline for (struct_info.fields) |field| { if (!field.is_comptime) { @field(structure, field.name) = zeroes(field.type); } } return structure; } }, .pointer => |ptr_info| { switch (ptr_info.size) { .Slice => { if (ptr_info.sentinel) |sentinel| { if (ptr_info.child == u8 and @as(*const u8, @ptrCast(sentinel)).* == 0) { return ""; // A special case for the most common use-case: null-terminated strings. } @compileError("Can't set a sentinel slice to zero. This would require allocating memory."); } else { return &[_]ptr_info.child{}; } }, .C => { return null; }, .One, .Many => { if (ptr_info.is_allowzero) return @ptrFromInt(0); @compileError("Only nullable and allowzero pointers can be set to zero."); }, } }, .array => |info| { if (info.sentinel) |sentinel_ptr| { const sentinel = @as(*align(1) const info.child, @ptrCast(sentinel_ptr)).*; return [_:sentinel]info.child{zeroes(info.child)} ** info.len; } return [_]info.child{zeroes(info.child)} ** info.len; }, .vector => |info| { return @splat(zeroes(info.child)); }, .@"union" => |info| { if (info.layout == .@"extern") { var item: T = undefined; @memset(asBytes(&item), 0); return item; } @compileError("Can't set a " ++ @typeName(T) ++ " to zero."); }, .enum_literal, .error_union, .error_set, .@"fn", .type, .noreturn, .undefined, .@"opaque", .frame, .@"anyframe", => { @compileError("Can't set a " ++ @typeName(T) ++ " to zero."); }, } } test zeroes { const C_struct = extern struct { x: u32, y: u32 align(128), }; var a = zeroes(C_struct); // Extern structs should have padding zeroed out. try testing.expectEqualSlices(u8, &[_]u8{0} ** @sizeOf(@TypeOf(a)), asBytes(&a)); a.y += 10; try testing.expect(a.x == 0); try testing.expect(a.y == 10); const ZigStruct = struct { comptime comptime_field: u8 = 5, integral_types: struct { integer_0: i0, integer_8: i8, integer_16: i16, integer_32: i32, integer_64: i64, integer_128: i128, unsigned_0: u0, unsigned_8: u8, unsigned_16: u16, unsigned_32: u32, unsigned_64: u64, unsigned_128: u128, float_32: f32, float_64: f64, }, pointers: struct { optional: ?*u8, c_pointer: [*c]u8, slice: []u8, nullTerminatedString: [:0]const u8, }, array: [2]u32, vector_u32: @Vector(2, u32), vector_f32: @Vector(2, f32), vector_bool: @Vector(2, bool), optional_int: ?u8, empty: void, sentinel: [3:0]u8, }; const b = zeroes(ZigStruct); try testing.expectEqual(@as(u8, 5), b.comptime_field); try testing.expectEqual(@as(i8, 0), b.integral_types.integer_0); try testing.expectEqual(@as(i8, 0), b.integral_types.integer_8); try testing.expectEqual(@as(i16, 0), b.integral_types.integer_16); try testing.expectEqual(@as(i32, 0), b.integral_types.integer_32); try testing.expectEqual(@as(i64, 0), b.integral_types.integer_64); try testing.expectEqual(@as(i128, 0), b.integral_types.integer_128); try testing.expectEqual(@as(u8, 0), b.integral_types.unsigned_0); try testing.expectEqual(@as(u8, 0), b.integral_types.unsigned_8); try testing.expectEqual(@as(u16, 0), b.integral_types.unsigned_16); try testing.expectEqual(@as(u32, 0), b.integral_types.unsigned_32); try testing.expectEqual(@as(u64, 0), b.integral_types.unsigned_64); try testing.expectEqual(@as(u128, 0), b.integral_types.unsigned_128); try testing.expectEqual(@as(f32, 0), b.integral_types.float_32); try testing.expectEqual(@as(f64, 0), b.integral_types.float_64); try testing.expectEqual(@as(?*u8, null), b.pointers.optional); try testing.expectEqual(@as([*c]u8, null), b.pointers.c_pointer); try testing.expectEqual(@as([]u8, &[_]u8{}), b.pointers.slice); try testing.expectEqual(@as([:0]const u8, ""), b.pointers.nullTerminatedString); for (b.array) |e| { try testing.expectEqual(@as(u32, 0), e); } try testing.expectEqual(@as(@TypeOf(b.vector_u32), @splat(0)), b.vector_u32); try testing.expectEqual(@as(@TypeOf(b.vector_f32), @splat(0.0)), b.vector_f32); try testing.expectEqual(@as(@TypeOf(b.vector_bool), @splat(false)), b.vector_bool); try testing.expectEqual(@as(?u8, null), b.optional_int); for (b.sentinel) |e| { try testing.expectEqual(@as(u8, 0), e); } const C_union = extern union { a: u8, b: u32, }; const c = zeroes(C_union); try testing.expectEqual(@as(u8, 0), c.a); try testing.expectEqual(@as(u32, 0), c.b); const comptime_union = comptime zeroes(C_union); try testing.expectEqual(@as(u8, 0), comptime_union.a); try testing.expectEqual(@as(u32, 0), comptime_union.b); // Ensure zero sized struct with fields is initialized correctly. _ = zeroes(struct { handle: void }); } /// Initializes all fields of the struct with their default value, or zero values if no default value is present. /// If the field is present in the provided initial values, it will have that value instead. /// Structs are initialized recursively. pub fn zeroInit(comptime T: type, init: anytype) T { const Init = @TypeOf(init); switch (@typeInfo(T)) { .@"struct" => |struct_info| { switch (@typeInfo(Init)) { .@"struct" => |init_info| { if (init_info.is_tuple) { if (init_info.fields.len > struct_info.fields.len) { @compileError("Tuple initializer has more elements than there are fields in `" ++ @typeName(T) ++ "`"); } } else { inline for (init_info.fields) |field| { if (!@hasField(T, field.name)) { @compileError("Encountered an initializer for `" ++ field.name ++ "`, but it is not a field of " ++ @typeName(T)); } } } var value: T = if (struct_info.layout == .@"extern") zeroes(T) else undefined; inline for (struct_info.fields, 0..) |field, i| { if (field.is_comptime) { continue; } if (init_info.is_tuple and init_info.fields.len > i) { @field(value, field.name) = @field(init, init_info.fields[i].name); } else if (@hasField(@TypeOf(init), field.name)) { switch (@typeInfo(field.type)) { .@"struct" => { @field(value, field.name) = zeroInit(field.type, @field(init, field.name)); }, else => { @field(value, field.name) = @field(init, field.name); }, } } else if (field.default_value) |default_value_ptr| { const default_value = @as(*align(1) const field.type, @ptrCast(default_value_ptr)).*; @field(value, field.name) = default_value; } else { switch (@typeInfo(field.type)) { .@"struct" => { @field(value, field.name) = std.mem.zeroInit(field.type, .{}); }, else => { @field(value, field.name) = std.mem.zeroes(@TypeOf(@field(value, field.name))); }, } } } return value; }, else => { @compileError("The initializer must be a struct"); }, } }, else => { @compileError("Can't default init a " ++ @typeName(T)); }, } } test zeroInit { const I = struct { d: f64, }; const S = struct { a: u32, b: ?bool, c: I, e: [3]u8, f: i64 = -1, }; const s = zeroInit(S, .{ .a = 42, }); try testing.expectEqual(S{ .a = 42, .b = null, .c = .{ .d = 0, }, .e = [3]u8{ 0, 0, 0 }, .f = -1, }, s); const Color = struct { r: u8, g: u8, b: u8, a: u8, }; const c = zeroInit(Color, .{ 255, 255 }); try testing.expectEqual(Color{ .r = 255, .g = 255, .b = 0, .a = 0, }, c); const Foo = struct { foo: u8 = 69, bar: u8, }; const f = zeroInit(Foo, .{}); try testing.expectEqual(Foo{ .foo = 69, .bar = 0, }, f); const Bar = struct { foo: u32 = 666, bar: u32 = 420, }; const b = zeroInit(Bar, .{69}); try testing.expectEqual(Bar{ .foo = 69, .bar = 420, }, b); const Baz = struct { foo: [:0]const u8 = "bar", }; const baz1 = zeroInit(Baz, .{}); try testing.expectEqual(Baz{}, baz1); const baz2 = zeroInit(Baz, .{ .foo = "zab" }); try testing.expectEqualSlices(u8, "zab", baz2.foo); const NestedBaz = struct { bbb: Baz, }; const nested_baz = zeroInit(NestedBaz, .{}); try testing.expectEqual(NestedBaz{ .bbb = Baz{}, }, nested_baz); } pub fn sort( comptime T: type, items: []T, context: anytype, comptime lessThanFn: fn (@TypeOf(context), lhs: T, rhs: T) bool, ) void { std.sort.block(T, items, context, lessThanFn); } pub fn sortUnstable( comptime T: type, items: []T, context: anytype, comptime lessThanFn: fn (@TypeOf(context), lhs: T, rhs: T) bool, ) void { std.sort.pdq(T, items, context, lessThanFn); } /// TODO: currently this just calls `insertionSortContext`. The block sort implementation /// in this file needs to be adapted to use the sort context. pub fn sortContext(a: usize, b: usize, context: anytype) void { std.sort.insertionContext(a, b, context); } pub fn sortUnstableContext(a: usize, b: usize, context: anytype) void { std.sort.pdqContext(a, b, context); } /// Compares two slices of numbers lexicographically. O(n). pub fn order(comptime T: type, lhs: []const T, rhs: []const T) math.Order { const n = @min(lhs.len, rhs.len); for (lhs[0..n], rhs[0..n]) |lhs_elem, rhs_elem| { switch (math.order(lhs_elem, rhs_elem)) { .eq => continue, .lt => return .lt, .gt => return .gt, } } return math.order(lhs.len, rhs.len); } /// Compares two many-item pointers with NUL-termination lexicographically. pub fn orderZ(comptime T: type, lhs: [*:0]const T, rhs: [*:0]const T) math.Order { var i: usize = 0; while (lhs[i] == rhs[i] and lhs[i] != 0) : (i += 1) {} return math.order(lhs[i], rhs[i]); } test order { try testing.expect(order(u8, "abcd", "bee") == .lt); try testing.expect(order(u8, "abc", "abc") == .eq); try testing.expect(order(u8, "abc", "abc0") == .lt); try testing.expect(order(u8, "", "") == .eq); try testing.expect(order(u8, "", "a") == .lt); } test orderZ { try testing.expect(orderZ(u8, "abcd", "bee") == .lt); try testing.expect(orderZ(u8, "abc", "abc") == .eq); try testing.expect(orderZ(u8, "abc", "abc0") == .lt); try testing.expect(orderZ(u8, "", "") == .eq); try testing.expect(orderZ(u8, "", "a") == .lt); } /// Returns true if lhs < rhs, false otherwise pub fn lessThan(comptime T: type, lhs: []const T, rhs: []const T) bool { return order(T, lhs, rhs) == .lt; } test lessThan { try testing.expect(lessThan(u8, "abcd", "bee")); try testing.expect(!lessThan(u8, "abc", "abc")); try testing.expect(lessThan(u8, "abc", "abc0")); try testing.expect(!lessThan(u8, "", "")); try testing.expect(lessThan(u8, "", "a")); } const eqlBytes_allowed = switch (builtin.zig_backend) { // The SPIR-V backend does not support the optimized path yet. .stage2_spirv64 => false, // The RISC-V does not support vectors. .stage2_riscv64 => false, // The naive memory comparison implementation is more useful for fuzzers to // find interesting inputs. else => !builtin.fuzz, }; /// Compares two slices and returns whether they are equal. pub fn eql(comptime T: type, a: []const T, b: []const T) bool { if (@sizeOf(T) == 0) return true; if (!@inComptime() and std.meta.hasUniqueRepresentation(T) and eqlBytes_allowed) return eqlBytes(sliceAsBytes(a), sliceAsBytes(b)); if (a.len != b.len) return false; if (a.len == 0 or a.ptr == b.ptr) return true; for (a, b) |a_elem, b_elem| { if (a_elem != b_elem) return false; } return true; } /// std.mem.eql heavily optimized for slices of bytes. fn eqlBytes(a: []const u8, b: []const u8) bool { comptime assert(eqlBytes_allowed); if (a.len != b.len) return false; if (a.len == 0 or a.ptr == b.ptr) return true; if (a.len <= 16) { if (a.len < 4) { const x = (a[0] ^ b[0]) | (a[a.len - 1] ^ b[a.len - 1]) | (a[a.len / 2] ^ b[a.len / 2]); return x == 0; } var x: u32 = 0; for ([_]usize{ 0, a.len - 4, (a.len / 8) * 4, a.len - 4 - ((a.len / 8) * 4) }) |n| { x |= @as(u32, @bitCast(a[n..][0..4].*)) ^ @as(u32, @bitCast(b[n..][0..4].*)); } return x == 0; } // Figure out the fastest way to scan through the input in chunks. // Uses vectors when supported and falls back to usize/words when not. const Scan = if (std.simd.suggestVectorLength(u8)) |vec_size| struct { pub const size = vec_size; pub const Chunk = @Vector(size, u8); pub inline fn isNotEqual(chunk_a: Chunk, chunk_b: Chunk) bool { return @reduce(.Or, chunk_a != chunk_b); } } else struct { pub const size = @sizeOf(usize); pub const Chunk = usize; pub inline fn isNotEqual(chunk_a: Chunk, chunk_b: Chunk) bool { return chunk_a != chunk_b; } }; inline for (1..6) |s| { const n = 16 << s; if (n <= Scan.size and a.len <= n) { const V = @Vector(n / 2, u8); var x = @as(V, a[0 .. n / 2].*) ^ @as(V, b[0 .. n / 2].*); x |= @as(V, a[a.len - n / 2 ..][0 .. n / 2].*) ^ @as(V, b[a.len - n / 2 ..][0 .. n / 2].*); const zero: V = @splat(0); return !@reduce(.Or, x != zero); } } // Compare inputs in chunks at a time (excluding the last chunk). for (0..(a.len - 1) / Scan.size) |i| { const a_chunk: Scan.Chunk = @bitCast(a[i * Scan.size ..][0..Scan.size].*); const b_chunk: Scan.Chunk = @bitCast(b[i * Scan.size ..][0..Scan.size].*); if (Scan.isNotEqual(a_chunk, b_chunk)) return false; } // Compare the last chunk using an overlapping read (similar to the previous size strategies). const last_a_chunk: Scan.Chunk = @bitCast(a[a.len - Scan.size ..][0..Scan.size].*); const last_b_chunk: Scan.Chunk = @bitCast(b[a.len - Scan.size ..][0..Scan.size].*); return !Scan.isNotEqual(last_a_chunk, last_b_chunk); } /// Compares two slices and returns the index of the first inequality. /// Returns null if the slices are equal. pub fn indexOfDiff(comptime T: type, a: []const T, b: []const T) ?usize { const shortest = @min(a.len, b.len); if (a.ptr == b.ptr) return if (a.len == b.len) null else shortest; var index: usize = 0; while (index < shortest) : (index += 1) if (a[index] != b[index]) return index; return if (a.len == b.len) null else shortest; } test indexOfDiff { try testing.expectEqual(indexOfDiff(u8, "one", "one"), null); try testing.expectEqual(indexOfDiff(u8, "one two", "one"), 3); try testing.expectEqual(indexOfDiff(u8, "one", "one two"), 3); try testing.expectEqual(indexOfDiff(u8, "one twx", "one two"), 6); try testing.expectEqual(indexOfDiff(u8, "xne", "one"), 0); } /// Takes a sentinel-terminated pointer and returns a slice preserving pointer attributes. /// `[*c]` pointers are assumed to be 0-terminated and assumed to not be allowzero. fn Span(comptime T: type) type { switch (@typeInfo(T)) { .optional => |optional_info| { return ?Span(optional_info.child); }, .pointer => |ptr_info| { var new_ptr_info = ptr_info; switch (ptr_info.size) { .C => { new_ptr_info.sentinel = &@as(ptr_info.child, 0); new_ptr_info.is_allowzero = false; }, .Many => if (ptr_info.sentinel == null) @compileError("invalid type given to std.mem.span: " ++ @typeName(T)), .One, .Slice => @compileError("invalid type given to std.mem.span: " ++ @typeName(T)), } new_ptr_info.size = .Slice; return @Type(.{ .pointer = new_ptr_info }); }, else => {}, } @compileError("invalid type given to std.mem.span: " ++ @typeName(T)); } test Span { try testing.expect(Span([*:1]u16) == [:1]u16); try testing.expect(Span(?[*:1]u16) == ?[:1]u16); try testing.expect(Span([*:1]const u8) == [:1]const u8); try testing.expect(Span(?[*:1]const u8) == ?[:1]const u8); try testing.expect(Span([*c]u16) == [:0]u16); try testing.expect(Span(?[*c]u16) == ?[:0]u16); try testing.expect(Span([*c]const u8) == [:0]const u8); try testing.expect(Span(?[*c]const u8) == ?[:0]const u8); } /// Takes a sentinel-terminated pointer and returns a slice, iterating over the /// memory to find the sentinel and determine the length. /// Pointer attributes such as const are preserved. /// `[*c]` pointers are assumed to be non-null and 0-terminated. pub fn span(ptr: anytype) Span(@TypeOf(ptr)) { if (@typeInfo(@TypeOf(ptr)) == .optional) { if (ptr) |non_null| { return span(non_null); } else { return null; } } const Result = Span(@TypeOf(ptr)); const l = len(ptr); const ptr_info = @typeInfo(Result).pointer; if (ptr_info.sentinel) |s_ptr| { const s = @as(*align(1) const ptr_info.child, @ptrCast(s_ptr)).*; return ptr[0..l :s]; } else { return ptr[0..l]; } } test span { var array: [5]u16 = [_]u16{ 1, 2, 3, 4, 5 }; const ptr = @as([*:3]u16, array[0..2 :3]); try testing.expect(eql(u16, span(ptr), &[_]u16{ 1, 2 })); try testing.expectEqual(@as(?[:0]u16, null), span(@as(?[*:0]u16, null))); } /// Helper for the return type of sliceTo() fn SliceTo(comptime T: type, comptime end: std.meta.Elem(T)) type { switch (@typeInfo(T)) { .optional => |optional_info| { return ?SliceTo(optional_info.child, end); }, .pointer => |ptr_info| { var new_ptr_info = ptr_info; new_ptr_info.size = .Slice; switch (ptr_info.size) { .One => switch (@typeInfo(ptr_info.child)) { .array => |array_info| { new_ptr_info.child = array_info.child; // The return type must only be sentinel terminated if we are guaranteed // to find the value searched for, which is only the case if it matches // the sentinel of the type passed. if (array_info.sentinel) |sentinel_ptr| { const sentinel = @as(*align(1) const array_info.child, @ptrCast(sentinel_ptr)).*; if (end == sentinel) { new_ptr_info.sentinel = &end; } else { new_ptr_info.sentinel = null; } } }, else => {}, }, .Many, .Slice => { // The return type must only be sentinel terminated if we are guaranteed // to find the value searched for, which is only the case if it matches // the sentinel of the type passed. if (ptr_info.sentinel) |sentinel_ptr| { const sentinel = @as(*align(1) const ptr_info.child, @ptrCast(sentinel_ptr)).*; if (end == sentinel) { new_ptr_info.sentinel = &end; } else { new_ptr_info.sentinel = null; } } }, .C => { new_ptr_info.sentinel = &end; // C pointers are always allowzero, but we don't want the return type to be. assert(new_ptr_info.is_allowzero); new_ptr_info.is_allowzero = false; }, } return @Type(.{ .pointer = new_ptr_info }); }, else => {}, } @compileError("invalid type given to std.mem.sliceTo: " ++ @typeName(T)); } /// Takes an array, a pointer to an array, a sentinel-terminated pointer, or a slice and /// iterates searching for the first occurrence of `end`, returning the scanned slice. /// If `end` is not found, the full length of the array/slice/sentinel terminated pointer is returned. /// If the pointer type is sentinel terminated and `end` matches that terminator, the /// resulting slice is also sentinel terminated. /// Pointer properties such as mutability and alignment are preserved. /// C pointers are assumed to be non-null. pub fn sliceTo(ptr: anytype, comptime end: std.meta.Elem(@TypeOf(ptr))) SliceTo(@TypeOf(ptr), end) { if (@typeInfo(@TypeOf(ptr)) == .optional) { const non_null = ptr orelse return null; return sliceTo(non_null, end); } const Result = SliceTo(@TypeOf(ptr), end); const length = lenSliceTo(ptr, end); const ptr_info = @typeInfo(Result).pointer; if (ptr_info.sentinel) |s_ptr| { const s = @as(*align(1) const ptr_info.child, @ptrCast(s_ptr)).*; return ptr[0..length :s]; } else { return ptr[0..length]; } } test sliceTo { try testing.expectEqualSlices(u8, "aoeu", sliceTo("aoeu", 0)); { var array: [5]u16 = [_]u16{ 1, 2, 3, 4, 5 }; try testing.expectEqualSlices(u16, &array, sliceTo(&array, 0)); try testing.expectEqualSlices(u16, array[0..3], sliceTo(array[0..3], 0)); try testing.expectEqualSlices(u16, array[0..2], sliceTo(&array, 3)); try testing.expectEqualSlices(u16, array[0..2], sliceTo(array[0..3], 3)); const sentinel_ptr = @as([*:5]u16, @ptrCast(&array)); try testing.expectEqualSlices(u16, array[0..2], sliceTo(sentinel_ptr, 3)); try testing.expectEqualSlices(u16, array[0..4], sliceTo(sentinel_ptr, 99)); const optional_sentinel_ptr = @as(?[*:5]u16, @ptrCast(&array)); try testing.expectEqualSlices(u16, array[0..2], sliceTo(optional_sentinel_ptr, 3).?); try testing.expectEqualSlices(u16, array[0..4], sliceTo(optional_sentinel_ptr, 99).?); const c_ptr = @as([*c]u16, &array); try testing.expectEqualSlices(u16, array[0..2], sliceTo(c_ptr, 3)); const slice: []u16 = &array; try testing.expectEqualSlices(u16, array[0..2], sliceTo(slice, 3)); try testing.expectEqualSlices(u16, &array, sliceTo(slice, 99)); const sentinel_slice: [:5]u16 = array[0..4 :5]; try testing.expectEqualSlices(u16, array[0..2], sliceTo(sentinel_slice, 3)); try testing.expectEqualSlices(u16, array[0..4], sliceTo(sentinel_slice, 99)); } { var sentinel_array: [5:0]u16 = [_:0]u16{ 1, 2, 3, 4, 5 }; try testing.expectEqualSlices(u16, sentinel_array[0..2], sliceTo(&sentinel_array, 3)); try testing.expectEqualSlices(u16, &sentinel_array, sliceTo(&sentinel_array, 0)); try testing.expectEqualSlices(u16, &sentinel_array, sliceTo(&sentinel_array, 99)); } try testing.expectEqual(@as(?[]u8, null), sliceTo(@as(?[]u8, null), 0)); } /// Private helper for sliceTo(). If you want the length, use sliceTo(foo, x).len fn lenSliceTo(ptr: anytype, comptime end: std.meta.Elem(@TypeOf(ptr))) usize { switch (@typeInfo(@TypeOf(ptr))) { .pointer => |ptr_info| switch (ptr_info.size) { .One => switch (@typeInfo(ptr_info.child)) { .array => |array_info| { if (array_info.sentinel) |sentinel_ptr| { const sentinel = @as(*align(1) const array_info.child, @ptrCast(sentinel_ptr)).*; if (sentinel == end) { return indexOfSentinel(array_info.child, end, ptr); } } return indexOfScalar(array_info.child, ptr, end) orelse array_info.len; }, else => {}, }, .Many => if (ptr_info.sentinel) |sentinel_ptr| { const sentinel = @as(*align(1) const ptr_info.child, @ptrCast(sentinel_ptr)).*; if (sentinel == end) { return indexOfSentinel(ptr_info.child, end, ptr); } // We're looking for something other than the sentinel, // but iterating past the sentinel would be a bug so we need // to check for both. var i: usize = 0; while (ptr[i] != end and ptr[i] != sentinel) i += 1; return i; }, .C => { assert(ptr != null); return indexOfSentinel(ptr_info.child, end, ptr); }, .Slice => { if (ptr_info.sentinel) |sentinel_ptr| { const sentinel = @as(*align(1) const ptr_info.child, @ptrCast(sentinel_ptr)).*; if (sentinel == end) { return indexOfSentinel(ptr_info.child, sentinel, ptr); } } return indexOfScalar(ptr_info.child, ptr, end) orelse ptr.len; }, }, else => {}, } @compileError("invalid type given to std.mem.sliceTo: " ++ @typeName(@TypeOf(ptr))); } test lenSliceTo { try testing.expect(lenSliceTo("aoeu", 0) == 4); { var array: [5]u16 = [_]u16{ 1, 2, 3, 4, 5 }; try testing.expectEqual(@as(usize, 5), lenSliceTo(&array, 0)); try testing.expectEqual(@as(usize, 3), lenSliceTo(array[0..3], 0)); try testing.expectEqual(@as(usize, 2), lenSliceTo(&array, 3)); try testing.expectEqual(@as(usize, 2), lenSliceTo(array[0..3], 3)); const sentinel_ptr = @as([*:5]u16, @ptrCast(&array)); try testing.expectEqual(@as(usize, 2), lenSliceTo(sentinel_ptr, 3)); try testing.expectEqual(@as(usize, 4), lenSliceTo(sentinel_ptr, 99)); const c_ptr = @as([*c]u16, &array); try testing.expectEqual(@as(usize, 2), lenSliceTo(c_ptr, 3)); const slice: []u16 = &array; try testing.expectEqual(@as(usize, 2), lenSliceTo(slice, 3)); try testing.expectEqual(@as(usize, 5), lenSliceTo(slice, 99)); const sentinel_slice: [:5]u16 = array[0..4 :5]; try testing.expectEqual(@as(usize, 2), lenSliceTo(sentinel_slice, 3)); try testing.expectEqual(@as(usize, 4), lenSliceTo(sentinel_slice, 99)); } { var sentinel_array: [5:0]u16 = [_:0]u16{ 1, 2, 3, 4, 5 }; try testing.expectEqual(@as(usize, 2), lenSliceTo(&sentinel_array, 3)); try testing.expectEqual(@as(usize, 5), lenSliceTo(&sentinel_array, 0)); try testing.expectEqual(@as(usize, 5), lenSliceTo(&sentinel_array, 99)); } } /// Takes a sentinel-terminated pointer and iterates over the memory to find the /// sentinel and determine the length. /// `[*c]` pointers are assumed to be non-null and 0-terminated. pub fn len(value: anytype) usize { switch (@typeInfo(@TypeOf(value))) { .pointer => |info| switch (info.size) { .Many => { const sentinel_ptr = info.sentinel orelse @compileError("invalid type given to std.mem.len: " ++ @typeName(@TypeOf(value))); const sentinel = @as(*align(1) const info.child, @ptrCast(sentinel_ptr)).*; return indexOfSentinel(info.child, sentinel, value); }, .C => { assert(value != null); return indexOfSentinel(info.child, 0, value); }, else => @compileError("invalid type given to std.mem.len: " ++ @typeName(@TypeOf(value))), }, else => @compileError("invalid type given to std.mem.len: " ++ @typeName(@TypeOf(value))), } } test len { var array: [5]u16 = [_]u16{ 1, 2, 0, 4, 5 }; const ptr = @as([*:4]u16, array[0..3 :4]); try testing.expect(len(ptr) == 3); const c_ptr = @as([*c]u16, ptr); try testing.expect(len(c_ptr) == 2); } const backend_supports_vectors = switch (builtin.zig_backend) { .stage2_llvm, .stage2_c => true, else => false, }; pub fn indexOfSentinel(comptime T: type, comptime sentinel: T, p: [*:sentinel]const T) usize { var i: usize = 0; if (backend_supports_vectors and !std.debug.inValgrind() and // https://github.com/ziglang/zig/issues/17717 !@inComptime() and (@typeInfo(T) == .int or @typeInfo(T) == .float) and std.math.isPowerOfTwo(@bitSizeOf(T))) { switch (@import("builtin").cpu.arch) { // The below branch assumes that reading past the end of the buffer is valid, as long // as we don't read into a new page. This should be the case for most architectures // which use paged memory, however should be confirmed before adding a new arch below. .aarch64, .x86, .x86_64 => if (std.simd.suggestVectorLength(T)) |block_len| { const block_size = @sizeOf(T) * block_len; const Block = @Vector(block_len, T); const mask: Block = @splat(sentinel); comptime std.debug.assert(std.mem.page_size % block_size == 0); // First block may be unaligned const start_addr = @intFromPtr(&p[i]); const offset_in_page = start_addr & (std.mem.page_size - 1); if (offset_in_page <= std.mem.page_size - block_size) { // Will not read past the end of a page, full block. const block: Block = p[i..][0..block_len].*; const matches = block == mask; if (@reduce(.Or, matches)) { return i + std.simd.firstTrue(matches).?; } i += @divExact(std.mem.alignForward(usize, start_addr, block_size) - start_addr, @sizeOf(T)); } else { // Would read over a page boundary. Per-byte at a time until aligned or found. // 0.39% chance this branch is taken for 4K pages at 16b block length. // // An alternate strategy is to do read a full block (the last in the page) and // mask the entries before the pointer. while ((@intFromPtr(&p[i]) & (block_size - 1)) != 0) : (i += 1) { if (p[i] == sentinel) return i; } } std.debug.assert(std.mem.isAligned(@intFromPtr(&p[i]), block_size)); while (true) { const block: *const Block = @ptrCast(@alignCast(p[i..][0..block_len])); const matches = block.* == mask; if (@reduce(.Or, matches)) { return i + std.simd.firstTrue(matches).?; } i += block_len; } }, else => {}, } } while (p[i] != sentinel) { i += 1; } return i; } test "indexOfSentinel vector paths" { const Types = [_]type{ u8, u16, u32, u64 }; const allocator = std.testing.allocator; inline for (Types) |T| { const block_len = std.simd.suggestVectorLength(T) orelse continue; // Allocate three pages so we guarantee a page-crossing address with a full page after const memory = try allocator.alloc(T, 3 * std.mem.page_size / @sizeOf(T)); defer allocator.free(memory); @memset(memory, 0xaa); // Find starting page-alignment = 0 var start: usize = 0; const start_addr = @intFromPtr(&memory); start += (std.mem.alignForward(usize, start_addr, std.mem.page_size) - start_addr) / @sizeOf(T); try testing.expect(start < std.mem.page_size / @sizeOf(T)); // Validate all sub-block alignments const search_len = std.mem.page_size / @sizeOf(T); memory[start + search_len] = 0; for (0..block_len) |offset| { try testing.expectEqual(search_len - offset, indexOfSentinel(T, 0, @ptrCast(&memory[start + offset]))); } memory[start + search_len] = 0xaa; // Validate page boundary crossing const start_page_boundary = start + (std.mem.page_size / @sizeOf(T)); memory[start_page_boundary + block_len] = 0; for (0..block_len) |offset| { try testing.expectEqual(2 * block_len - offset, indexOfSentinel(T, 0, @ptrCast(&memory[start_page_boundary - block_len + offset]))); } } } /// Returns true if all elements in a slice are equal to the scalar value provided pub fn allEqual(comptime T: type, slice: []const T, scalar: T) bool { for (slice) |item| { if (item != scalar) return false; } return true; } /// Remove a set of values from the beginning of a slice. pub fn trimLeft(comptime T: type, slice: []const T, values_to_strip: []const T) []const T { var begin: usize = 0; while (begin < slice.len and indexOfScalar(T, values_to_strip, slice[begin]) != null) : (begin += 1) {} return slice[begin..]; } /// Remove a set of values from the end of a slice. pub fn trimRight(comptime T: type, slice: []const T, values_to_strip: []const T) []const T { var end: usize = slice.len; while (end > 0 and indexOfScalar(T, values_to_strip, slice[end - 1]) != null) : (end -= 1) {} return slice[0..end]; } /// Remove a set of values from the beginning and end of a slice. pub fn trim(comptime T: type, slice: []const T, values_to_strip: []const T) []const T { var begin: usize = 0; var end: usize = slice.len; while (begin < end and indexOfScalar(T, values_to_strip, slice[begin]) != null) : (begin += 1) {} while (end > begin and indexOfScalar(T, values_to_strip, slice[end - 1]) != null) : (end -= 1) {} return slice[begin..end]; } test trim { try testing.expectEqualSlices(u8, "foo\n ", trimLeft(u8, " foo\n ", " \n")); try testing.expectEqualSlices(u8, " foo", trimRight(u8, " foo\n ", " \n")); try testing.expectEqualSlices(u8, "foo", trim(u8, " foo\n ", " \n")); try testing.expectEqualSlices(u8, "foo", trim(u8, "foo", " \n")); } /// Linear search for the index of a scalar value inside a slice. pub fn indexOfScalar(comptime T: type, slice: []const T, value: T) ?usize { return indexOfScalarPos(T, slice, 0, value); } /// Linear search for the last index of a scalar value inside a slice. pub fn lastIndexOfScalar(comptime T: type, slice: []const T, value: T) ?usize { var i: usize = slice.len; while (i != 0) { i -= 1; if (slice[i] == value) return i; } return null; } pub fn indexOfScalarPos(comptime T: type, slice: []const T, start_index: usize, value: T) ?usize { if (start_index >= slice.len) return null; var i: usize = start_index; if (backend_supports_vectors and !std.debug.inValgrind() and // https://github.com/ziglang/zig/issues/17717 !@inComptime() and (@typeInfo(T) == .int or @typeInfo(T) == .float) and std.math.isPowerOfTwo(@bitSizeOf(T))) { if (std.simd.suggestVectorLength(T)) |block_len| { // For Intel Nehalem (2009) and AMD Bulldozer (2012) or later, unaligned loads on aligned data result // in the same execution as aligned loads. We ignore older arch's here and don't bother pre-aligning. // // Use `std.simd.suggestVectorLength(T)` to get the same alignment as used in this function // however this usually isn't necessary unless your arch has a performance penalty due to this. // // This may differ for other arch's. Arm for example costs a cycle when loading across a cache // line so explicit alignment prologues may be worth exploration. // Unrolling here is ~10% improvement. We can then do one bounds check every 2 blocks // instead of one which adds up. const Block = @Vector(block_len, T); if (i + 2 * block_len < slice.len) { const mask: Block = @splat(value); while (true) { inline for (0..2) |_| { const block: Block = slice[i..][0..block_len].*; const matches = block == mask; if (@reduce(.Or, matches)) { return i + std.simd.firstTrue(matches).?; } i += block_len; } if (i + 2 * block_len >= slice.len) break; } } // {block_len, block_len / 2} check inline for (0..2) |j| { const block_x_len = block_len / (1 << j); comptime if (block_x_len < 4) break; const BlockX = @Vector(block_x_len, T); if (i + block_x_len < slice.len) { const mask: BlockX = @splat(value); const block: BlockX = slice[i..][0..block_x_len].*; const matches = block == mask; if (@reduce(.Or, matches)) { return i + std.simd.firstTrue(matches).?; } i += block_x_len; } } } } for (slice[i..], i..) |c, j| { if (c == value) return j; } return null; } test indexOfScalarPos { const Types = [_]type{ u8, u16, u32, u64 }; inline for (Types) |T| { var memory: [64 / @sizeOf(T)]T = undefined; @memset(&memory, 0xaa); memory[memory.len - 1] = 0; for (0..memory.len) |i| { try testing.expectEqual(memory.len - i - 1, indexOfScalarPos(T, memory[i..], 0, 0).?); } } } pub fn indexOfAny(comptime T: type, slice: []const T, values: []const T) ?usize { return indexOfAnyPos(T, slice, 0, values); } pub fn lastIndexOfAny(comptime T: type, slice: []const T, values: []const T) ?usize { var i: usize = slice.len; while (i != 0) { i -= 1; for (values) |value| { if (slice[i] == value) return i; } } return null; } pub fn indexOfAnyPos(comptime T: type, slice: []const T, start_index: usize, values: []const T) ?usize { if (start_index >= slice.len) return null; for (slice[start_index..], start_index..) |c, i| { for (values) |value| { if (c == value) return i; } } return null; } /// Find the first item in `slice` which is not contained in `values`. /// /// Comparable to `strspn` in the C standard library. pub fn indexOfNone(comptime T: type, slice: []const T, values: []const T) ?usize { return indexOfNonePos(T, slice, 0, values); } /// Find the last item in `slice` which is not contained in `values`. /// /// Like `strspn` in the C standard library, but searches from the end. pub fn lastIndexOfNone(comptime T: type, slice: []const T, values: []const T) ?usize { var i: usize = slice.len; outer: while (i != 0) { i -= 1; for (values) |value| { if (slice[i] == value) continue :outer; } return i; } return null; } /// Find the first item in `slice[start_index..]` which is not contained in `values`. /// The returned index will be relative to the start of `slice`, and never less than `start_index`. /// /// Comparable to `strspn` in the C standard library. pub fn indexOfNonePos(comptime T: type, slice: []const T, start_index: usize, values: []const T) ?usize { if (start_index >= slice.len) return null; outer: for (slice[start_index..], start_index..) |c, i| { for (values) |value| { if (c == value) continue :outer; } return i; } return null; } test indexOfNone { try testing.expect(indexOfNone(u8, "abc123", "123").? == 0); try testing.expect(lastIndexOfNone(u8, "abc123", "123").? == 2); try testing.expect(indexOfNone(u8, "123abc", "123").? == 3); try testing.expect(lastIndexOfNone(u8, "123abc", "123").? == 5); try testing.expect(indexOfNone(u8, "123123", "123") == null); try testing.expect(indexOfNone(u8, "333333", "123") == null); try testing.expect(indexOfNonePos(u8, "abc123", 3, "321") == null); } pub fn indexOf(comptime T: type, haystack: []const T, needle: []const T) ?usize { return indexOfPos(T, haystack, 0, needle); } /// Find the index in a slice of a sub-slice, searching from the end backwards. /// To start looking at a different index, slice the haystack first. /// Consider using `lastIndexOf` instead of this, which will automatically use a /// more sophisticated algorithm on larger inputs. pub fn lastIndexOfLinear(comptime T: type, haystack: []const T, needle: []const T) ?usize { var i: usize = haystack.len - needle.len; while (true) : (i -= 1) { if (mem.eql(T, haystack[i..][0..needle.len], needle)) return i; if (i == 0) return null; } } /// Consider using `indexOfPos` instead of this, which will automatically use a /// more sophisticated algorithm on larger inputs. pub fn indexOfPosLinear(comptime T: type, haystack: []const T, start_index: usize, needle: []const T) ?usize { if (needle.len > haystack.len) return null; var i: usize = start_index; const end = haystack.len - needle.len; while (i <= end) : (i += 1) { if (eql(T, haystack[i..][0..needle.len], needle)) return i; } return null; } test indexOfPosLinear { try testing.expectEqual(0, indexOfPosLinear(u8, "", 0, "")); try testing.expectEqual(0, indexOfPosLinear(u8, "123", 0, "")); try testing.expectEqual(null, indexOfPosLinear(u8, "", 0, "1")); try testing.expectEqual(0, indexOfPosLinear(u8, "1", 0, "1")); try testing.expectEqual(null, indexOfPosLinear(u8, "2", 0, "1")); try testing.expectEqual(1, indexOfPosLinear(u8, "21", 0, "1")); try testing.expectEqual(null, indexOfPosLinear(u8, "222", 0, "1")); try testing.expectEqual(null, indexOfPosLinear(u8, "", 0, "12")); try testing.expectEqual(null, indexOfPosLinear(u8, "1", 0, "12")); try testing.expectEqual(null, indexOfPosLinear(u8, "2", 0, "12")); try testing.expectEqual(0, indexOfPosLinear(u8, "12", 0, "12")); try testing.expectEqual(null, indexOfPosLinear(u8, "21", 0, "12")); try testing.expectEqual(1, indexOfPosLinear(u8, "212", 0, "12")); try testing.expectEqual(0, indexOfPosLinear(u8, "122", 0, "12")); try testing.expectEqual(1, indexOfPosLinear(u8, "212112", 0, "12")); } fn boyerMooreHorspoolPreprocessReverse(pattern: []const u8, table: *[256]usize) void { for (table) |*c| { c.* = pattern.len; } var i: usize = pattern.len - 1; // The first item is intentionally ignored and the skip size will be pattern.len. // This is the standard way Boyer-Moore-Horspool is implemented. while (i > 0) : (i -= 1) { table[pattern[i]] = i; } } fn boyerMooreHorspoolPreprocess(pattern: []const u8, table: *[256]usize) void { for (table) |*c| { c.* = pattern.len; } var i: usize = 0; // The last item is intentionally ignored and the skip size will be pattern.len. // This is the standard way Boyer-Moore-Horspool is implemented. while (i < pattern.len - 1) : (i += 1) { table[pattern[i]] = pattern.len - 1 - i; } } /// Find the index in a slice of a sub-slice, searching from the end backwards. /// To start looking at a different index, slice the haystack first. /// Uses the Reverse Boyer-Moore-Horspool algorithm on large inputs; /// `lastIndexOfLinear` on small inputs. pub fn lastIndexOf(comptime T: type, haystack: []const T, needle: []const T) ?usize { if (needle.len > haystack.len) return null; if (needle.len == 0) return haystack.len; if (!std.meta.hasUniqueRepresentation(T) or haystack.len < 52 or needle.len <= 4) return lastIndexOfLinear(T, haystack, needle); const haystack_bytes = sliceAsBytes(haystack); const needle_bytes = sliceAsBytes(needle); var skip_table: [256]usize = undefined; boyerMooreHorspoolPreprocessReverse(needle_bytes, skip_table[0..]); var i: usize = haystack_bytes.len - needle_bytes.len; while (true) { if (i % @sizeOf(T) == 0 and mem.eql(u8, haystack_bytes[i .. i + needle_bytes.len], needle_bytes)) { return @divExact(i, @sizeOf(T)); } const skip = skip_table[haystack_bytes[i]]; if (skip > i) break; i -= skip; } return null; } /// Uses Boyer-Moore-Horspool algorithm on large inputs; `indexOfPosLinear` on small inputs. pub fn indexOfPos(comptime T: type, haystack: []const T, start_index: usize, needle: []const T) ?usize { if (needle.len > haystack.len) return null; if (needle.len < 2) { if (needle.len == 0) return start_index; // indexOfScalarPos is significantly faster than indexOfPosLinear return indexOfScalarPos(T, haystack, start_index, needle[0]); } if (!std.meta.hasUniqueRepresentation(T) or haystack.len < 52 or needle.len <= 4) return indexOfPosLinear(T, haystack, start_index, needle); const haystack_bytes = sliceAsBytes(haystack); const needle_bytes = sliceAsBytes(needle); var skip_table: [256]usize = undefined; boyerMooreHorspoolPreprocess(needle_bytes, skip_table[0..]); var i: usize = start_index * @sizeOf(T); while (i <= haystack_bytes.len - needle_bytes.len) { if (i % @sizeOf(T) == 0 and mem.eql(u8, haystack_bytes[i .. i + needle_bytes.len], needle_bytes)) { return @divExact(i, @sizeOf(T)); } i += skip_table[haystack_bytes[i + needle_bytes.len - 1]]; } return null; } test indexOf { try testing.expect(indexOf(u8, "one two three four five six seven eight nine ten eleven", "three four").? == 8); try testing.expect(lastIndexOf(u8, "one two three four five six seven eight nine ten eleven", "three four").? == 8); try testing.expect(indexOf(u8, "one two three four five six seven eight nine ten eleven", "two two") == null); try testing.expect(lastIndexOf(u8, "one two three four five six seven eight nine ten eleven", "two two") == null); try testing.expect(indexOf(u8, "one two three four five six seven eight nine ten", "").? == 0); try testing.expect(lastIndexOf(u8, "one two three four five six seven eight nine ten", "").? == 48); try testing.expect(indexOf(u8, "one two three four", "four").? == 14); try testing.expect(lastIndexOf(u8, "one two three two four", "two").? == 14); try testing.expect(indexOf(u8, "one two three four", "gour") == null); try testing.expect(lastIndexOf(u8, "one two three four", "gour") == null); try testing.expect(indexOf(u8, "foo", "foo").? == 0); try testing.expect(lastIndexOf(u8, "foo", "foo").? == 0); try testing.expect(indexOf(u8, "foo", "fool") == null); try testing.expect(lastIndexOf(u8, "foo", "lfoo") == null); try testing.expect(lastIndexOf(u8, "foo", "fool") == null); try testing.expect(indexOf(u8, "foo foo", "foo").? == 0); try testing.expect(lastIndexOf(u8, "foo foo", "foo").? == 4); try testing.expect(lastIndexOfAny(u8, "boo, cat", "abo").? == 6); try testing.expect(lastIndexOfScalar(u8, "boo", 'o').? == 2); } test "indexOf multibyte" { { // make haystack and needle long enough to trigger Boyer-Moore-Horspool algorithm const haystack = [1]u16{0} ** 100 ++ [_]u16{ 0xbbaa, 0xccbb, 0xddcc, 0xeedd, 0xffee, 0x00ff }; const needle = [_]u16{ 0xbbaa, 0xccbb, 0xddcc, 0xeedd, 0xffee }; try testing.expectEqual(indexOfPos(u16, &haystack, 0, &needle), 100); // check for misaligned false positives (little and big endian) const needleLE = [_]u16{ 0xbbbb, 0xcccc, 0xdddd, 0xeeee, 0xffff }; try testing.expectEqual(indexOfPos(u16, &haystack, 0, &needleLE), null); const needleBE = [_]u16{ 0xaacc, 0xbbdd, 0xccee, 0xddff, 0xee00 }; try testing.expectEqual(indexOfPos(u16, &haystack, 0, &needleBE), null); } { // make haystack and needle long enough to trigger Boyer-Moore-Horspool algorithm const haystack = [_]u16{ 0xbbaa, 0xccbb, 0xddcc, 0xeedd, 0xffee, 0x00ff } ++ [1]u16{0} ** 100; const needle = [_]u16{ 0xbbaa, 0xccbb, 0xddcc, 0xeedd, 0xffee }; try testing.expectEqual(lastIndexOf(u16, &haystack, &needle), 0); // check for misaligned false positives (little and big endian) const needleLE = [_]u16{ 0xbbbb, 0xcccc, 0xdddd, 0xeeee, 0xffff }; try testing.expectEqual(lastIndexOf(u16, &haystack, &needleLE), null); const needleBE = [_]u16{ 0xaacc, 0xbbdd, 0xccee, 0xddff, 0xee00 }; try testing.expectEqual(lastIndexOf(u16, &haystack, &needleBE), null); } } test "indexOfPos empty needle" { try testing.expectEqual(indexOfPos(u8, "abracadabra", 5, ""), 5); } /// Returns the number of needles inside the haystack /// needle.len must be > 0 /// does not count overlapping needles pub fn count(comptime T: type, haystack: []const T, needle: []const T) usize { assert(needle.len > 0); var i: usize = 0; var found: usize = 0; while (indexOfPos(T, haystack, i, needle)) |idx| { i = idx + needle.len; found += 1; } return found; } test count { try testing.expect(count(u8, "", "h") == 0); try testing.expect(count(u8, "h", "h") == 1); try testing.expect(count(u8, "hh", "h") == 2); try testing.expect(count(u8, "world!", "hello") == 0); try testing.expect(count(u8, "hello world!", "hello") == 1); try testing.expect(count(u8, " abcabc abc", "abc") == 3); try testing.expect(count(u8, "udexdcbvbruhasdrw", "bruh") == 1); try testing.expect(count(u8, "foo bar", "o bar") == 1); try testing.expect(count(u8, "foofoofoo", "foo") == 3); try testing.expect(count(u8, "fffffff", "ff") == 3); try testing.expect(count(u8, "owowowu", "owowu") == 1); } /// Returns true if the haystack contains expected_count or more needles /// needle.len must be > 0 /// does not count overlapping needles pub fn containsAtLeast(comptime T: type, haystack: []const T, expected_count: usize, needle: []const T) bool { assert(needle.len > 0); if (expected_count == 0) return true; var i: usize = 0; var found: usize = 0; while (indexOfPos(T, haystack, i, needle)) |idx| { i = idx + needle.len; found += 1; if (found == expected_count) return true; } return false; } test containsAtLeast { try testing.expect(containsAtLeast(u8, "aa", 0, "a")); try testing.expect(containsAtLeast(u8, "aa", 1, "a")); try testing.expect(containsAtLeast(u8, "aa", 2, "a")); try testing.expect(!containsAtLeast(u8, "aa", 3, "a")); try testing.expect(containsAtLeast(u8, "radaradar", 1, "radar")); try testing.expect(!containsAtLeast(u8, "radaradar", 2, "radar")); try testing.expect(containsAtLeast(u8, "radarradaradarradar", 3, "radar")); try testing.expect(!containsAtLeast(u8, "radarradaradarradar", 4, "radar")); try testing.expect(containsAtLeast(u8, " radar radar ", 2, "radar")); try testing.expect(!containsAtLeast(u8, " radar radar ", 3, "radar")); } /// Reads an integer from memory with size equal to bytes.len. /// T specifies the return type, which must be large enough to store /// the result. pub fn readVarInt(comptime ReturnType: type, bytes: []const u8, endian: Endian) ReturnType { assert(@typeInfo(ReturnType).int.bits >= bytes.len * 8); const bits = @typeInfo(ReturnType).int.bits; const signedness = @typeInfo(ReturnType).int.signedness; const WorkType = std.meta.Int(signedness, @max(16, bits)); var result: WorkType = 0; switch (endian) { .big => { for (bytes) |b| { result = (result << 8) | b; } }, .little => { const ShiftType = math.Log2Int(WorkType); for (bytes, 0..) |b, index| { result = result | (@as(WorkType, b) << @as(ShiftType, @intCast(index * 8))); } }, } return @as(ReturnType, @truncate(result)); } test readVarInt { try testing.expect(readVarInt(u0, &[_]u8{}, .big) == 0x0); try testing.expect(readVarInt(u0, &[_]u8{}, .little) == 0x0); try testing.expect(readVarInt(u8, &[_]u8{0x12}, .big) == 0x12); try testing.expect(readVarInt(u8, &[_]u8{0xde}, .little) == 0xde); try testing.expect(readVarInt(u16, &[_]u8{ 0x12, 0x34 }, .big) == 0x1234); try testing.expect(readVarInt(u16, &[_]u8{ 0x12, 0x34 }, .little) == 0x3412); try testing.expect(readVarInt(i8, &[_]u8{0xff}, .big) == -1); try testing.expect(readVarInt(i8, &[_]u8{0xfe}, .little) == -2); try testing.expect(readVarInt(i16, &[_]u8{ 0xff, 0xfd }, .big) == -3); try testing.expect(readVarInt(i16, &[_]u8{ 0xfc, 0xff }, .little) == -4); // Return type can be oversized (bytes.len * 8 < @typeInfo(ReturnType).int.bits) try testing.expect(readVarInt(u9, &[_]u8{0x12}, .little) == 0x12); try testing.expect(readVarInt(u9, &[_]u8{0xde}, .big) == 0xde); try testing.expect(readVarInt(u80, &[_]u8{ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x24 }, .big) == 0x123456789abcdef024); try testing.expect(readVarInt(u80, &[_]u8{ 0xec, 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe }, .little) == 0xfedcba9876543210ec); try testing.expect(readVarInt(i9, &[_]u8{0xff}, .big) == 0xff); try testing.expect(readVarInt(i9, &[_]u8{0xfe}, .little) == 0xfe); } /// Loads an integer from packed memory with provided bit_count, bit_offset, and signedness. /// Asserts that T is large enough to store the read value. pub fn readVarPackedInt( comptime T: type, bytes: []const u8, bit_offset: usize, bit_count: usize, endian: std.builtin.Endian, signedness: std.builtin.Signedness, ) T { const uN = std.meta.Int(.unsigned, @bitSizeOf(T)); const iN = std.meta.Int(.signed, @bitSizeOf(T)); const Log2N = std.math.Log2Int(T); const read_size = (bit_count + (bit_offset % 8) + 7) / 8; const bit_shift = @as(u3, @intCast(bit_offset % 8)); const pad = @as(Log2N, @intCast(@bitSizeOf(T) - bit_count)); const lowest_byte = switch (endian) { .big => bytes.len - (bit_offset / 8) - read_size, .little => bit_offset / 8, }; const read_bytes = bytes[lowest_byte..][0..read_size]; if (@bitSizeOf(T) <= 8) { // These are the same shifts/masks we perform below, but adds `@truncate`/`@intCast` // where needed since int is smaller than a byte. const value = if (read_size == 1) b: { break :b @as(uN, @truncate(read_bytes[0] >> bit_shift)); } else b: { const i: u1 = @intFromBool(endian == .big); const head = @as(uN, @truncate(read_bytes[i] >> bit_shift)); const tail_shift = @as(Log2N, @intCast(@as(u4, 8) - bit_shift)); const tail = @as(uN, @truncate(read_bytes[1 - i])); break :b (tail << tail_shift) | head; }; switch (signedness) { .signed => return @as(T, @intCast((@as(iN, @bitCast(value)) << pad) >> pad)), .unsigned => return @as(T, @intCast((@as(uN, @bitCast(value)) << pad) >> pad)), } } // Copy the value out (respecting endianness), accounting for bit_shift var int: uN = 0; switch (endian) { .big => { for (read_bytes[0 .. read_size - 1]) |elem| { int = elem | (int << 8); } int = (read_bytes[read_size - 1] >> bit_shift) | (int << (@as(u4, 8) - bit_shift)); }, .little => { int = read_bytes[0] >> bit_shift; for (read_bytes[1..], 0..) |elem, i| { int |= (@as(uN, elem) << @as(Log2N, @intCast((8 * (i + 1) - bit_shift)))); } }, } switch (signedness) { .signed => return @as(T, @intCast((@as(iN, @bitCast(int)) << pad) >> pad)), .unsigned => return @as(T, @intCast((@as(uN, @bitCast(int)) << pad) >> pad)), } } test readVarPackedInt { const T = packed struct(u16) { a: u3, b: u7, c: u6 }; var st = T{ .a = 1, .b = 2, .c = 4 }; const b_field = readVarPackedInt(u64, std.mem.asBytes(&st), @bitOffsetOf(T, "b"), 7, builtin.cpu.arch.endian(), .unsigned); try std.testing.expectEqual(st.b, b_field); } /// Reads an integer from memory with bit count specified by T. /// The bit count of T must be evenly divisible by 8. /// This function cannot fail and cannot cause undefined behavior. pub inline fn readInt(comptime T: type, buffer: *const [@divExact(@typeInfo(T).int.bits, 8)]u8, endian: Endian) T { const value: T = @bitCast(buffer.*); return if (endian == native_endian) value else @byteSwap(value); } test readInt { try testing.expect(readInt(u0, &[_]u8{}, .big) == 0x0); try testing.expect(readInt(u0, &[_]u8{}, .little) == 0x0); try testing.expect(readInt(u8, &[_]u8{0x32}, .big) == 0x32); try testing.expect(readInt(u8, &[_]u8{0x12}, .little) == 0x12); try testing.expect(readInt(u16, &[_]u8{ 0x12, 0x34 }, .big) == 0x1234); try testing.expect(readInt(u16, &[_]u8{ 0x12, 0x34 }, .little) == 0x3412); try testing.expect(readInt(u72, &[_]u8{ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x24 }, .big) == 0x123456789abcdef024); try testing.expect(readInt(u72, &[_]u8{ 0xec, 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe }, .little) == 0xfedcba9876543210ec); try testing.expect(readInt(i8, &[_]u8{0xff}, .big) == -1); try testing.expect(readInt(i8, &[_]u8{0xfe}, .little) == -2); try testing.expect(readInt(i16, &[_]u8{ 0xff, 0xfd }, .big) == -3); try testing.expect(readInt(i16, &[_]u8{ 0xfc, 0xff }, .little) == -4); try moreReadIntTests(); try comptime moreReadIntTests(); } fn readPackedIntLittle(comptime T: type, bytes: []const u8, bit_offset: usize) T { const uN = std.meta.Int(.unsigned, @bitSizeOf(T)); const Log2N = std.math.Log2Int(T); const bit_count = @as(usize, @bitSizeOf(T)); const bit_shift = @as(u3, @intCast(bit_offset % 8)); const load_size = (bit_count + 7) / 8; const load_tail_bits = @as(u3, @intCast((load_size * 8) - bit_count)); const LoadInt = std.meta.Int(.unsigned, load_size * 8); if (bit_count == 0) return 0; // Read by loading a LoadInt, and then follow it up with a 1-byte read // of the tail if bit_offset pushed us over a byte boundary. const read_bytes = bytes[bit_offset / 8 ..]; const val = @as(uN, @truncate(readInt(LoadInt, read_bytes[0..load_size], .little) >> bit_shift)); if (bit_shift > load_tail_bits) { const tail_bits = @as(Log2N, @intCast(bit_shift - load_tail_bits)); const tail_byte = read_bytes[load_size]; const tail_truncated = if (bit_count < 8) @as(uN, @truncate(tail_byte)) else @as(uN, tail_byte); return @as(T, @bitCast(val | (tail_truncated << (@as(Log2N, @truncate(bit_count)) -% tail_bits)))); } else return @as(T, @bitCast(val)); } fn readPackedIntBig(comptime T: type, bytes: []const u8, bit_offset: usize) T { const uN = std.meta.Int(.unsigned, @bitSizeOf(T)); const Log2N = std.math.Log2Int(T); const bit_count = @as(usize, @bitSizeOf(T)); const bit_shift = @as(u3, @intCast(bit_offset % 8)); const byte_count = (@as(usize, bit_shift) + bit_count + 7) / 8; const load_size = (bit_count + 7) / 8; const load_tail_bits = @as(u3, @intCast((load_size * 8) - bit_count)); const LoadInt = std.meta.Int(.unsigned, load_size * 8); if (bit_count == 0) return 0; // Read by loading a LoadInt, and then follow it up with a 1-byte read // of the tail if bit_offset pushed us over a byte boundary. const end = bytes.len - (bit_offset / 8); const read_bytes = bytes[(end - byte_count)..end]; const val = @as(uN, @truncate(readInt(LoadInt, bytes[(end - load_size)..end][0..load_size], .big) >> bit_shift)); if (bit_shift > load_tail_bits) { const tail_bits = @as(Log2N, @intCast(bit_shift - load_tail_bits)); const tail_byte = if (bit_count < 8) @as(uN, @truncate(read_bytes[0])) else @as(uN, read_bytes[0]); return @as(T, @bitCast(val | (tail_byte << (@as(Log2N, @truncate(bit_count)) -% tail_bits)))); } else return @as(T, @bitCast(val)); } pub const readPackedIntNative = switch (native_endian) { .little => readPackedIntLittle, .big => readPackedIntBig, }; pub const readPackedIntForeign = switch (native_endian) { .little => readPackedIntBig, .big => readPackedIntLittle, }; /// Loads an integer from packed memory. /// Asserts that buffer contains at least bit_offset + @bitSizeOf(T) bits. pub fn readPackedInt(comptime T: type, bytes: []const u8, bit_offset: usize, endian: Endian) T { switch (endian) { .little => return readPackedIntLittle(T, bytes, bit_offset), .big => return readPackedIntBig(T, bytes, bit_offset), } } test readPackedInt { const T = packed struct(u16) { a: u3, b: u7, c: u6 }; var st = T{ .a = 1, .b = 2, .c = 4 }; const b_field = readPackedInt(u7, std.mem.asBytes(&st), @bitOffsetOf(T, "b"), builtin.cpu.arch.endian()); try std.testing.expectEqual(st.b, b_field); } test "comptime read/write int" { comptime { var bytes: [2]u8 = undefined; writeInt(u16, &bytes, 0x1234, .little); const result = readInt(u16, &bytes, .big); try testing.expect(result == 0x3412); } comptime { var bytes: [2]u8 = undefined; writeInt(u16, &bytes, 0x1234, .big); const result = readInt(u16, &bytes, .little); try testing.expect(result == 0x3412); } } /// Writes an integer to memory, storing it in twos-complement. /// This function always succeeds, has defined behavior for all inputs, but /// the integer bit width must be divisible by 8. pub inline fn writeInt(comptime T: type, buffer: *[@divExact(@typeInfo(T).int.bits, 8)]u8, value: T, endian: Endian) void { buffer.* = @bitCast(if (endian == native_endian) value else @byteSwap(value)); } test writeInt { var buf0: [0]u8 = undefined; var buf1: [1]u8 = undefined; var buf2: [2]u8 = undefined; var buf9: [9]u8 = undefined; writeInt(u0, &buf0, 0x0, .big); try testing.expect(eql(u8, buf0[0..], &[_]u8{})); writeInt(u0, &buf0, 0x0, .little); try testing.expect(eql(u8, buf0[0..], &[_]u8{})); writeInt(u8, &buf1, 0x12, .big); try testing.expect(eql(u8, buf1[0..], &[_]u8{0x12})); writeInt(u8, &buf1, 0x34, .little); try testing.expect(eql(u8, buf1[0..], &[_]u8{0x34})); writeInt(u16, &buf2, 0x1234, .big); try testing.expect(eql(u8, buf2[0..], &[_]u8{ 0x12, 0x34 })); writeInt(u16, &buf2, 0x5678, .little); try testing.expect(eql(u8, buf2[0..], &[_]u8{ 0x78, 0x56 })); writeInt(u72, &buf9, 0x123456789abcdef024, .big); try testing.expect(eql(u8, buf9[0..], &[_]u8{ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x24 })); writeInt(u72, &buf9, 0xfedcba9876543210ec, .little); try testing.expect(eql(u8, buf9[0..], &[_]u8{ 0xec, 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe })); writeInt(i8, &buf1, -1, .big); try testing.expect(eql(u8, buf1[0..], &[_]u8{0xff})); writeInt(i8, &buf1, -2, .little); try testing.expect(eql(u8, buf1[0..], &[_]u8{0xfe})); writeInt(i16, &buf2, -3, .big); try testing.expect(eql(u8, buf2[0..], &[_]u8{ 0xff, 0xfd })); writeInt(i16, &buf2, -4, .little); try testing.expect(eql(u8, buf2[0..], &[_]u8{ 0xfc, 0xff })); } fn writePackedIntLittle(comptime T: type, bytes: []u8, bit_offset: usize, value: T) void { const uN = std.meta.Int(.unsigned, @bitSizeOf(T)); const Log2N = std.math.Log2Int(T); const bit_count = @as(usize, @bitSizeOf(T)); const bit_shift = @as(u3, @intCast(bit_offset % 8)); const store_size = (@bitSizeOf(T) + 7) / 8; const store_tail_bits = @as(u3, @intCast((store_size * 8) - bit_count)); const StoreInt = std.meta.Int(.unsigned, store_size * 8); if (bit_count == 0) return; // Write by storing a StoreInt, and then follow it up with a 1-byte tail // if bit_offset pushed us over a byte boundary. const write_bytes = bytes[bit_offset / 8 ..]; const head = write_bytes[0] & ((@as(u8, 1) << bit_shift) - 1); var write_value = (@as(StoreInt, @as(uN, @bitCast(value))) << bit_shift) | @as(StoreInt, @intCast(head)); if (bit_shift > store_tail_bits) { const tail_len = @as(Log2N, @intCast(bit_shift - store_tail_bits)); write_bytes[store_size] &= ~((@as(u8, 1) << @as(u3, @intCast(tail_len))) - 1); write_bytes[store_size] |= @as(u8, @intCast((@as(uN, @bitCast(value)) >> (@as(Log2N, @truncate(bit_count)) -% tail_len)))); } else if (bit_shift < store_tail_bits) { const tail_len = store_tail_bits - bit_shift; const tail = write_bytes[store_size - 1] & (@as(u8, 0xfe) << (7 - tail_len)); write_value |= @as(StoreInt, tail) << (8 * (store_size - 1)); } writeInt(StoreInt, write_bytes[0..store_size], write_value, .little); } fn writePackedIntBig(comptime T: type, bytes: []u8, bit_offset: usize, value: T) void { const uN = std.meta.Int(.unsigned, @bitSizeOf(T)); const Log2N = std.math.Log2Int(T); const bit_count = @as(usize, @bitSizeOf(T)); const bit_shift = @as(u3, @intCast(bit_offset % 8)); const byte_count = (bit_shift + bit_count + 7) / 8; const store_size = (@bitSizeOf(T) + 7) / 8; const store_tail_bits = @as(u3, @intCast((store_size * 8) - bit_count)); const StoreInt = std.meta.Int(.unsigned, store_size * 8); if (bit_count == 0) return; // Write by storing a StoreInt, and then follow it up with a 1-byte tail // if bit_offset pushed us over a byte boundary. const end = bytes.len - (bit_offset / 8); const write_bytes = bytes[(end - byte_count)..end]; const head = write_bytes[byte_count - 1] & ((@as(u8, 1) << bit_shift) - 1); var write_value = (@as(StoreInt, @as(uN, @bitCast(value))) << bit_shift) | @as(StoreInt, @intCast(head)); if (bit_shift > store_tail_bits) { const tail_len = @as(Log2N, @intCast(bit_shift - store_tail_bits)); write_bytes[0] &= ~((@as(u8, 1) << @as(u3, @intCast(tail_len))) - 1); write_bytes[0] |= @as(u8, @intCast((@as(uN, @bitCast(value)) >> (@as(Log2N, @truncate(bit_count)) -% tail_len)))); } else if (bit_shift < store_tail_bits) { const tail_len = store_tail_bits - bit_shift; const tail = write_bytes[0] & (@as(u8, 0xfe) << (7 - tail_len)); write_value |= @as(StoreInt, tail) << (8 * (store_size - 1)); } writeInt(StoreInt, write_bytes[(byte_count - store_size)..][0..store_size], write_value, .big); } pub const writePackedIntNative = switch (native_endian) { .little => writePackedIntLittle, .big => writePackedIntBig, }; pub const writePackedIntForeign = switch (native_endian) { .little => writePackedIntBig, .big => writePackedIntLittle, }; /// Stores an integer to packed memory. /// Asserts that buffer contains at least bit_offset + @bitSizeOf(T) bits. pub fn writePackedInt(comptime T: type, bytes: []u8, bit_offset: usize, value: T, endian: Endian) void { switch (endian) { .little => writePackedIntLittle(T, bytes, bit_offset, value), .big => writePackedIntBig(T, bytes, bit_offset, value), } } test writePackedInt { const T = packed struct(u16) { a: u3, b: u7, c: u6 }; var st = T{ .a = 1, .b = 2, .c = 4 }; writePackedInt(u7, std.mem.asBytes(&st), @bitOffsetOf(T, "b"), 0x7f, builtin.cpu.arch.endian()); try std.testing.expectEqual(T{ .a = 1, .b = 0x7f, .c = 4 }, st); } /// Stores an integer to packed memory with provided bit_offset, bit_count, and signedness. /// If negative, the written value is sign-extended. pub fn writeVarPackedInt(bytes: []u8, bit_offset: usize, bit_count: usize, value: anytype, endian: std.builtin.Endian) void { const T = @TypeOf(value); const uN = std.meta.Int(.unsigned, @bitSizeOf(T)); const bit_shift = @as(u3, @intCast(bit_offset % 8)); const write_size = (bit_count + bit_shift + 7) / 8; const lowest_byte = switch (endian) { .big => bytes.len - (bit_offset / 8) - write_size, .little => bit_offset / 8, }; const write_bytes = bytes[lowest_byte..][0..write_size]; if (write_size == 0) { return; } else if (write_size == 1) { // Single byte writes are handled specially, since we need to mask bits // on both ends of the byte. const mask = (@as(u8, 0xff) >> @as(u3, @intCast(8 - bit_count))); const new_bits = @as(u8, @intCast(@as(uN, @bitCast(value)) & mask)) << bit_shift; write_bytes[0] = (write_bytes[0] & ~(mask << bit_shift)) | new_bits; return; } var remaining: T = value; // Iterate bytes forward for Little-endian, backward for Big-endian const delta: i2 = if (endian == .big) -1 else 1; const start = if (endian == .big) @as(isize, @intCast(write_bytes.len - 1)) else 0; var i: isize = start; // isize for signed index arithmetic // Write first byte, using a mask to protects bits preceding bit_offset const head_mask = @as(u8, 0xff) >> bit_shift; write_bytes[@intCast(i)] &= ~(head_mask << bit_shift); write_bytes[@intCast(i)] |= @as(u8, @intCast(@as(uN, @bitCast(remaining)) & head_mask)) << bit_shift; remaining = math.shr(T, remaining, @as(u4, 8) - bit_shift); i += delta; // Write bytes[1..bytes.len - 1] if (@bitSizeOf(T) > 8) { const loop_end = start + delta * (@as(isize, @intCast(write_size)) - 1); while (i != loop_end) : (i += delta) { write_bytes[@as(usize, @intCast(i))] = @as(u8, @truncate(@as(uN, @bitCast(remaining)))); remaining >>= 8; } } // Write last byte, using a mask to protect bits following bit_offset + bit_count const following_bits = -%@as(u3, @truncate(bit_shift + bit_count)); const tail_mask = (@as(u8, 0xff) << following_bits) >> following_bits; write_bytes[@as(usize, @intCast(i))] &= ~tail_mask; write_bytes[@as(usize, @intCast(i))] |= @as(u8, @intCast(@as(uN, @bitCast(remaining)) & tail_mask)); } test writeVarPackedInt { const T = packed struct(u16) { a: u3, b: u7, c: u6 }; var st = T{ .a = 1, .b = 2, .c = 4 }; const value: u64 = 0x7f; writeVarPackedInt(std.mem.asBytes(&st), @bitOffsetOf(T, "b"), 7, value, builtin.cpu.arch.endian()); try testing.expectEqual(T{ .a = 1, .b = value, .c = 4 }, st); } /// Swap the byte order of all the members of the fields of a struct /// (Changing their endianness) pub fn byteSwapAllFields(comptime S: type, ptr: *S) void { switch (@typeInfo(S)) { .@"struct" => { inline for (std.meta.fields(S)) |f| { switch (@typeInfo(f.type)) { .@"struct" => |struct_info| if (struct_info.backing_integer) |Int| { @field(ptr, f.name) = @bitCast(@byteSwap(@as(Int, @bitCast(@field(ptr, f.name))))); } else { byteSwapAllFields(f.type, &@field(ptr, f.name)); }, .array => byteSwapAllFields(f.type, &@field(ptr, f.name)), .@"enum" => { @field(ptr, f.name) = @enumFromInt(@byteSwap(@intFromEnum(@field(ptr, f.name)))); }, .bool => {}, .float => |float_info| { @field(ptr, f.name) = @bitCast(@byteSwap(@as(std.meta.Int(.unsigned, float_info.bits), @bitCast(@field(ptr, f.name))))); }, else => { @field(ptr, f.name) = @byteSwap(@field(ptr, f.name)); }, } } }, .array => { for (ptr) |*item| { switch (@typeInfo(@TypeOf(item.*))) { .@"struct", .array => byteSwapAllFields(@TypeOf(item.*), item), .@"enum" => { item.* = @enumFromInt(@byteSwap(@intFromEnum(item.*))); }, .bool => {}, .float => |float_info| { item.* = @bitCast(@byteSwap(@as(std.meta.Int(.unsigned, float_info.bits), @bitCast(item.*)))); }, else => { item.* = @byteSwap(item.*); }, } } }, else => @compileError("byteSwapAllFields expects a struct or array as the first argument"), } } test byteSwapAllFields { const T = extern struct { f0: u8, f1: u16, f2: u32, f3: [1]u8, f4: bool, f5: f32, }; const K = extern struct { f0: u8, f1: T, f2: u16, f3: [1]u8, f4: bool, f5: f32, }; var s = T{ .f0 = 0x12, .f1 = 0x1234, .f2 = 0x12345678, .f3 = .{0x12}, .f4 = true, .f5 = @as(f32, @bitCast(@as(u32, 0x4640e400))), }; var k = K{ .f0 = 0x12, .f1 = s, .f2 = 0x1234, .f3 = .{0x12}, .f4 = false, .f5 = @as(f32, @bitCast(@as(u32, 0x45d42800))), }; byteSwapAllFields(T, &s); byteSwapAllFields(K, &k); try std.testing.expectEqual(T{ .f0 = 0x12, .f1 = 0x3412, .f2 = 0x78563412, .f3 = .{0x12}, .f4 = true, .f5 = @as(f32, @bitCast(@as(u32, 0x00e44046))), }, s); try std.testing.expectEqual(K{ .f0 = 0x12, .f1 = s, .f2 = 0x3412, .f3 = .{0x12}, .f4 = false, .f5 = @as(f32, @bitCast(@as(u32, 0x0028d445))), }, k); } pub const tokenize = @compileError("deprecated; use tokenizeAny, tokenizeSequence, or tokenizeScalar"); /// Returns an iterator that iterates over the slices of `buffer` that are not /// any of the items in `delimiters`. /// /// `tokenizeAny(u8, " abc|def || ghi ", " |")` will return slices /// for "abc", "def", "ghi", null, in that order. /// /// If `buffer` is empty, the iterator will return null. /// If none of `delimiters` exist in buffer, /// the iterator will return `buffer`, null, in that order. /// /// See also: `tokenizeSequence`, `tokenizeScalar`, /// `splitSequence`,`splitAny`, `splitScalar`, /// `splitBackwardsSequence`, `splitBackwardsAny`, and `splitBackwardsScalar` pub fn tokenizeAny(comptime T: type, buffer: []const T, delimiters: []const T) TokenIterator(T, .any) { return .{ .index = 0, .buffer = buffer, .delimiter = delimiters, }; } /// Returns an iterator that iterates over the slices of `buffer` that are not /// the sequence in `delimiter`. /// /// `tokenizeSequence(u8, "<>abc><>ghi", "<>")` will return slices /// for "abc>b<><>c><>d><", "<>"); try testing.expectEqualStrings("a", it.next().?); try testing.expectEqualStrings("b", it.peek().?); try testing.expectEqualStrings("b", it.next().?); try testing.expectEqualStrings("c>", it.next().?); try testing.expectEqualStrings("d><", it.next().?); try testing.expect(it.next() == null); try testing.expect(it.peek() == null); var it16 = tokenizeSequence( u16, std.unicode.utf8ToUtf16LeStringLiteral("a<>b<><>c><>d><"), std.unicode.utf8ToUtf16LeStringLiteral("<>"), ); try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("a"))); try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("b"))); try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("c>"))); try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("d><"))); try testing.expect(it16.next() == null); } test "tokenize (reset)" { { var it = tokenizeAny(u8, " abc def ghi ", " "); try testing.expect(eql(u8, it.next().?, "abc")); try testing.expect(eql(u8, it.next().?, "def")); try testing.expect(eql(u8, it.next().?, "ghi")); it.reset(); try testing.expect(eql(u8, it.next().?, "abc")); try testing.expect(eql(u8, it.next().?, "def")); try testing.expect(eql(u8, it.next().?, "ghi")); try testing.expect(it.next() == null); } { var it = tokenizeSequence(u8, "<><>abc<>def<><>ghi<>", "<>"); try testing.expect(eql(u8, it.next().?, "abc")); try testing.expect(eql(u8, it.next().?, "def")); try testing.expect(eql(u8, it.next().?, "ghi")); it.reset(); try testing.expect(eql(u8, it.next().?, "abc")); try testing.expect(eql(u8, it.next().?, "def")); try testing.expect(eql(u8, it.next().?, "ghi")); try testing.expect(it.next() == null); } { var it = tokenizeScalar(u8, " abc def ghi ", ' '); try testing.expect(eql(u8, it.next().?, "abc")); try testing.expect(eql(u8, it.next().?, "def")); try testing.expect(eql(u8, it.next().?, "ghi")); it.reset(); try testing.expect(eql(u8, it.next().?, "abc")); try testing.expect(eql(u8, it.next().?, "def")); try testing.expect(eql(u8, it.next().?, "ghi")); try testing.expect(it.next() == null); } } pub const split = @compileError("deprecated; use splitSequence, splitAny, or splitScalar"); /// Returns an iterator that iterates over the slices of `buffer` that /// are separated by the byte sequence in `delimiter`. /// /// `splitSequence(u8, "abc||def||||ghi", "||")` will return slices /// for "abc", "def", "", "ghi", null, in that order. /// /// If `delimiter` does not exist in buffer, /// the iterator will return `buffer`, null, in that order. /// The delimiter length must not be zero. /// /// See also: `splitAny`, `splitScalar`, `splitBackwardsSequence`, /// `splitBackwardsAny`,`splitBackwardsScalar`, /// `tokenizeAny`, `tokenizeSequence`, and `tokenizeScalar`. pub fn splitSequence(comptime T: type, buffer: []const T, delimiter: []const T) SplitIterator(T, .sequence) { assert(delimiter.len != 0); return .{ .index = 0, .buffer = buffer, .delimiter = delimiter, }; } /// Returns an iterator that iterates over the slices of `buffer` that /// are separated by any item in `delimiters`. /// /// `splitAny(u8, "abc,def||ghi", "|,")` will return slices /// for "abc", "def", "", "ghi", null, in that order. /// /// If none of `delimiters` exist in buffer, /// the iterator will return `buffer`, null, in that order. /// /// See also: `splitSequence`, `splitScalar`, `splitBackwardsSequence`, /// `splitBackwardsAny`,`splitBackwardsScalar`, /// `tokenizeAny`, `tokenizeSequence`, and `tokenizeScalar`. pub fn splitAny(comptime T: type, buffer: []const T, delimiters: []const T) SplitIterator(T, .any) { return .{ .index = 0, .buffer = buffer, .delimiter = delimiters, }; } /// Returns an iterator that iterates over the slices of `buffer` that /// are separated by `delimiter`. /// /// `splitScalar(u8, "abc|def||ghi", '|')` will return slices /// for "abc", "def", "", "ghi", null, in that order. /// /// If `delimiter` does not exist in buffer, /// the iterator will return `buffer`, null, in that order. /// /// See also: `splitSequence`, `splitAny`, `splitBackwardsSequence`, /// `splitBackwardsAny`,`splitBackwardsScalar`, /// `tokenizeAny`, `tokenizeSequence`, and `tokenizeScalar`. pub fn splitScalar(comptime T: type, buffer: []const T, delimiter: T) SplitIterator(T, .scalar) { return .{ .index = 0, .buffer = buffer, .delimiter = delimiter, }; } test splitScalar { var it = splitScalar(u8, "abc|def||ghi", '|'); try testing.expectEqualSlices(u8, it.rest(), "abc|def||ghi"); try testing.expectEqualSlices(u8, it.first(), "abc"); try testing.expectEqualSlices(u8, it.rest(), "def||ghi"); try testing.expectEqualSlices(u8, it.peek().?, "def"); try testing.expectEqualSlices(u8, it.next().?, "def"); try testing.expectEqualSlices(u8, it.rest(), "|ghi"); try testing.expectEqualSlices(u8, it.next().?, ""); try testing.expectEqualSlices(u8, it.rest(), "ghi"); try testing.expectEqualSlices(u8, it.peek().?, "ghi"); try testing.expectEqualSlices(u8, it.next().?, "ghi"); try testing.expectEqualSlices(u8, it.rest(), ""); try testing.expect(it.peek() == null); try testing.expect(it.next() == null); it = splitScalar(u8, "", '|'); try testing.expectEqualSlices(u8, it.first(), ""); try testing.expect(it.next() == null); it = splitScalar(u8, "|", '|'); try testing.expectEqualSlices(u8, it.first(), ""); try testing.expectEqualSlices(u8, it.next().?, ""); try testing.expect(it.peek() == null); try testing.expect(it.next() == null); it = splitScalar(u8, "hello", ' '); try testing.expectEqualSlices(u8, it.first(), "hello"); try testing.expect(it.next() == null); var it16 = splitScalar( u16, std.unicode.utf8ToUtf16LeStringLiteral("hello"), ' ', ); try testing.expectEqualSlices(u16, it16.first(), std.unicode.utf8ToUtf16LeStringLiteral("hello")); try testing.expect(it16.next() == null); } test splitSequence { var it = splitSequence(u8, "a, b ,, c, d, e", ", "); try testing.expectEqualSlices(u8, it.first(), "a"); try testing.expectEqualSlices(u8, it.rest(), "b ,, c, d, e"); try testing.expectEqualSlices(u8, it.next().?, "b ,"); try testing.expectEqualSlices(u8, it.next().?, "c"); try testing.expectEqualSlices(u8, it.next().?, "d"); try testing.expectEqualSlices(u8, it.next().?, "e"); try testing.expect(it.next() == null); var it16 = splitSequence( u16, std.unicode.utf8ToUtf16LeStringLiteral("a, b ,, c, d, e"), std.unicode.utf8ToUtf16LeStringLiteral(", "), ); try testing.expectEqualSlices(u16, it16.first(), std.unicode.utf8ToUtf16LeStringLiteral("a")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("b ,")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("c")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("d")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("e")); try testing.expect(it16.next() == null); } test splitAny { var it = splitAny(u8, "a,b, c d e", ", "); try testing.expectEqualSlices(u8, it.first(), "a"); try testing.expectEqualSlices(u8, it.rest(), "b, c d e"); try testing.expectEqualSlices(u8, it.next().?, "b"); try testing.expectEqualSlices(u8, it.next().?, ""); try testing.expectEqualSlices(u8, it.next().?, "c"); try testing.expectEqualSlices(u8, it.next().?, "d"); try testing.expectEqualSlices(u8, it.next().?, "e"); try testing.expect(it.next() == null); it = splitAny(u8, "hello", ""); try testing.expect(eql(u8, it.next().?, "hello")); try testing.expect(it.next() == null); var it16 = splitAny( u16, std.unicode.utf8ToUtf16LeStringLiteral("a,b, c d e"), std.unicode.utf8ToUtf16LeStringLiteral(", "), ); try testing.expectEqualSlices(u16, it16.first(), std.unicode.utf8ToUtf16LeStringLiteral("a")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("b")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("c")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("d")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("e")); try testing.expect(it16.next() == null); } test "split (reset)" { { var it = splitSequence(u8, "abc def ghi", " "); try testing.expect(eql(u8, it.first(), "abc")); try testing.expect(eql(u8, it.next().?, "def")); try testing.expect(eql(u8, it.next().?, "ghi")); it.reset(); try testing.expect(eql(u8, it.first(), "abc")); try testing.expect(eql(u8, it.next().?, "def")); try testing.expect(eql(u8, it.next().?, "ghi")); try testing.expect(it.next() == null); } { var it = splitAny(u8, "abc def,ghi", " ,"); try testing.expect(eql(u8, it.first(), "abc")); try testing.expect(eql(u8, it.next().?, "def")); try testing.expect(eql(u8, it.next().?, "ghi")); it.reset(); try testing.expect(eql(u8, it.first(), "abc")); try testing.expect(eql(u8, it.next().?, "def")); try testing.expect(eql(u8, it.next().?, "ghi")); try testing.expect(it.next() == null); } { var it = splitScalar(u8, "abc def ghi", ' '); try testing.expect(eql(u8, it.first(), "abc")); try testing.expect(eql(u8, it.next().?, "def")); try testing.expect(eql(u8, it.next().?, "ghi")); it.reset(); try testing.expect(eql(u8, it.first(), "abc")); try testing.expect(eql(u8, it.next().?, "def")); try testing.expect(eql(u8, it.next().?, "ghi")); try testing.expect(it.next() == null); } } pub const splitBackwards = @compileError("deprecated; use splitBackwardsSequence, splitBackwardsAny, or splitBackwardsScalar"); /// Returns an iterator that iterates backwards over the slices of `buffer` that /// are separated by the sequence in `delimiter`. /// /// `splitBackwardsSequence(u8, "abc||def||||ghi", "||")` will return slices /// for "ghi", "", "def", "abc", null, in that order. /// /// If `delimiter` does not exist in buffer, /// the iterator will return `buffer`, null, in that order. /// The delimiter length must not be zero. /// /// See also: `splitBackwardsAny`, `splitBackwardsScalar`, /// `splitSequence`, `splitAny`,`splitScalar`, /// `tokenizeAny`, `tokenizeSequence`, and `tokenizeScalar`. pub fn splitBackwardsSequence(comptime T: type, buffer: []const T, delimiter: []const T) SplitBackwardsIterator(T, .sequence) { assert(delimiter.len != 0); return .{ .index = buffer.len, .buffer = buffer, .delimiter = delimiter, }; } /// Returns an iterator that iterates backwards over the slices of `buffer` that /// are separated by any item in `delimiters`. /// /// `splitBackwardsAny(u8, "abc,def||ghi", "|,")` will return slices /// for "ghi", "", "def", "abc", null, in that order. /// /// If none of `delimiters` exist in buffer, /// the iterator will return `buffer`, null, in that order. /// /// See also: `splitBackwardsSequence`, `splitBackwardsScalar`, /// `splitSequence`, `splitAny`,`splitScalar`, /// `tokenizeAny`, `tokenizeSequence`, and `tokenizeScalar`. pub fn splitBackwardsAny(comptime T: type, buffer: []const T, delimiters: []const T) SplitBackwardsIterator(T, .any) { return .{ .index = buffer.len, .buffer = buffer, .delimiter = delimiters, }; } /// Returns an iterator that iterates backwards over the slices of `buffer` that /// are separated by `delimiter`. /// /// `splitBackwardsScalar(u8, "abc|def||ghi", '|')` will return slices /// for "ghi", "", "def", "abc", null, in that order. /// /// If `delimiter` does not exist in buffer, /// the iterator will return `buffer`, null, in that order. /// /// See also: `splitBackwardsSequence`, `splitBackwardsAny`, /// `splitSequence`, `splitAny`,`splitScalar`, /// `tokenizeAny`, `tokenizeSequence`, and `tokenizeScalar`. pub fn splitBackwardsScalar(comptime T: type, buffer: []const T, delimiter: T) SplitBackwardsIterator(T, .scalar) { return .{ .index = buffer.len, .buffer = buffer, .delimiter = delimiter, }; } test splitBackwardsScalar { var it = splitBackwardsScalar(u8, "abc|def||ghi", '|'); try testing.expectEqualSlices(u8, it.rest(), "abc|def||ghi"); try testing.expectEqualSlices(u8, it.first(), "ghi"); try testing.expectEqualSlices(u8, it.rest(), "abc|def|"); try testing.expectEqualSlices(u8, it.next().?, ""); try testing.expectEqualSlices(u8, it.rest(), "abc|def"); try testing.expectEqualSlices(u8, it.next().?, "def"); try testing.expectEqualSlices(u8, it.rest(), "abc"); try testing.expectEqualSlices(u8, it.next().?, "abc"); try testing.expectEqualSlices(u8, it.rest(), ""); try testing.expect(it.next() == null); it = splitBackwardsScalar(u8, "", '|'); try testing.expectEqualSlices(u8, it.first(), ""); try testing.expect(it.next() == null); it = splitBackwardsScalar(u8, "|", '|'); try testing.expectEqualSlices(u8, it.first(), ""); try testing.expectEqualSlices(u8, it.next().?, ""); try testing.expect(it.next() == null); it = splitBackwardsScalar(u8, "hello", ' '); try testing.expectEqualSlices(u8, it.first(), "hello"); try testing.expect(it.next() == null); var it16 = splitBackwardsScalar( u16, std.unicode.utf8ToUtf16LeStringLiteral("hello"), ' ', ); try testing.expectEqualSlices(u16, it16.first(), std.unicode.utf8ToUtf16LeStringLiteral("hello")); try testing.expect(it16.next() == null); } test splitBackwardsSequence { var it = splitBackwardsSequence(u8, "a, b ,, c, d, e", ", "); try testing.expectEqualSlices(u8, it.rest(), "a, b ,, c, d, e"); try testing.expectEqualSlices(u8, it.first(), "e"); try testing.expectEqualSlices(u8, it.rest(), "a, b ,, c, d"); try testing.expectEqualSlices(u8, it.next().?, "d"); try testing.expectEqualSlices(u8, it.rest(), "a, b ,, c"); try testing.expectEqualSlices(u8, it.next().?, "c"); try testing.expectEqualSlices(u8, it.rest(), "a, b ,"); try testing.expectEqualSlices(u8, it.next().?, "b ,"); try testing.expectEqualSlices(u8, it.rest(), "a"); try testing.expectEqualSlices(u8, it.next().?, "a"); try testing.expectEqualSlices(u8, it.rest(), ""); try testing.expect(it.next() == null); var it16 = splitBackwardsSequence( u16, std.unicode.utf8ToUtf16LeStringLiteral("a, b ,, c, d, e"), std.unicode.utf8ToUtf16LeStringLiteral(", "), ); try testing.expectEqualSlices(u16, it16.first(), std.unicode.utf8ToUtf16LeStringLiteral("e")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("d")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("c")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("b ,")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("a")); try testing.expect(it16.next() == null); } test splitBackwardsAny { var it = splitBackwardsAny(u8, "a,b, c d e", ", "); try testing.expectEqualSlices(u8, it.rest(), "a,b, c d e"); try testing.expectEqualSlices(u8, it.first(), "e"); try testing.expectEqualSlices(u8, it.rest(), "a,b, c d"); try testing.expectEqualSlices(u8, it.next().?, "d"); try testing.expectEqualSlices(u8, it.rest(), "a,b, c"); try testing.expectEqualSlices(u8, it.next().?, "c"); try testing.expectEqualSlices(u8, it.rest(), "a,b,"); try testing.expectEqualSlices(u8, it.next().?, ""); try testing.expectEqualSlices(u8, it.rest(), "a,b"); try testing.expectEqualSlices(u8, it.next().?, "b"); try testing.expectEqualSlices(u8, it.rest(), "a"); try testing.expectEqualSlices(u8, it.next().?, "a"); try testing.expectEqualSlices(u8, it.rest(), ""); try testing.expect(it.next() == null); var it16 = splitBackwardsAny( u16, std.unicode.utf8ToUtf16LeStringLiteral("a,b, c d e"), std.unicode.utf8ToUtf16LeStringLiteral(", "), ); try testing.expectEqualSlices(u16, it16.first(), std.unicode.utf8ToUtf16LeStringLiteral("e")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("d")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("c")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("b")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("a")); try testing.expect(it16.next() == null); } test "splitBackwards (reset)" { { var it = splitBackwardsSequence(u8, "abc def ghi", " "); try testing.expect(eql(u8, it.first(), "ghi")); try testing.expect(eql(u8, it.next().?, "def")); try testing.expect(eql(u8, it.next().?, "abc")); it.reset(); try testing.expect(eql(u8, it.first(), "ghi")); try testing.expect(eql(u8, it.next().?, "def")); try testing.expect(eql(u8, it.next().?, "abc")); try testing.expect(it.next() == null); } { var it = splitBackwardsAny(u8, "abc def,ghi", " ,"); try testing.expect(eql(u8, it.first(), "ghi")); try testing.expect(eql(u8, it.next().?, "def")); try testing.expect(eql(u8, it.next().?, "abc")); it.reset(); try testing.expect(eql(u8, it.first(), "ghi")); try testing.expect(eql(u8, it.next().?, "def")); try testing.expect(eql(u8, it.next().?, "abc")); try testing.expect(it.next() == null); } { var it = splitBackwardsScalar(u8, "abc def ghi", ' '); try testing.expect(eql(u8, it.first(), "ghi")); try testing.expect(eql(u8, it.next().?, "def")); try testing.expect(eql(u8, it.next().?, "abc")); it.reset(); try testing.expect(eql(u8, it.first(), "ghi")); try testing.expect(eql(u8, it.next().?, "def")); try testing.expect(eql(u8, it.next().?, "abc")); try testing.expect(it.next() == null); } } /// Returns an iterator with a sliding window of slices for `buffer`. /// The sliding window has length `size` and on every iteration moves /// forward by `advance`. /// /// Extract data for moving average with: /// `window(u8, "abcdefg", 3, 1)` will return slices /// "abc", "bcd", "cde", "def", "efg", null, in that order. /// /// Chunk or split every N items with: /// `window(u8, "abcdefg", 3, 3)` will return slices /// "abc", "def", "g", null, in that order. /// /// Pick every even index with: /// `window(u8, "abcdefg", 1, 2)` will return slices /// "a", "c", "e", "g" null, in that order. /// /// The `size` and `advance` must be not be zero. pub fn window(comptime T: type, buffer: []const T, size: usize, advance: usize) WindowIterator(T) { assert(size != 0); assert(advance != 0); return .{ .index = 0, .buffer = buffer, .size = size, .advance = advance, }; } test window { { // moving average size 3 var it = window(u8, "abcdefg", 3, 1); try testing.expectEqualSlices(u8, it.next().?, "abc"); try testing.expectEqualSlices(u8, it.next().?, "bcd"); try testing.expectEqualSlices(u8, it.next().?, "cde"); try testing.expectEqualSlices(u8, it.next().?, "def"); try testing.expectEqualSlices(u8, it.next().?, "efg"); try testing.expectEqual(it.next(), null); // multibyte var it16 = window(u16, std.unicode.utf8ToUtf16LeStringLiteral("abcdefg"), 3, 1); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("abc")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("bcd")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("cde")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("def")); try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("efg")); try testing.expectEqual(it16.next(), null); } { // chunk/split every 3 var it = window(u8, "abcdefg", 3, 3); try testing.expectEqualSlices(u8, it.next().?, "abc"); try testing.expectEqualSlices(u8, it.next().?, "def"); try testing.expectEqualSlices(u8, it.next().?, "g"); try testing.expectEqual(it.next(), null); } { // pick even var it = window(u8, "abcdefg", 1, 2); try testing.expectEqualSlices(u8, it.next().?, "a"); try testing.expectEqualSlices(u8, it.next().?, "c"); try testing.expectEqualSlices(u8, it.next().?, "e"); try testing.expectEqualSlices(u8, it.next().?, "g"); try testing.expectEqual(it.next(), null); } { // empty var it = window(u8, "", 1, 1); try testing.expectEqualSlices(u8, it.next().?, ""); try testing.expectEqual(it.next(), null); it = window(u8, "", 10, 1); try testing.expectEqualSlices(u8, it.next().?, ""); try testing.expectEqual(it.next(), null); it = window(u8, "", 1, 10); try testing.expectEqualSlices(u8, it.next().?, ""); try testing.expectEqual(it.next(), null); it = window(u8, "", 10, 10); try testing.expectEqualSlices(u8, it.next().?, ""); try testing.expectEqual(it.next(), null); } { // first var it = window(u8, "abcdefg", 3, 3); try testing.expectEqualSlices(u8, it.first(), "abc"); it.reset(); try testing.expectEqualSlices(u8, it.next().?, "abc"); } { // reset var it = window(u8, "abcdefg", 3, 3); try testing.expectEqualSlices(u8, it.next().?, "abc"); try testing.expectEqualSlices(u8, it.next().?, "def"); try testing.expectEqualSlices(u8, it.next().?, "g"); try testing.expectEqual(it.next(), null); it.reset(); try testing.expectEqualSlices(u8, it.next().?, "abc"); try testing.expectEqualSlices(u8, it.next().?, "def"); try testing.expectEqualSlices(u8, it.next().?, "g"); try testing.expectEqual(it.next(), null); } } pub fn WindowIterator(comptime T: type) type { return struct { buffer: []const T, index: ?usize, size: usize, advance: usize, const Self = @This(); /// Returns a slice of the first window. This never fails. /// Call this only to get the first window and then use `next` to get /// all subsequent windows. pub fn first(self: *Self) []const T { assert(self.index.? == 0); return self.next().?; } /// Returns a slice of the next window, or null if window is at end. pub fn next(self: *Self) ?[]const T { const start = self.index orelse return null; const next_index = start + self.advance; const end = if (start + self.size < self.buffer.len and next_index < self.buffer.len) blk: { self.index = next_index; break :blk start + self.size; } else blk: { self.index = null; break :blk self.buffer.len; }; return self.buffer[start..end]; } /// Resets the iterator to the initial window. pub fn reset(self: *Self) void { self.index = 0; } }; } pub fn startsWith(comptime T: type, haystack: []const T, needle: []const T) bool { return if (needle.len > haystack.len) false else eql(T, haystack[0..needle.len], needle); } test startsWith { try testing.expect(startsWith(u8, "Bob", "Bo")); try testing.expect(!startsWith(u8, "Needle in haystack", "haystack")); } pub fn endsWith(comptime T: type, haystack: []const T, needle: []const T) bool { return if (needle.len > haystack.len) false else eql(T, haystack[haystack.len - needle.len ..], needle); } test endsWith { try testing.expect(endsWith(u8, "Needle in haystack", "haystack")); try testing.expect(!endsWith(u8, "Bob", "Bo")); } pub const DelimiterType = enum { sequence, any, scalar }; pub fn TokenIterator(comptime T: type, comptime delimiter_type: DelimiterType) type { return struct { buffer: []const T, delimiter: switch (delimiter_type) { .sequence, .any => []const T, .scalar => T, }, index: usize, const Self = @This(); /// Returns a slice of the current token, or null if tokenization is /// complete, and advances to the next token. pub fn next(self: *Self) ?[]const T { const result = self.peek() orelse return null; self.index += result.len; return result; } /// Returns a slice of the current token, or null if tokenization is /// complete. Does not advance to the next token. pub fn peek(self: *Self) ?[]const T { // move to beginning of token while (self.index < self.buffer.len and self.isDelimiter(self.index)) : (self.index += switch (delimiter_type) { .sequence => self.delimiter.len, .any, .scalar => 1, }) {} const start = self.index; if (start == self.buffer.len) { return null; } // move to end of token var end = start; while (end < self.buffer.len and !self.isDelimiter(end)) : (end += 1) {} return self.buffer[start..end]; } /// Returns a slice of the remaining bytes. Does not affect iterator state. pub fn rest(self: Self) []const T { // move to beginning of token var index: usize = self.index; while (index < self.buffer.len and self.isDelimiter(index)) : (index += switch (delimiter_type) { .sequence => self.delimiter.len, .any, .scalar => 1, }) {} return self.buffer[index..]; } /// Resets the iterator to the initial token. pub fn reset(self: *Self) void { self.index = 0; } fn isDelimiter(self: Self, index: usize) bool { switch (delimiter_type) { .sequence => return startsWith(T, self.buffer[index..], self.delimiter), .any => { const item = self.buffer[index]; for (self.delimiter) |delimiter_item| { if (item == delimiter_item) { return true; } } return false; }, .scalar => return self.buffer[index] == self.delimiter, } } }; } pub fn SplitIterator(comptime T: type, comptime delimiter_type: DelimiterType) type { return struct { buffer: []const T, index: ?usize, delimiter: switch (delimiter_type) { .sequence, .any => []const T, .scalar => T, }, const Self = @This(); /// Returns a slice of the first field. This never fails. /// Call this only to get the first field and then use `next` to get all subsequent fields. pub fn first(self: *Self) []const T { assert(self.index.? == 0); return self.next().?; } /// Returns a slice of the next field, or null if splitting is complete. pub fn next(self: *Self) ?[]const T { const start = self.index orelse return null; const end = if (switch (delimiter_type) { .sequence => indexOfPos(T, self.buffer, start, self.delimiter), .any => indexOfAnyPos(T, self.buffer, start, self.delimiter), .scalar => indexOfScalarPos(T, self.buffer, start, self.delimiter), }) |delim_start| blk: { self.index = delim_start + switch (delimiter_type) { .sequence => self.delimiter.len, .any, .scalar => 1, }; break :blk delim_start; } else blk: { self.index = null; break :blk self.buffer.len; }; return self.buffer[start..end]; } /// Returns a slice of the next field, or null if splitting is complete. /// This method does not alter self.index. pub fn peek(self: *Self) ?[]const T { const start = self.index orelse return null; const end = if (switch (delimiter_type) { .sequence => indexOfPos(T, self.buffer, start, self.delimiter), .any => indexOfAnyPos(T, self.buffer, start, self.delimiter), .scalar => indexOfScalarPos(T, self.buffer, start, self.delimiter), }) |delim_start| delim_start else self.buffer.len; return self.buffer[start..end]; } /// Returns a slice of the remaining bytes. Does not affect iterator state. pub fn rest(self: Self) []const T { const end = self.buffer.len; const start = self.index orelse end; return self.buffer[start..end]; } /// Resets the iterator to the initial slice. pub fn reset(self: *Self) void { self.index = 0; } }; } pub fn SplitBackwardsIterator(comptime T: type, comptime delimiter_type: DelimiterType) type { return struct { buffer: []const T, index: ?usize, delimiter: switch (delimiter_type) { .sequence, .any => []const T, .scalar => T, }, const Self = @This(); /// Returns a slice of the first field. This never fails. /// Call this only to get the first field and then use `next` to get all subsequent fields. pub fn first(self: *Self) []const T { assert(self.index.? == self.buffer.len); return self.next().?; } /// Returns a slice of the next field, or null if splitting is complete. pub fn next(self: *Self) ?[]const T { const end = self.index orelse return null; const start = if (switch (delimiter_type) { .sequence => lastIndexOf(T, self.buffer[0..end], self.delimiter), .any => lastIndexOfAny(T, self.buffer[0..end], self.delimiter), .scalar => lastIndexOfScalar(T, self.buffer[0..end], self.delimiter), }) |delim_start| blk: { self.index = delim_start; break :blk delim_start + switch (delimiter_type) { .sequence => self.delimiter.len, .any, .scalar => 1, }; } else blk: { self.index = null; break :blk 0; }; return self.buffer[start..end]; } /// Returns a slice of the remaining bytes. Does not affect iterator state. pub fn rest(self: Self) []const T { const end = self.index orelse 0; return self.buffer[0..end]; } /// Resets the iterator to the initial slice. pub fn reset(self: *Self) void { self.index = self.buffer.len; } }; } /// Naively combines a series of slices with a separator. /// Allocates memory for the result, which must be freed by the caller. pub fn join(allocator: Allocator, separator: []const u8, slices: []const []const u8) Allocator.Error![]u8 { return joinMaybeZ(allocator, separator, slices, false); } /// Naively combines a series of slices with a separator and null terminator. /// Allocates memory for the result, which must be freed by the caller. pub fn joinZ(allocator: Allocator, separator: []const u8, slices: []const []const u8) Allocator.Error![:0]u8 { const out = try joinMaybeZ(allocator, separator, slices, true); return out[0 .. out.len - 1 :0]; } fn joinMaybeZ(allocator: Allocator, separator: []const u8, slices: []const []const u8, zero: bool) Allocator.Error![]u8 { if (slices.len == 0) return if (zero) try allocator.dupe(u8, &[1]u8{0}) else &[0]u8{}; const total_len = blk: { var sum: usize = separator.len * (slices.len - 1); for (slices) |slice| sum += slice.len; if (zero) sum += 1; break :blk sum; }; const buf = try allocator.alloc(u8, total_len); errdefer allocator.free(buf); @memcpy(buf[0..slices[0].len], slices[0]); var buf_index: usize = slices[0].len; for (slices[1..]) |slice| { @memcpy(buf[buf_index .. buf_index + separator.len], separator); buf_index += separator.len; @memcpy(buf[buf_index .. buf_index + slice.len], slice); buf_index += slice.len; } if (zero) buf[buf.len - 1] = 0; // No need for shrink since buf is exactly the correct size. return buf; } test join { { const str = try join(testing.allocator, ",", &[_][]const u8{}); defer testing.allocator.free(str); try testing.expect(eql(u8, str, "")); } { const str = try join(testing.allocator, ",", &[_][]const u8{ "a", "b", "c" }); defer testing.allocator.free(str); try testing.expect(eql(u8, str, "a,b,c")); } { const str = try join(testing.allocator, ",", &[_][]const u8{"a"}); defer testing.allocator.free(str); try testing.expect(eql(u8, str, "a")); } { const str = try join(testing.allocator, ",", &[_][]const u8{ "a", "", "b", "", "c" }); defer testing.allocator.free(str); try testing.expect(eql(u8, str, "a,,b,,c")); } } test joinZ { { const str = try joinZ(testing.allocator, ",", &[_][]const u8{}); defer testing.allocator.free(str); try testing.expect(eql(u8, str, "")); try testing.expectEqual(str[str.len], 0); } { const str = try joinZ(testing.allocator, ",", &[_][]const u8{ "a", "b", "c" }); defer testing.allocator.free(str); try testing.expect(eql(u8, str, "a,b,c")); try testing.expectEqual(str[str.len], 0); } { const str = try joinZ(testing.allocator, ",", &[_][]const u8{"a"}); defer testing.allocator.free(str); try testing.expect(eql(u8, str, "a")); try testing.expectEqual(str[str.len], 0); } { const str = try joinZ(testing.allocator, ",", &[_][]const u8{ "a", "", "b", "", "c" }); defer testing.allocator.free(str); try testing.expect(eql(u8, str, "a,,b,,c")); try testing.expectEqual(str[str.len], 0); } } /// Copies each T from slices into a new slice that exactly holds all the elements. pub fn concat(allocator: Allocator, comptime T: type, slices: []const []const T) Allocator.Error![]T { return concatMaybeSentinel(allocator, T, slices, null); } /// Copies each T from slices into a new slice that exactly holds all the elements. pub fn concatWithSentinel(allocator: Allocator, comptime T: type, slices: []const []const T, comptime s: T) Allocator.Error![:s]T { const ret = try concatMaybeSentinel(allocator, T, slices, s); return ret[0 .. ret.len - 1 :s]; } /// Copies each T from slices into a new slice that exactly holds all the elements as well as the sentinel. pub fn concatMaybeSentinel(allocator: Allocator, comptime T: type, slices: []const []const T, comptime s: ?T) Allocator.Error![]T { if (slices.len == 0) return if (s) |sentinel| try allocator.dupe(T, &[1]T{sentinel}) else &[0]T{}; const total_len = blk: { var sum: usize = 0; for (slices) |slice| { sum += slice.len; } if (s) |_| { sum += 1; } break :blk sum; }; const buf = try allocator.alloc(T, total_len); errdefer allocator.free(buf); var buf_index: usize = 0; for (slices) |slice| { @memcpy(buf[buf_index .. buf_index + slice.len], slice); buf_index += slice.len; } if (s) |sentinel| { buf[buf.len - 1] = sentinel; } // No need for shrink since buf is exactly the correct size. return buf; } test concat { { const str = try concat(testing.allocator, u8, &[_][]const u8{ "abc", "def", "ghi" }); defer testing.allocator.free(str); try testing.expect(eql(u8, str, "abcdefghi")); } { const str = try concat(testing.allocator, u32, &[_][]const u32{ &[_]u32{ 0, 1 }, &[_]u32{ 2, 3, 4 }, &[_]u32{}, &[_]u32{5}, }); defer testing.allocator.free(str); try testing.expect(eql(u32, str, &[_]u32{ 0, 1, 2, 3, 4, 5 })); } { const str = try concatWithSentinel(testing.allocator, u8, &[_][]const u8{ "abc", "def", "ghi" }, 0); defer testing.allocator.free(str); try testing.expectEqualSentinel(u8, 0, str, "abcdefghi"); } { const slice = try concatWithSentinel(testing.allocator, u8, &[_][]const u8{}, 0); defer testing.allocator.free(slice); try testing.expectEqualSentinel(u8, 0, slice, &[_:0]u8{}); } { const slice = try concatWithSentinel(testing.allocator, u32, &[_][]const u32{ &[_]u32{ 0, 1 }, &[_]u32{ 2, 3, 4 }, &[_]u32{}, &[_]u32{5}, }, 2); defer testing.allocator.free(slice); try testing.expectEqualSentinel(u32, 2, slice, &[_:2]u32{ 0, 1, 2, 3, 4, 5 }); } } test eql { try testing.expect(eql(u8, "abcd", "abcd")); try testing.expect(!eql(u8, "abcdef", "abZdef")); try testing.expect(!eql(u8, "abcdefg", "abcdef")); } fn moreReadIntTests() !void { { const bytes = [_]u8{ 0x12, 0x34, 0x56, 0x78, }; try testing.expect(readInt(u32, &bytes, .big) == 0x12345678); try testing.expect(readInt(u32, &bytes, .big) == 0x12345678); try testing.expect(readInt(i32, &bytes, .big) == 0x12345678); try testing.expect(readInt(u32, &bytes, .little) == 0x78563412); try testing.expect(readInt(u32, &bytes, .little) == 0x78563412); try testing.expect(readInt(i32, &bytes, .little) == 0x78563412); } { const buf = [_]u8{ 0x00, 0x00, 0x12, 0x34, }; const answer = readInt(u32, &buf, .big); try testing.expect(answer == 0x00001234); } { const buf = [_]u8{ 0x12, 0x34, 0x00, 0x00, }; const answer = readInt(u32, &buf, .little); try testing.expect(answer == 0x00003412); } { const bytes = [_]u8{ 0xff, 0xfe, }; try testing.expect(readInt(u16, &bytes, .big) == 0xfffe); try testing.expect(readInt(i16, &bytes, .big) == -0x0002); try testing.expect(readInt(u16, &bytes, .little) == 0xfeff); try testing.expect(readInt(i16, &bytes, .little) == -0x0101); } } /// Returns the smallest number in a slice. O(n). /// `slice` must not be empty. pub fn min(comptime T: type, slice: []const T) T { assert(slice.len > 0); var best = slice[0]; for (slice[1..]) |item| { best = @min(best, item); } return best; } test min { try testing.expectEqual(min(u8, "abcdefg"), 'a'); try testing.expectEqual(min(u8, "bcdefga"), 'a'); try testing.expectEqual(min(u8, "a"), 'a'); } /// Returns the largest number in a slice. O(n). /// `slice` must not be empty. pub fn max(comptime T: type, slice: []const T) T { assert(slice.len > 0); var best = slice[0]; for (slice[1..]) |item| { best = @max(best, item); } return best; } test max { try testing.expectEqual(max(u8, "abcdefg"), 'g'); try testing.expectEqual(max(u8, "gabcdef"), 'g'); try testing.expectEqual(max(u8, "g"), 'g'); } /// Finds the smallest and largest number in a slice. O(n). /// Returns an anonymous struct with the fields `min` and `max`. /// `slice` must not be empty. pub fn minMax(comptime T: type, slice: []const T) struct { T, T } { assert(slice.len > 0); var running_minimum = slice[0]; var running_maximum = slice[0]; for (slice[1..]) |item| { running_minimum = @min(running_minimum, item); running_maximum = @max(running_maximum, item); } return .{ running_minimum, running_maximum }; } test minMax { { const actual_min, const actual_max = minMax(u8, "abcdefg"); try testing.expectEqual(@as(u8, 'a'), actual_min); try testing.expectEqual(@as(u8, 'g'), actual_max); } { const actual_min, const actual_max = minMax(u8, "bcdefga"); try testing.expectEqual(@as(u8, 'a'), actual_min); try testing.expectEqual(@as(u8, 'g'), actual_max); } { const actual_min, const actual_max = minMax(u8, "a"); try testing.expectEqual(@as(u8, 'a'), actual_min); try testing.expectEqual(@as(u8, 'a'), actual_max); } } /// Returns the index of the smallest number in a slice. O(n). /// `slice` must not be empty. pub fn indexOfMin(comptime T: type, slice: []const T) usize { assert(slice.len > 0); var best = slice[0]; var index: usize = 0; for (slice[1..], 0..) |item, i| { if (item < best) { best = item; index = i + 1; } } return index; } test indexOfMin { try testing.expectEqual(indexOfMin(u8, "abcdefg"), 0); try testing.expectEqual(indexOfMin(u8, "bcdefga"), 6); try testing.expectEqual(indexOfMin(u8, "a"), 0); } /// Returns the index of the largest number in a slice. O(n). /// `slice` must not be empty. pub fn indexOfMax(comptime T: type, slice: []const T) usize { assert(slice.len > 0); var best = slice[0]; var index: usize = 0; for (slice[1..], 0..) |item, i| { if (item > best) { best = item; index = i + 1; } } return index; } test indexOfMax { try testing.expectEqual(indexOfMax(u8, "abcdefg"), 6); try testing.expectEqual(indexOfMax(u8, "gabcdef"), 0); try testing.expectEqual(indexOfMax(u8, "a"), 0); } /// Finds the indices of the smallest and largest number in a slice. O(n). /// Returns the indices of the smallest and largest numbers in that order. /// `slice` must not be empty. pub fn indexOfMinMax(comptime T: type, slice: []const T) struct { usize, usize } { assert(slice.len > 0); var minVal = slice[0]; var maxVal = slice[0]; var minIdx: usize = 0; var maxIdx: usize = 0; for (slice[1..], 0..) |item, i| { if (item < minVal) { minVal = item; minIdx = i + 1; } if (item > maxVal) { maxVal = item; maxIdx = i + 1; } } return .{ minIdx, maxIdx }; } test indexOfMinMax { try testing.expectEqual(.{ 0, 6 }, indexOfMinMax(u8, "abcdefg")); try testing.expectEqual(.{ 1, 0 }, indexOfMinMax(u8, "gabcdef")); try testing.expectEqual(.{ 0, 0 }, indexOfMinMax(u8, "a")); } pub fn swap(comptime T: type, a: *T, b: *T) void { const tmp = a.*; a.* = b.*; b.* = tmp; } inline fn reverseVector(comptime N: usize, comptime T: type, a: []T) [N]T { var res: [N]T = undefined; inline for (0..N) |i| { res[i] = a[N - i - 1]; } return res; } /// In-place order reversal of a slice pub fn reverse(comptime T: type, items: []T) void { var i: usize = 0; const end = items.len / 2; if (backend_supports_vectors and !@inComptime() and @bitSizeOf(T) > 0 and std.math.isPowerOfTwo(@bitSizeOf(T))) { if (std.simd.suggestVectorLength(T)) |simd_size| { if (simd_size <= end) { const simd_end = end - (simd_size - 1); while (i < simd_end) : (i += simd_size) { const left_slice = items[i .. i + simd_size]; const right_slice = items[items.len - i - simd_size .. items.len - i]; const left_shuffled: [simd_size]T = reverseVector(simd_size, T, left_slice); const right_shuffled: [simd_size]T = reverseVector(simd_size, T, right_slice); @memcpy(right_slice, &left_shuffled); @memcpy(left_slice, &right_shuffled); } } } } while (i < end) : (i += 1) { swap(T, &items[i], &items[items.len - i - 1]); } } test reverse { { var arr = [_]i32{ 5, 3, 1, 2, 4 }; reverse(i32, arr[0..]); try testing.expectEqualSlices(i32, &arr, &.{ 4, 2, 1, 3, 5 }); } { var arr = [_]u0{}; reverse(u0, arr[0..]); try testing.expectEqualSlices(u0, &arr, &.{}); } { var arr = [_]i64{ 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18 }; reverse(i64, arr[0..]); try testing.expectEqualSlices(i64, &arr, &.{ 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 }); } { var arr = [_][]const u8{ "a", "b", "c", "d" }; reverse([]const u8, arr[0..]); try testing.expectEqualSlices([]const u8, &arr, &.{ "d", "c", "b", "a" }); } { const MyType = union(enum) { a: [3]u8, b: u24, c, }; var arr = [_]MyType{ .{ .a = .{ 0, 0, 0 } }, .{ .b = 0 }, .c }; reverse(MyType, arr[0..]); try testing.expectEqualSlices(MyType, &arr, &([_]MyType{ .c, .{ .b = 0 }, .{ .a = .{ 0, 0, 0 } } })); } } fn ReverseIterator(comptime T: type) type { const Pointer = blk: { switch (@typeInfo(T)) { .pointer => |ptr_info| switch (ptr_info.size) { .One => switch (@typeInfo(ptr_info.child)) { .array => |array_info| { var new_ptr_info = ptr_info; new_ptr_info.size = .Many; new_ptr_info.child = array_info.child; new_ptr_info.sentinel = array_info.sentinel; break :blk @Type(.{ .pointer = new_ptr_info }); }, else => {}, }, .Slice => { var new_ptr_info = ptr_info; new_ptr_info.size = .Many; break :blk @Type(.{ .pointer = new_ptr_info }); }, else => {}, }, else => {}, } @compileError("expected slice or pointer to array, found '" ++ @typeName(T) ++ "'"); }; const Element = std.meta.Elem(Pointer); const ElementPointer = @Type(.{ .pointer = ptr: { var ptr = @typeInfo(Pointer).pointer; ptr.size = .One; ptr.child = Element; ptr.sentinel = null; break :ptr ptr; } }); return struct { ptr: Pointer, index: usize, pub fn next(self: *@This()) ?Element { if (self.index == 0) return null; self.index -= 1; return self.ptr[self.index]; } pub fn nextPtr(self: *@This()) ?ElementPointer { if (self.index == 0) return null; self.index -= 1; return &self.ptr[self.index]; } }; } /// Iterates over a slice in reverse. pub fn reverseIterator(slice: anytype) ReverseIterator(@TypeOf(slice)) { return .{ .ptr = slice.ptr, .index = slice.len }; } test reverseIterator { { var it = reverseIterator("abc"); try testing.expectEqual(@as(?u8, 'c'), it.next()); try testing.expectEqual(@as(?u8, 'b'), it.next()); try testing.expectEqual(@as(?u8, 'a'), it.next()); try testing.expectEqual(@as(?u8, null), it.next()); } { var array = [2]i32{ 3, 7 }; const slice: []const i32 = &array; var it = reverseIterator(slice); try testing.expectEqual(@as(?i32, 7), it.next()); try testing.expectEqual(@as(?i32, 3), it.next()); try testing.expectEqual(@as(?i32, null), it.next()); it = reverseIterator(slice); try testing.expect(*const i32 == @TypeOf(it.nextPtr().?)); try testing.expectEqual(@as(?i32, 7), it.nextPtr().?.*); try testing.expectEqual(@as(?i32, 3), it.nextPtr().?.*); try testing.expectEqual(@as(?*const i32, null), it.nextPtr()); const mut_slice: []i32 = &array; var mut_it = reverseIterator(mut_slice); mut_it.nextPtr().?.* += 1; mut_it.nextPtr().?.* += 2; try testing.expectEqual([2]i32{ 5, 8 }, array); } { var array = [2]i32{ 3, 7 }; const ptr_to_array: *const [2]i32 = &array; var it = reverseIterator(ptr_to_array); try testing.expectEqual(@as(?i32, 7), it.next()); try testing.expectEqual(@as(?i32, 3), it.next()); try testing.expectEqual(@as(?i32, null), it.next()); it = reverseIterator(ptr_to_array); try testing.expect(*const i32 == @TypeOf(it.nextPtr().?)); try testing.expectEqual(@as(?i32, 7), it.nextPtr().?.*); try testing.expectEqual(@as(?i32, 3), it.nextPtr().?.*); try testing.expectEqual(@as(?*const i32, null), it.nextPtr()); const mut_ptr_to_array: *[2]i32 = &array; var mut_it = reverseIterator(mut_ptr_to_array); mut_it.nextPtr().?.* += 1; mut_it.nextPtr().?.* += 2; try testing.expectEqual([2]i32{ 5, 8 }, array); } } /// In-place rotation of the values in an array ([0 1 2 3] becomes [1 2 3 0] if we rotate by 1) /// Assumes 0 <= amount <= items.len pub fn rotate(comptime T: type, items: []T, amount: usize) void { reverse(T, items[0..amount]); reverse(T, items[amount..]); reverse(T, items); } test rotate { var arr = [_]i32{ 5, 3, 1, 2, 4 }; rotate(i32, arr[0..], 2); try testing.expect(eql(i32, &arr, &[_]i32{ 1, 2, 4, 5, 3 })); } /// Replace needle with replacement as many times as possible, writing to an output buffer which is assumed to be of /// appropriate size. Use replacementSize to calculate an appropriate buffer size. /// The needle must not be empty. /// Returns the number of replacements made. pub fn replace(comptime T: type, input: []const T, needle: []const T, replacement: []const T, output: []T) usize { // Empty needle will loop until output buffer overflows. assert(needle.len > 0); var i: usize = 0; var slide: usize = 0; var replacements: usize = 0; while (slide < input.len) { if (mem.startsWith(T, input[slide..], needle)) { @memcpy(output[i..][0..replacement.len], replacement); i += replacement.len; slide += needle.len; replacements += 1; } else { output[i] = input[slide]; i += 1; slide += 1; } } return replacements; } test replace { var output: [29]u8 = undefined; var replacements = replace(u8, "All your base are belong to us", "base", "Zig", output[0..]); var expected: []const u8 = "All your Zig are belong to us"; try testing.expect(replacements == 1); try testing.expectEqualStrings(expected, output[0..expected.len]); replacements = replace(u8, "Favor reading code over writing code.", "code", "", output[0..]); expected = "Favor reading over writing ."; try testing.expect(replacements == 2); try testing.expectEqualStrings(expected, output[0..expected.len]); // Empty needle is not allowed but input may be empty. replacements = replace(u8, "", "x", "y", output[0..0]); expected = ""; try testing.expect(replacements == 0); try testing.expectEqualStrings(expected, output[0..expected.len]); // Adjacent replacements. replacements = replace(u8, "\\n\\n", "\\n", "\n", output[0..]); expected = "\n\n"; try testing.expect(replacements == 2); try testing.expectEqualStrings(expected, output[0..expected.len]); replacements = replace(u8, "abbba", "b", "cd", output[0..]); expected = "acdcdcda"; try testing.expect(replacements == 3); try testing.expectEqualStrings(expected, output[0..expected.len]); } /// Replace all occurrences of `match` with `replacement`. pub fn replaceScalar(comptime T: type, slice: []T, match: T, replacement: T) void { for (slice) |*e| { if (e.* == match) e.* = replacement; } } /// Collapse consecutive duplicate elements into one entry. pub fn collapseRepeatsLen(comptime T: type, slice: []T, elem: T) usize { if (slice.len == 0) return 0; var write_idx: usize = 1; var read_idx: usize = 1; while (read_idx < slice.len) : (read_idx += 1) { if (slice[read_idx - 1] != elem or slice[read_idx] != elem) { slice[write_idx] = slice[read_idx]; write_idx += 1; } } return write_idx; } /// Collapse consecutive duplicate elements into one entry. pub fn collapseRepeats(comptime T: type, slice: []T, elem: T) []T { return slice[0..collapseRepeatsLen(T, slice, elem)]; } fn testCollapseRepeats(str: []const u8, elem: u8, expected: []const u8) !void { const mutable = try std.testing.allocator.dupe(u8, str); defer std.testing.allocator.free(mutable); try testing.expect(std.mem.eql(u8, collapseRepeats(u8, mutable, elem), expected)); } test collapseRepeats { try testCollapseRepeats("", '/', ""); try testCollapseRepeats("a", '/', "a"); try testCollapseRepeats("/", '/', "/"); try testCollapseRepeats("//", '/', "/"); try testCollapseRepeats("/a", '/', "/a"); try testCollapseRepeats("//a", '/', "/a"); try testCollapseRepeats("a/", '/', "a/"); try testCollapseRepeats("a//", '/', "a/"); try testCollapseRepeats("a/a", '/', "a/a"); try testCollapseRepeats("a//a", '/', "a/a"); try testCollapseRepeats("//a///a////", '/', "/a/a/"); } /// Calculate the size needed in an output buffer to perform a replacement. /// The needle must not be empty. pub fn replacementSize(comptime T: type, input: []const T, needle: []const T, replacement: []const T) usize { // Empty needle will loop forever. assert(needle.len > 0); var i: usize = 0; var size: usize = input.len; while (i < input.len) { if (mem.startsWith(T, input[i..], needle)) { size = size - needle.len + replacement.len; i += needle.len; } else { i += 1; } } return size; } test replacementSize { try testing.expect(replacementSize(u8, "All your base are belong to us", "base", "Zig") == 29); try testing.expect(replacementSize(u8, "Favor reading code over writing code.", "code", "") == 29); try testing.expect(replacementSize(u8, "Only one obvious way to do things.", "things.", "things in Zig.") == 41); // Empty needle is not allowed but input may be empty. try testing.expect(replacementSize(u8, "", "x", "y") == 0); // Adjacent replacements. try testing.expect(replacementSize(u8, "\\n\\n", "\\n", "\n") == 2); try testing.expect(replacementSize(u8, "abbba", "b", "cd") == 8); } /// Perform a replacement on an allocated buffer of pre-determined size. Caller must free returned memory. pub fn replaceOwned(comptime T: type, allocator: Allocator, input: []const T, needle: []const T, replacement: []const T) Allocator.Error![]T { const output = try allocator.alloc(T, replacementSize(T, input, needle, replacement)); _ = replace(T, input, needle, replacement, output); return output; } test replaceOwned { const gpa = std.testing.allocator; const base_replace = replaceOwned(u8, gpa, "All your base are belong to us", "base", "Zig") catch @panic("out of memory"); defer gpa.free(base_replace); try testing.expect(eql(u8, base_replace, "All your Zig are belong to us")); const zen_replace = replaceOwned(u8, gpa, "Favor reading code over writing code.", " code", "") catch @panic("out of memory"); defer gpa.free(zen_replace); try testing.expect(eql(u8, zen_replace, "Favor reading over writing.")); } /// Converts a little-endian integer to host endianness. pub fn littleToNative(comptime T: type, x: T) T { return switch (native_endian) { .little => x, .big => @byteSwap(x), }; } /// Converts a big-endian integer to host endianness. pub fn bigToNative(comptime T: type, x: T) T { return switch (native_endian) { .little => @byteSwap(x), .big => x, }; } /// Converts an integer from specified endianness to host endianness. pub fn toNative(comptime T: type, x: T, endianness_of_x: Endian) T { return switch (endianness_of_x) { .little => littleToNative(T, x), .big => bigToNative(T, x), }; } /// Converts an integer which has host endianness to the desired endianness. pub fn nativeTo(comptime T: type, x: T, desired_endianness: Endian) T { return switch (desired_endianness) { .little => nativeToLittle(T, x), .big => nativeToBig(T, x), }; } /// Converts an integer which has host endianness to little endian. pub fn nativeToLittle(comptime T: type, x: T) T { return switch (native_endian) { .little => x, .big => @byteSwap(x), }; } /// Converts an integer which has host endianness to big endian. pub fn nativeToBig(comptime T: type, x: T) T { return switch (native_endian) { .little => @byteSwap(x), .big => x, }; } /// Returns the number of elements that, if added to the given pointer, align it /// to a multiple of the given quantity, or `null` if one of the following /// conditions is met: /// - The aligned pointer would not fit the address space, /// - The delta required to align the pointer is not a multiple of the pointee's /// type. pub fn alignPointerOffset(ptr: anytype, align_to: usize) ?usize { assert(isValidAlign(align_to)); const T = @TypeOf(ptr); const info = @typeInfo(T); if (info != .pointer or info.pointer.size != .Many) @compileError("expected many item pointer, got " ++ @typeName(T)); // Do nothing if the pointer is already well-aligned. if (align_to <= info.pointer.alignment) return 0; // Calculate the aligned base address with an eye out for overflow. const addr = @intFromPtr(ptr); var ov = @addWithOverflow(addr, align_to - 1); if (ov[1] != 0) return null; ov[0] &= ~@as(usize, align_to - 1); // The delta is expressed in terms of bytes, turn it into a number of child // type elements. const delta = ov[0] - addr; const pointee_size = @sizeOf(info.pointer.child); if (delta % pointee_size != 0) return null; return delta / pointee_size; } /// Aligns a given pointer value to a specified alignment factor. /// Returns an aligned pointer or null if one of the following conditions is /// met: /// - The aligned pointer would not fit the address space, /// - The delta required to align the pointer is not a multiple of the pointee's /// type. pub fn alignPointer(ptr: anytype, align_to: usize) ?@TypeOf(ptr) { const adjust_off = alignPointerOffset(ptr, align_to) orelse return null; // Avoid the use of ptrFromInt to avoid losing the pointer provenance info. return @alignCast(ptr + adjust_off); } test alignPointer { const S = struct { fn checkAlign(comptime T: type, base: usize, align_to: usize, expected: usize) !void { const ptr: T = @ptrFromInt(base); const aligned = alignPointer(ptr, align_to); try testing.expectEqual(expected, @intFromPtr(aligned)); } }; try S.checkAlign([*]u8, 0x123, 0x200, 0x200); try S.checkAlign([*]align(4) u8, 0x10, 2, 0x10); try S.checkAlign([*]u32, 0x10, 2, 0x10); try S.checkAlign([*]u32, 0x4, 16, 0x10); // Misaligned. try S.checkAlign([*]align(1) u32, 0x3, 2, 0); // Overflow. try S.checkAlign([*]u32, math.maxInt(usize) - 3, 8, 0); } fn CopyPtrAttrs( comptime source: type, comptime size: std.builtin.Type.Pointer.Size, comptime child: type, ) type { const info = @typeInfo(source).pointer; return @Type(.{ .pointer = .{ .size = size, .is_const = info.is_const, .is_volatile = info.is_volatile, .is_allowzero = info.is_allowzero, .alignment = info.alignment, .address_space = info.address_space, .child = child, .sentinel = null, }, }); } fn AsBytesReturnType(comptime P: type) type { const pointer = @typeInfo(P).pointer; assert(pointer.size == .One); const size = @sizeOf(pointer.child); return CopyPtrAttrs(P, .One, [size]u8); } /// Given a pointer to a single item, returns a slice of the underlying bytes, preserving pointer attributes. pub fn asBytes(ptr: anytype) AsBytesReturnType(@TypeOf(ptr)) { return @ptrCast(@alignCast(ptr)); } test asBytes { const deadbeef = @as(u32, 0xDEADBEEF); const deadbeef_bytes = switch (native_endian) { .big => "\xDE\xAD\xBE\xEF", .little => "\xEF\xBE\xAD\xDE", }; try testing.expect(eql(u8, asBytes(&deadbeef), deadbeef_bytes)); var codeface = @as(u32, 0xC0DEFACE); for (asBytes(&codeface)) |*b| b.* = 0; try testing.expect(codeface == 0); const S = packed struct { a: u8, b: u8, c: u8, d: u8, }; const inst = S{ .a = 0xBE, .b = 0xEF, .c = 0xDE, .d = 0xA1, }; switch (native_endian) { .little => { try testing.expect(eql(u8, asBytes(&inst), "\xBE\xEF\xDE\xA1")); }, .big => { try testing.expect(eql(u8, asBytes(&inst), "\xA1\xDE\xEF\xBE")); }, } const ZST = struct {}; const zero = ZST{}; try testing.expect(eql(u8, asBytes(&zero), "")); } test "asBytes preserves pointer attributes" { const inArr: u32 align(16) = 0xDEADBEEF; const inPtr = @as(*align(16) const volatile u32, @ptrCast(&inArr)); const outSlice = asBytes(inPtr); const in = @typeInfo(@TypeOf(inPtr)).pointer; const out = @typeInfo(@TypeOf(outSlice)).pointer; try testing.expectEqual(in.is_const, out.is_const); try testing.expectEqual(in.is_volatile, out.is_volatile); try testing.expectEqual(in.is_allowzero, out.is_allowzero); try testing.expectEqual(in.alignment, out.alignment); } /// Given any value, returns a copy of its bytes in an array. pub fn toBytes(value: anytype) [@sizeOf(@TypeOf(value))]u8 { return asBytes(&value).*; } test toBytes { var my_bytes = toBytes(@as(u32, 0x12345678)); switch (native_endian) { .big => try testing.expect(eql(u8, &my_bytes, "\x12\x34\x56\x78")), .little => try testing.expect(eql(u8, &my_bytes, "\x78\x56\x34\x12")), } my_bytes[0] = '\x99'; switch (native_endian) { .big => try testing.expect(eql(u8, &my_bytes, "\x99\x34\x56\x78")), .little => try testing.expect(eql(u8, &my_bytes, "\x99\x56\x34\x12")), } } fn BytesAsValueReturnType(comptime T: type, comptime B: type) type { return CopyPtrAttrs(B, .One, T); } /// Given a pointer to an array of bytes, returns a pointer to a value of the specified type /// backed by those bytes, preserving pointer attributes. pub fn bytesAsValue(comptime T: type, bytes: anytype) BytesAsValueReturnType(T, @TypeOf(bytes)) { return @ptrCast(bytes); } test bytesAsValue { const deadbeef = @as(u32, 0xDEADBEEF); const deadbeef_bytes = switch (native_endian) { .big => "\xDE\xAD\xBE\xEF", .little => "\xEF\xBE\xAD\xDE", }; try testing.expect(deadbeef == bytesAsValue(u32, deadbeef_bytes).*); var codeface_bytes: [4]u8 = switch (native_endian) { .big => "\xC0\xDE\xFA\xCE", .little => "\xCE\xFA\xDE\xC0", }.*; const codeface = bytesAsValue(u32, &codeface_bytes); try testing.expect(codeface.* == 0xC0DEFACE); codeface.* = 0; for (codeface_bytes) |b| try testing.expect(b == 0); const S = packed struct { a: u8, b: u8, c: u8, d: u8, }; const inst = S{ .a = 0xBE, .b = 0xEF, .c = 0xDE, .d = 0xA1, }; const inst_bytes = switch (native_endian) { .little => "\xBE\xEF\xDE\xA1", .big => "\xA1\xDE\xEF\xBE", }; const inst2 = bytesAsValue(S, inst_bytes); try testing.expect(std.meta.eql(inst, inst2.*)); } test "bytesAsValue preserves pointer attributes" { const inArr align(16) = [4]u8{ 0xDE, 0xAD, 0xBE, 0xEF }; const inSlice = @as(*align(16) const volatile [4]u8, @ptrCast(&inArr))[0..]; const outPtr = bytesAsValue(u32, inSlice); const in = @typeInfo(@TypeOf(inSlice)).pointer; const out = @typeInfo(@TypeOf(outPtr)).pointer; try testing.expectEqual(in.is_const, out.is_const); try testing.expectEqual(in.is_volatile, out.is_volatile); try testing.expectEqual(in.is_allowzero, out.is_allowzero); try testing.expectEqual(in.alignment, out.alignment); } /// Given a pointer to an array of bytes, returns a value of the specified type backed by a /// copy of those bytes. pub fn bytesToValue(comptime T: type, bytes: anytype) T { return bytesAsValue(T, bytes).*; } test bytesToValue { const deadbeef_bytes = switch (native_endian) { .big => "\xDE\xAD\xBE\xEF", .little => "\xEF\xBE\xAD\xDE", }; const deadbeef = bytesToValue(u32, deadbeef_bytes); try testing.expect(deadbeef == @as(u32, 0xDEADBEEF)); } fn BytesAsSliceReturnType(comptime T: type, comptime bytesType: type) type { return CopyPtrAttrs(bytesType, .Slice, T); } /// Given a slice of bytes, returns a slice of the specified type /// backed by those bytes, preserving pointer attributes. pub fn bytesAsSlice(comptime T: type, bytes: anytype) BytesAsSliceReturnType(T, @TypeOf(bytes)) { // let's not give an undefined pointer to @ptrCast // it may be equal to zero and fail a null check if (bytes.len == 0) { return &[0]T{}; } const cast_target = CopyPtrAttrs(@TypeOf(bytes), .Many, T); return @as(cast_target, @ptrCast(bytes))[0..@divExact(bytes.len, @sizeOf(T))]; } test bytesAsSlice { { const bytes = [_]u8{ 0xDE, 0xAD, 0xBE, 0xEF }; const slice = bytesAsSlice(u16, bytes[0..]); try testing.expect(slice.len == 2); try testing.expect(bigToNative(u16, slice[0]) == 0xDEAD); try testing.expect(bigToNative(u16, slice[1]) == 0xBEEF); } { const bytes = [_]u8{ 0xDE, 0xAD, 0xBE, 0xEF }; var runtime_zero: usize = 0; _ = &runtime_zero; const slice = bytesAsSlice(u16, bytes[runtime_zero..]); try testing.expect(slice.len == 2); try testing.expect(bigToNative(u16, slice[0]) == 0xDEAD); try testing.expect(bigToNative(u16, slice[1]) == 0xBEEF); } } test "bytesAsSlice keeps pointer alignment" { { var bytes = [_]u8{ 0x01, 0x02, 0x03, 0x04 }; const numbers = bytesAsSlice(u32, bytes[0..]); try comptime testing.expect(@TypeOf(numbers) == []align(@alignOf(@TypeOf(bytes))) u32); } { var bytes = [_]u8{ 0x01, 0x02, 0x03, 0x04 }; var runtime_zero: usize = 0; _ = &runtime_zero; const numbers = bytesAsSlice(u32, bytes[runtime_zero..]); try comptime testing.expect(@TypeOf(numbers) == []align(@alignOf(@TypeOf(bytes))) u32); } } test "bytesAsSlice on a packed struct" { const F = packed struct { a: u8, }; const b: [1]u8 = .{9}; const f = bytesAsSlice(F, &b); try testing.expect(f[0].a == 9); } test "bytesAsSlice with specified alignment" { var bytes align(4) = [_]u8{ 0x33, 0x33, 0x33, 0x33, }; const slice: []u32 = std.mem.bytesAsSlice(u32, bytes[0..]); try testing.expect(slice[0] == 0x33333333); } test "bytesAsSlice preserves pointer attributes" { const inArr align(16) = [4]u8{ 0xDE, 0xAD, 0xBE, 0xEF }; const inSlice = @as(*align(16) const volatile [4]u8, @ptrCast(&inArr))[0..]; const outSlice = bytesAsSlice(u16, inSlice); const in = @typeInfo(@TypeOf(inSlice)).pointer; const out = @typeInfo(@TypeOf(outSlice)).pointer; try testing.expectEqual(in.is_const, out.is_const); try testing.expectEqual(in.is_volatile, out.is_volatile); try testing.expectEqual(in.is_allowzero, out.is_allowzero); try testing.expectEqual(in.alignment, out.alignment); } fn SliceAsBytesReturnType(comptime Slice: type) type { return CopyPtrAttrs(Slice, .Slice, u8); } /// Given a slice, returns a slice of the underlying bytes, preserving pointer attributes. pub fn sliceAsBytes(slice: anytype) SliceAsBytesReturnType(@TypeOf(slice)) { const Slice = @TypeOf(slice); // a slice of zero-bit values always occupies zero bytes if (@sizeOf(std.meta.Elem(Slice)) == 0) return &[0]u8{}; // let's not give an undefined pointer to @ptrCast // it may be equal to zero and fail a null check if (slice.len == 0 and std.meta.sentinel(Slice) == null) return &[0]u8{}; const cast_target = CopyPtrAttrs(Slice, .Many, u8); return @as(cast_target, @ptrCast(slice))[0 .. slice.len * @sizeOf(std.meta.Elem(Slice))]; } test sliceAsBytes { const bytes = [_]u16{ 0xDEAD, 0xBEEF }; const slice = sliceAsBytes(bytes[0..]); try testing.expect(slice.len == 4); try testing.expect(eql(u8, slice, switch (native_endian) { .big => "\xDE\xAD\xBE\xEF", .little => "\xAD\xDE\xEF\xBE", })); } test "sliceAsBytes with sentinel slice" { const empty_string: [:0]const u8 = ""; const bytes = sliceAsBytes(empty_string); try testing.expect(bytes.len == 0); } test "sliceAsBytes with zero-bit element type" { const lots_of_nothing = [1]void{{}} ** 10_000; const bytes = sliceAsBytes(&lots_of_nothing); try testing.expect(bytes.len == 0); } test "sliceAsBytes packed struct at runtime and comptime" { const Foo = packed struct { a: u4, b: u4, }; const S = struct { fn doTheTest() !void { var foo: Foo = undefined; var slice = sliceAsBytes(@as(*[1]Foo, &foo)[0..1]); slice[0] = 0x13; try testing.expect(foo.a == 0x3); try testing.expect(foo.b == 0x1); } }; try S.doTheTest(); try comptime S.doTheTest(); } test "sliceAsBytes and bytesAsSlice back" { try testing.expect(@sizeOf(i32) == 4); var big_thing_array = [_]i32{ 1, 2, 3, 4 }; const big_thing_slice: []i32 = big_thing_array[0..]; const bytes = sliceAsBytes(big_thing_slice); try testing.expect(bytes.len == 4 * 4); bytes[4] = 0; bytes[5] = 0; bytes[6] = 0; bytes[7] = 0; try testing.expect(big_thing_slice[1] == 0); const big_thing_again = bytesAsSlice(i32, bytes); try testing.expect(big_thing_again[2] == 3); big_thing_again[2] = -1; try testing.expect(bytes[8] == math.maxInt(u8)); try testing.expect(bytes[9] == math.maxInt(u8)); try testing.expect(bytes[10] == math.maxInt(u8)); try testing.expect(bytes[11] == math.maxInt(u8)); } test "sliceAsBytes preserves pointer attributes" { const inArr align(16) = [2]u16{ 0xDEAD, 0xBEEF }; const inSlice = @as(*align(16) const volatile [2]u16, @ptrCast(&inArr))[0..]; const outSlice = sliceAsBytes(inSlice); const in = @typeInfo(@TypeOf(inSlice)).pointer; const out = @typeInfo(@TypeOf(outSlice)).pointer; try testing.expectEqual(in.is_const, out.is_const); try testing.expectEqual(in.is_volatile, out.is_volatile); try testing.expectEqual(in.is_allowzero, out.is_allowzero); try testing.expectEqual(in.alignment, out.alignment); } /// Round an address down to the next (or current) aligned address. /// Unlike `alignForward`, `alignment` can be any positive number, not just a power of 2. pub fn alignForwardAnyAlign(comptime T: type, addr: T, alignment: T) T { if (isValidAlignGeneric(T, alignment)) return alignForward(T, addr, alignment); assert(alignment != 0); return alignBackwardAnyAlign(T, addr + (alignment - 1), alignment); } /// Round an address up to the next (or current) aligned address. /// The alignment must be a power of 2 and greater than 0. /// Asserts that rounding up the address does not cause integer overflow. pub fn alignForward(comptime T: type, addr: T, alignment: T) T { assert(isValidAlignGeneric(T, alignment)); return alignBackward(T, addr + (alignment - 1), alignment); } pub fn alignForwardLog2(addr: usize, log2_alignment: u8) usize { const alignment = @as(usize, 1) << @as(math.Log2Int(usize), @intCast(log2_alignment)); return alignForward(usize, addr, alignment); } /// Force an evaluation of the expression; this tries to prevent /// the compiler from optimizing the computation away even if the /// result eventually gets discarded. // TODO: use @declareSideEffect() when it is available - https://github.com/ziglang/zig/issues/6168 pub fn doNotOptimizeAway(val: anytype) void { if (@inComptime()) return; const max_gp_register_bits = @bitSizeOf(c_long); const t = @typeInfo(@TypeOf(val)); switch (t) { .void, .null, .comptime_int, .comptime_float => return, .@"enum" => doNotOptimizeAway(@intFromEnum(val)), .bool => doNotOptimizeAway(@intFromBool(val)), .int => { const bits = t.int.bits; if (bits <= max_gp_register_bits and builtin.zig_backend != .stage2_c) { const val2 = @as( std.meta.Int(t.int.signedness, @max(8, std.math.ceilPowerOfTwoAssert(u16, bits))), val, ); asm volatile ("" : : [val2] "r" (val2), ); } else doNotOptimizeAway(&val); }, .float => { if ((t.float.bits == 32 or t.float.bits == 64) and builtin.zig_backend != .stage2_c) { asm volatile ("" : : [val] "rm" (val), ); } else doNotOptimizeAway(&val); }, .pointer => { if (builtin.zig_backend == .stage2_c) { doNotOptimizeAwayC(val); } else { asm volatile ("" : : [val] "m" (val), : "memory" ); } }, .array => { if (t.array.len * @sizeOf(t.array.child) <= 64) { for (val) |v| doNotOptimizeAway(v); } else doNotOptimizeAway(&val); }, else => doNotOptimizeAway(&val), } } /// .stage2_c doesn't support asm blocks yet, so use volatile stores instead var deopt_target: if (builtin.zig_backend == .stage2_c) u8 else void = undefined; fn doNotOptimizeAwayC(ptr: anytype) void { const dest = @as(*volatile u8, @ptrCast(&deopt_target)); for (asBytes(ptr)) |b| { dest.* = b; } dest.* = 0; } test doNotOptimizeAway { comptime doNotOptimizeAway("test"); doNotOptimizeAway(null); doNotOptimizeAway(true); doNotOptimizeAway(0); doNotOptimizeAway(0.0); doNotOptimizeAway(@as(u1, 0)); doNotOptimizeAway(@as(u3, 0)); doNotOptimizeAway(@as(u8, 0)); doNotOptimizeAway(@as(u16, 0)); doNotOptimizeAway(@as(u32, 0)); doNotOptimizeAway(@as(u64, 0)); doNotOptimizeAway(@as(u128, 0)); doNotOptimizeAway(@as(u13, 0)); doNotOptimizeAway(@as(u37, 0)); doNotOptimizeAway(@as(u96, 0)); doNotOptimizeAway(@as(u200, 0)); doNotOptimizeAway(@as(f32, 0.0)); doNotOptimizeAway(@as(f64, 0.0)); doNotOptimizeAway([_]u8{0} ** 4); doNotOptimizeAway([_]u8{0} ** 100); doNotOptimizeAway(@as(std.builtin.Endian, .little)); } test alignForward { try testing.expect(alignForward(usize, 1, 1) == 1); try testing.expect(alignForward(usize, 2, 1) == 2); try testing.expect(alignForward(usize, 1, 2) == 2); try testing.expect(alignForward(usize, 2, 2) == 2); try testing.expect(alignForward(usize, 3, 2) == 4); try testing.expect(alignForward(usize, 4, 2) == 4); try testing.expect(alignForward(usize, 7, 8) == 8); try testing.expect(alignForward(usize, 8, 8) == 8); try testing.expect(alignForward(usize, 9, 8) == 16); try testing.expect(alignForward(usize, 15, 8) == 16); try testing.expect(alignForward(usize, 16, 8) == 16); try testing.expect(alignForward(usize, 17, 8) == 24); } /// Round an address down to the previous (or current) aligned address. /// Unlike `alignBackward`, `alignment` can be any positive number, not just a power of 2. pub fn alignBackwardAnyAlign(comptime T: type, addr: T, alignment: T) T { if (isValidAlignGeneric(T, alignment)) return alignBackward(T, addr, alignment); assert(alignment != 0); return addr - @mod(addr, alignment); } /// Round an address down to the previous (or current) aligned address. /// The alignment must be a power of 2 and greater than 0. pub fn alignBackward(comptime T: type, addr: T, alignment: T) T { assert(isValidAlignGeneric(T, alignment)); // 000010000 // example alignment // 000001111 // subtract 1 // 111110000 // binary not return addr & ~(alignment - 1); } /// Returns whether `alignment` is a valid alignment, meaning it is /// a positive power of 2. pub fn isValidAlign(alignment: usize) bool { return isValidAlignGeneric(usize, alignment); } /// Returns whether `alignment` is a valid alignment, meaning it is /// a positive power of 2. pub fn isValidAlignGeneric(comptime T: type, alignment: T) bool { return alignment > 0 and std.math.isPowerOfTwo(alignment); } pub fn isAlignedAnyAlign(i: usize, alignment: usize) bool { if (isValidAlign(alignment)) return isAligned(i, alignment); assert(alignment != 0); return 0 == @mod(i, alignment); } pub fn isAlignedLog2(addr: usize, log2_alignment: u8) bool { return @ctz(addr) >= log2_alignment; } /// Given an address and an alignment, return true if the address is a multiple of the alignment /// The alignment must be a power of 2 and greater than 0. pub fn isAligned(addr: usize, alignment: usize) bool { return isAlignedGeneric(u64, addr, alignment); } pub fn isAlignedGeneric(comptime T: type, addr: T, alignment: T) bool { return alignBackward(T, addr, alignment) == addr; } test isAligned { try testing.expect(isAligned(0, 4)); try testing.expect(isAligned(1, 1)); try testing.expect(isAligned(2, 1)); try testing.expect(isAligned(2, 2)); try testing.expect(!isAligned(2, 4)); try testing.expect(isAligned(3, 1)); try testing.expect(!isAligned(3, 2)); try testing.expect(!isAligned(3, 4)); try testing.expect(isAligned(4, 4)); try testing.expect(isAligned(4, 2)); try testing.expect(isAligned(4, 1)); try testing.expect(!isAligned(4, 8)); try testing.expect(!isAligned(4, 16)); } test "freeing empty string with null-terminated sentinel" { const empty_string = try testing.allocator.dupeZ(u8, ""); testing.allocator.free(empty_string); } /// Returns a slice with the given new alignment, /// all other pointer attributes copied from `AttributeSource`. fn AlignedSlice(comptime AttributeSource: type, comptime new_alignment: usize) type { const info = @typeInfo(AttributeSource).pointer; return @Type(.{ .pointer = .{ .size = .Slice, .is_const = info.is_const, .is_volatile = info.is_volatile, .is_allowzero = info.is_allowzero, .alignment = new_alignment, .address_space = info.address_space, .child = info.child, .sentinel = null, }, }); } /// Returns the largest slice in the given bytes that conforms to the new alignment, /// or `null` if the given bytes contain no conforming address. pub fn alignInBytes(bytes: []u8, comptime new_alignment: usize) ?[]align(new_alignment) u8 { const begin_address = @intFromPtr(bytes.ptr); const end_address = begin_address + bytes.len; const begin_address_aligned = mem.alignForward(usize, begin_address, new_alignment); const new_length = std.math.sub(usize, end_address, begin_address_aligned) catch |e| switch (e) { error.Overflow => return null, }; const alignment_offset = begin_address_aligned - begin_address; return @alignCast(bytes[alignment_offset .. alignment_offset + new_length]); } /// Returns the largest sub-slice within the given slice that conforms to the new alignment, /// or `null` if the given slice contains no conforming address. pub fn alignInSlice(slice: anytype, comptime new_alignment: usize) ?AlignedSlice(@TypeOf(slice), new_alignment) { const bytes = sliceAsBytes(slice); const aligned_bytes = alignInBytes(bytes, new_alignment) orelse return null; const Element = @TypeOf(slice[0]); const slice_length_bytes = aligned_bytes.len - (aligned_bytes.len % @sizeOf(Element)); const aligned_slice = bytesAsSlice(Element, aligned_bytes[0..slice_length_bytes]); return @alignCast(aligned_slice); } test "read/write(Var)PackedInt" { switch (builtin.cpu.arch) { // This test generates too much code to execute on WASI. // LLVM backend fails with "too many locals: locals exceed maximum" .wasm32, .wasm64 => return error.SkipZigTest, else => {}, } if (builtin.cpu.arch == .powerpc) { // https://github.com/ziglang/zig/issues/16951 return error.SkipZigTest; } const foreign_endian: Endian = if (native_endian == .big) .little else .big; const expect = std.testing.expect; var prng = std.Random.DefaultPrng.init(1234); const random = prng.random(); @setEvalBranchQuota(10_000); inline for ([_]type{ u8, u16, u32, u128 }) |BackingType| { for ([_]BackingType{ @as(BackingType, 0), // all zeros -%@as(BackingType, 1), // all ones random.int(BackingType), // random random.int(BackingType), // random random.int(BackingType), // random }) |init_value| { const uTs = [_]type{ u1, u3, u7, u8, u9, u10, u15, u16, u86 }; const iTs = [_]type{ i1, i3, i7, i8, i9, i10, i15, i16, i86 }; inline for (uTs ++ iTs) |PackedType| { if (@bitSizeOf(PackedType) > @bitSizeOf(BackingType)) continue; const iPackedType = std.meta.Int(.signed, @bitSizeOf(PackedType)); const uPackedType = std.meta.Int(.unsigned, @bitSizeOf(PackedType)); const Log2T = std.math.Log2Int(BackingType); const offset_at_end = @bitSizeOf(BackingType) - @bitSizeOf(PackedType); for ([_]usize{ 0, 1, 7, 8, 9, 10, 15, 16, 86, offset_at_end }) |offset| { if (offset > offset_at_end or offset == @bitSizeOf(BackingType)) continue; for ([_]PackedType{ ~@as(PackedType, 0), // all ones: -1 iN / maxInt uN @as(PackedType, 0), // all zeros: 0 iN / 0 uN @as(PackedType, @bitCast(@as(iPackedType, math.maxInt(iPackedType)))), // maxInt iN @as(PackedType, @bitCast(@as(iPackedType, math.minInt(iPackedType)))), // maxInt iN random.int(PackedType), // random random.int(PackedType), // random }) |write_value| { { // Fixed-size Read/Write (Native-endian) // Initialize Value var value: BackingType = init_value; // Read const read_value1 = readPackedInt(PackedType, asBytes(&value), offset, native_endian); try expect(read_value1 == @as(PackedType, @bitCast(@as(uPackedType, @truncate(value >> @as(Log2T, @intCast(offset))))))); // Write writePackedInt(PackedType, asBytes(&value), offset, write_value, native_endian); try expect(write_value == @as(PackedType, @bitCast(@as(uPackedType, @truncate(value >> @as(Log2T, @intCast(offset))))))); // Read again const read_value2 = readPackedInt(PackedType, asBytes(&value), offset, native_endian); try expect(read_value2 == write_value); // Verify bits outside of the target integer are unmodified const diff_bits = init_value ^ value; if (offset != offset_at_end) try expect(diff_bits >> @as(Log2T, @intCast(offset + @bitSizeOf(PackedType))) == 0); if (offset != 0) try expect(diff_bits << @as(Log2T, @intCast(@bitSizeOf(BackingType) - offset)) == 0); } { // Fixed-size Read/Write (Foreign-endian) // Initialize Value var value: BackingType = @byteSwap(init_value); // Read const read_value1 = readPackedInt(PackedType, asBytes(&value), offset, foreign_endian); try expect(read_value1 == @as(PackedType, @bitCast(@as(uPackedType, @truncate(@byteSwap(value) >> @as(Log2T, @intCast(offset))))))); // Write writePackedInt(PackedType, asBytes(&value), offset, write_value, foreign_endian); try expect(write_value == @as(PackedType, @bitCast(@as(uPackedType, @truncate(@byteSwap(value) >> @as(Log2T, @intCast(offset))))))); // Read again const read_value2 = readPackedInt(PackedType, asBytes(&value), offset, foreign_endian); try expect(read_value2 == write_value); // Verify bits outside of the target integer are unmodified const diff_bits = init_value ^ @byteSwap(value); if (offset != offset_at_end) try expect(diff_bits >> @as(Log2T, @intCast(offset + @bitSizeOf(PackedType))) == 0); if (offset != 0) try expect(diff_bits << @as(Log2T, @intCast(@bitSizeOf(BackingType) - offset)) == 0); } const signedness = @typeInfo(PackedType).int.signedness; const NextPowerOfTwoInt = std.meta.Int(signedness, try comptime std.math.ceilPowerOfTwo(u16, @bitSizeOf(PackedType))); const ui64 = std.meta.Int(signedness, 64); inline for ([_]type{ PackedType, NextPowerOfTwoInt, ui64 }) |U| { { // Variable-size Read/Write (Native-endian) if (@bitSizeOf(U) < @bitSizeOf(PackedType)) continue; // Initialize Value var value: BackingType = init_value; // Read const read_value1 = readVarPackedInt(U, asBytes(&value), offset, @bitSizeOf(PackedType), native_endian, signedness); try expect(read_value1 == @as(PackedType, @bitCast(@as(uPackedType, @truncate(value >> @as(Log2T, @intCast(offset))))))); // Write writeVarPackedInt(asBytes(&value), offset, @bitSizeOf(PackedType), @as(U, write_value), native_endian); try expect(write_value == @as(PackedType, @bitCast(@as(uPackedType, @truncate(value >> @as(Log2T, @intCast(offset))))))); // Read again const read_value2 = readVarPackedInt(U, asBytes(&value), offset, @bitSizeOf(PackedType), native_endian, signedness); try expect(read_value2 == write_value); // Verify bits outside of the target integer are unmodified const diff_bits = init_value ^ value; if (offset != offset_at_end) try expect(diff_bits >> @as(Log2T, @intCast(offset + @bitSizeOf(PackedType))) == 0); if (offset != 0) try expect(diff_bits << @as(Log2T, @intCast(@bitSizeOf(BackingType) - offset)) == 0); } { // Variable-size Read/Write (Foreign-endian) if (@bitSizeOf(U) < @bitSizeOf(PackedType)) continue; // Initialize Value var value: BackingType = @byteSwap(init_value); // Read const read_value1 = readVarPackedInt(U, asBytes(&value), offset, @bitSizeOf(PackedType), foreign_endian, signedness); try expect(read_value1 == @as(PackedType, @bitCast(@as(uPackedType, @truncate(@byteSwap(value) >> @as(Log2T, @intCast(offset))))))); // Write writeVarPackedInt(asBytes(&value), offset, @bitSizeOf(PackedType), @as(U, write_value), foreign_endian); try expect(write_value == @as(PackedType, @bitCast(@as(uPackedType, @truncate(@byteSwap(value) >> @as(Log2T, @intCast(offset))))))); // Read again const read_value2 = readVarPackedInt(U, asBytes(&value), offset, @bitSizeOf(PackedType), foreign_endian, signedness); try expect(read_value2 == write_value); // Verify bits outside of the target integer are unmodified const diff_bits = init_value ^ @byteSwap(value); if (offset != offset_at_end) try expect(diff_bits >> @as(Log2T, @intCast(offset + @bitSizeOf(PackedType))) == 0); if (offset != 0) try expect(diff_bits << @as(Log2T, @intCast(@bitSizeOf(BackingType) - offset)) == 0); } } } } } } } }