//! Allocation-free, (best-effort) constant-time, finite field arithmetic for large integers. //! //! Unlike `std.math.big`, these integers have a fixed maximum length and are only designed to be used for modular arithmetic. //! Arithmetic operations are meant to run in constant-time for a given modulus, making them suitable for cryptography. //! //! Parts of that code was ported from the BSD-licensed crypto/internal/bigmod/nat.go file in the Go language, itself inspired from BearSSL. const std = @import("std"); const builtin = @import("builtin"); const crypto = std.crypto; const math = std.math; const mem = std.mem; const meta = std.meta; const testing = std.testing; const assert = std.debug.assert; const Endian = std.builtin.Endian; // A Limb is a single digit in a big integer. const Limb = usize; // The number of reserved bits in a Limb. const carry_bits = 1; // The number of active bits in a Limb. const t_bits: usize = @bitSizeOf(Limb) - carry_bits; // A TLimb is a Limb that is truncated to t_bits. const TLimb = meta.Int(.unsigned, t_bits); const native_endian = builtin.target.cpu.arch.endian(); // A WideLimb is a Limb that is twice as wide as a normal Limb. const WideLimb = struct { hi: Limb, lo: Limb, }; /// Value is too large for the destination. pub const OverflowError = error{Overflow}; /// Invalid modulus. Modulus must be odd. pub const InvalidModulusError = error{ EvenModulus, ModulusTooSmall }; /// Exponentation with a null exponent. /// Exponentiation in cryptographic protocols is almost always a sign of a bug which can lead to trivial attacks. /// Therefore, this module returns an error when a null exponent is encountered, encouraging applications to handle this case explicitly. pub const NullExponentError = error{NullExponent}; /// Invalid field element for the given modulus. pub const FieldElementError = error{NonCanonical}; /// Invalid representation (Montgomery vs non-Montgomery domain.) pub const RepresentationError = error{UnexpectedRepresentation}; /// The set of all possible errors `std.crypto.ff` functions can return. pub const Error = OverflowError || InvalidModulusError || NullExponentError || FieldElementError || RepresentationError; /// An unsigned big integer with a fixed maximum size (`max_bits`), suitable for cryptographic operations. /// Unless side-channels mitigations are explicitly disabled, operations are designed to be constant-time. pub fn Uint(comptime max_bits: comptime_int) type { comptime assert(@bitSizeOf(Limb) % 8 == 0); // Limb size must be a multiple of 8 return struct { const Self = @This(); const max_limbs_count = math.divCeil(usize, max_bits, t_bits) catch unreachable; limbs_buffer: [max_limbs_count]Limb, /// The number of active limbs. limbs_len: usize, /// Number of bytes required to serialize an integer. pub const encoded_bytes = math.divCeil(usize, max_bits, 8) catch unreachable; /// Constant slice of active limbs. fn limbsConst(self: *const Self) []const Limb { return self.limbs_buffer[0..self.limbs_len]; } /// Mutable slice of active limbs. fn limbs(self: *Self) []Limb { return self.limbs_buffer[0..self.limbs_len]; } // Removes limbs whose value is zero from the active limbs. fn normalize(self: Self) Self { var res = self; if (self.limbs_len < 2) { return res; } var i = self.limbs_len - 1; while (i > 0 and res.limbsConst()[i] == 0) : (i -= 1) {} res.limbs_len = i + 1; assert(res.limbs_len <= res.limbs_buffer.len); return res; } /// The zero integer. pub const zero: Self = .{ .limbs_buffer = [1]Limb{0} ** max_limbs_count, .limbs_len = max_limbs_count, }; /// Creates a new big integer from a primitive type. /// This function may not run in constant time. pub fn fromPrimitive(comptime T: type, init_value: T) OverflowError!Self { var x = init_value; var out: Self = .{ .limbs_buffer = undefined, .limbs_len = max_limbs_count, }; for (&out.limbs_buffer) |*limb| { limb.* = if (@bitSizeOf(T) > t_bits) @as(TLimb, @truncate(x)) else x; x = math.shr(T, x, t_bits); } if (x != 0) { return error.Overflow; } return out; } /// Converts a big integer to a primitive type. /// This function may not run in constant time. pub fn toPrimitive(self: Self, comptime T: type) OverflowError!T { var x: T = 0; var i = self.limbs_len - 1; while (true) : (i -= 1) { if (@bitSizeOf(T) >= t_bits and math.shr(T, x, @bitSizeOf(T) - t_bits) != 0) { return error.Overflow; } x = math.shl(T, x, t_bits); const v = math.cast(T, self.limbsConst()[i]) orelse return error.Overflow; x |= v; if (i == 0) break; } return x; } /// Encodes a big integer into a byte array. pub fn toBytes(self: Self, bytes: []u8, comptime endian: Endian) OverflowError!void { if (bytes.len == 0) { if (self.isZero()) return; return error.Overflow; } @memset(bytes, 0); var shift: usize = 0; var out_i: usize = switch (endian) { .big => bytes.len - 1, .little => 0, }; for (0..self.limbs_len) |i| { var remaining_bits = t_bits; var limb = self.limbsConst()[i]; while (remaining_bits >= 8) { bytes[out_i] |= math.shl(u8, @as(u8, @truncate(limb)), shift); const consumed = 8 - shift; limb >>= @as(u4, @truncate(consumed)); remaining_bits -= consumed; shift = 0; switch (endian) { .big => { if (out_i == 0) { if (i != self.limbs_len - 1 or limb != 0) { return error.Overflow; } return; } out_i -= 1; }, .little => { out_i += 1; if (out_i == bytes.len) { if (i != self.limbs_len - 1 or limb != 0) { return error.Overflow; } return; } }, } } bytes[out_i] |= @as(u8, @truncate(limb)); shift = remaining_bits; } } /// Creates a new big integer from a byte array. pub fn fromBytes(bytes: []const u8, comptime endian: Endian) OverflowError!Self { if (bytes.len == 0) return Self.zero; var shift: usize = 0; var out = Self.zero; var out_i: usize = 0; var i: usize = switch (endian) { .big => bytes.len - 1, .little => 0, }; while (true) { const bi = bytes[i]; out.limbs()[out_i] |= math.shl(Limb, bi, shift); shift += 8; if (shift >= t_bits) { shift -= t_bits; out.limbs()[out_i] = @as(TLimb, @truncate(out.limbs()[out_i])); const overflow = math.shr(Limb, bi, 8 - shift); out_i += 1; if (out_i >= out.limbs_len) { if (overflow != 0 or i != 0) { return error.Overflow; } break; } out.limbs()[out_i] = overflow; } switch (endian) { .big => { if (i == 0) break; i -= 1; }, .little => { i += 1; if (i == bytes.len) break; }, } } return out; } /// Returns `true` if both integers are equal. pub fn eql(x: Self, y: Self) bool { return crypto.utils.timingSafeEql([max_limbs_count]Limb, x.limbs_buffer, y.limbs_buffer); } /// Compares two integers. pub fn compare(x: Self, y: Self) math.Order { return crypto.utils.timingSafeCompare( Limb, x.limbsConst(), y.limbsConst(), .little, ); } /// Returns `true` if the integer is zero. pub fn isZero(x: Self) bool { var t: Limb = 0; for (x.limbsConst()) |elem| { t |= elem; } return ct.eql(t, 0); } /// Returns `true` if the integer is odd. pub fn isOdd(x: Self) bool { return @as(u1, @truncate(x.limbsConst()[0])) != 0; } /// Adds `y` to `x`, and returns `true` if the operation overflowed. pub fn addWithOverflow(x: *Self, y: Self) u1 { return x.conditionalAddWithOverflow(true, y); } /// Subtracts `y` from `x`, and returns `true` if the operation overflowed. pub fn subWithOverflow(x: *Self, y: Self) u1 { return x.conditionalSubWithOverflow(true, y); } // Replaces the limbs of `x` with the limbs of `y` if `on` is `true`. fn cmov(x: *Self, on: bool, y: Self) void { for (x.limbs(), y.limbsConst()) |*x_limb, y_limb| { x_limb.* = ct.select(on, y_limb, x_limb.*); } } // Adds `y` to `x` if `on` is `true`, and returns `true` if the // operation overflowed. fn conditionalAddWithOverflow(x: *Self, on: bool, y: Self) u1 { var carry: u1 = 0; for (x.limbs(), y.limbsConst()) |*x_limb, y_limb| { const res = x_limb.* + y_limb + carry; x_limb.* = ct.select(on, @as(TLimb, @truncate(res)), x_limb.*); carry = @truncate(res >> t_bits); } return carry; } // Subtracts `y` from `x` if `on` is `true`, and returns `true` if the // operation overflowed. fn conditionalSubWithOverflow(x: *Self, on: bool, y: Self) u1 { var borrow: u1 = 0; for (x.limbs(), y.limbsConst()) |*x_limb, y_limb| { const res = x_limb.* -% y_limb -% borrow; x_limb.* = ct.select(on, @as(TLimb, @truncate(res)), x_limb.*); borrow = @truncate(res >> t_bits); } return borrow; } }; } /// A field element. fn Fe_(comptime bits: comptime_int) type { return struct { const Self = @This(); const FeUint = Uint(bits); /// The element value as a `Uint`. v: FeUint, /// `true` is the element is in Montgomery form. montgomery: bool = false, /// The maximum number of bytes required to encode a field element. pub const encoded_bytes = FeUint.encoded_bytes; // The number of active limbs to represent the field element. fn limbs_count(self: Self) usize { return self.v.limbs_len; } /// Creates a field element from a primitive. /// This function may not run in constant time. pub fn fromPrimitive(comptime T: type, m: Modulus(bits), x: T) (OverflowError || FieldElementError)!Self { comptime assert(@bitSizeOf(T) <= bits); // Primitive type is larger than the modulus type. const v = try FeUint.fromPrimitive(T, x); var fe = Self{ .v = v }; try m.shrink(&fe); try m.rejectNonCanonical(fe); return fe; } /// Converts the field element to a primitive. /// This function may not run in constant time. pub fn toPrimitive(self: Self, comptime T: type) OverflowError!T { return self.v.toPrimitive(T); } /// Creates a field element from a byte string. pub fn fromBytes(m: Modulus(bits), bytes: []const u8, comptime endian: Endian) (OverflowError || FieldElementError)!Self { const v = try FeUint.fromBytes(bytes, endian); var fe = Self{ .v = v }; try m.shrink(&fe); try m.rejectNonCanonical(fe); return fe; } /// Converts the field element to a byte string. pub fn toBytes(self: Self, bytes: []u8, comptime endian: Endian) OverflowError!void { return self.v.toBytes(bytes, endian); } /// Returns `true` if the field elements are equal, in constant time. pub fn eql(x: Self, y: Self) bool { return x.v.eql(y.v); } /// Compares two field elements in constant time. pub fn compare(x: Self, y: Self) math.Order { return x.v.compare(y.v); } /// Returns `true` if the element is zero. pub fn isZero(self: Self) bool { return self.v.isZero(); } /// Returns `true` is the element is odd. pub fn isOdd(self: Self) bool { return self.v.isOdd(); } }; } /// A modulus, defining a finite field. /// All operations within the field are performed modulo this modulus, without heap allocations. /// `max_bits` represents the number of bits in the maximum value the modulus can be set to. pub fn Modulus(comptime max_bits: comptime_int) type { return struct { const Self = @This(); /// A field element, representing a value within the field defined by this modulus. pub const Fe = Fe_(max_bits); const FeUint = Fe.FeUint; /// The neutral element. zero: Fe, /// The modulus value. v: FeUint, /// R^2 for the Montgomery representation. rr: Fe, /// Inverse of the first limb m0inv: Limb, /// Number of leading zero bits in the modulus. leading: usize, // Number of active limbs in the modulus. fn limbs_count(self: Self) usize { return self.v.limbs_len; } /// Actual size of the modulus, in bits. pub fn bits(self: Self) usize { return self.limbs_count() * t_bits - self.leading; } /// Returns the element `1`. pub fn one(self: Self) Fe { var fe = self.zero; fe.v.limbs()[0] = 1; return fe; } /// Creates a new modulus from a `Uint` value. /// The modulus must be odd and larger than 2. pub fn fromUint(v_: FeUint) InvalidModulusError!Self { if (!v_.isOdd()) return error.EvenModulus; var v = v_.normalize(); const hi = v.limbsConst()[v.limbs_len - 1]; const lo = v.limbsConst()[0]; if (v.limbs_len < 2 and lo < 3) { return error.ModulusTooSmall; } const leading = @clz(hi) - carry_bits; var y = lo; inline for (0..comptime math.log2_int(usize, t_bits)) |_| { y = y *% (2 -% lo *% y); } const m0inv = (@as(Limb, 1) << t_bits) - (@as(TLimb, @truncate(y))); const zero = Fe{ .v = FeUint.zero }; var m = Self{ .zero = zero, .v = v, .leading = leading, .m0inv = m0inv, .rr = undefined, // will be computed right after }; m.shrink(&m.zero) catch unreachable; computeRR(&m); return m; } /// Creates a new modulus from a primitive value. /// The modulus must be odd and larger than 2. pub fn fromPrimitive(comptime T: type, x: T) (InvalidModulusError || OverflowError)!Self { comptime assert(@bitSizeOf(T) <= max_bits); // Primitive type is larger than the modulus type. const v = try FeUint.fromPrimitive(T, x); return try Self.fromUint(v); } /// Creates a new modulus from a byte string. pub fn fromBytes(bytes: []const u8, comptime endian: Endian) (InvalidModulusError || OverflowError)!Self { const v = try FeUint.fromBytes(bytes, endian); return try Self.fromUint(v); } /// Serializes the modulus to a byte string. pub fn toBytes(self: Self, bytes: []u8, comptime endian: Endian) OverflowError!void { return self.v.toBytes(bytes, endian); } /// Rejects field elements that are not in the canonical form. pub fn rejectNonCanonical(self: Self, fe: Fe) error{NonCanonical}!void { if (fe.limbs_count() != self.limbs_count() or ct.limbsCmpGeq(fe.v, self.v)) { return error.NonCanonical; } } // Makes the number of active limbs in a field element match the one of the modulus. fn shrink(self: Self, fe: *Fe) OverflowError!void { const new_len = self.limbs_count(); if (fe.limbs_count() < new_len) return error.Overflow; var acc: Limb = 0; for (fe.v.limbsConst()[new_len..]) |limb| { acc |= limb; } if (acc != 0) return error.Overflow; if (new_len > fe.v.limbs_buffer.len) return error.Overflow; fe.v.limbs_len = new_len; } // Computes R^2 for the Montgomery representation. fn computeRR(self: *Self) void { self.rr = self.zero; const n = self.rr.limbs_count(); self.rr.v.limbs()[n - 1] = 1; for ((n - 1)..(2 * n)) |_| { self.shiftIn(&self.rr, 0); } self.shrink(&self.rr) catch unreachable; } /// Computes x << t_bits + y (mod m) fn shiftIn(self: Self, x: *Fe, y: Limb) void { var d = self.zero; const x_limbs = x.v.limbs(); const d_limbs = d.v.limbs(); const m_limbs = self.v.limbsConst(); var need_sub = false; var i: usize = t_bits - 1; while (true) : (i -= 1) { var carry: u1 = @truncate(math.shr(Limb, y, i)); var borrow: u1 = 0; for (0..self.limbs_count()) |j| { const l = ct.select(need_sub, d_limbs[j], x_limbs[j]); var res = (l << 1) + carry; x_limbs[j] = @as(TLimb, @truncate(res)); carry = @truncate(res >> t_bits); res = x_limbs[j] -% m_limbs[j] -% borrow; d_limbs[j] = @as(TLimb, @truncate(res)); borrow = @truncate(res >> t_bits); } need_sub = ct.eql(carry, borrow); if (i == 0) break; } x.v.cmov(need_sub, d.v); } /// Adds two field elements (mod m). pub fn add(self: Self, x: Fe, y: Fe) Fe { var out = x; const overflow = out.v.addWithOverflow(y.v); const underflow: u1 = @bitCast(ct.limbsCmpLt(out.v, self.v)); const need_sub = ct.eql(overflow, underflow); _ = out.v.conditionalSubWithOverflow(need_sub, self.v); return out; } /// Subtracts two field elements (mod m). pub fn sub(self: Self, x: Fe, y: Fe) Fe { var out = x; const underflow: bool = @bitCast(out.v.subWithOverflow(y.v)); _ = out.v.conditionalAddWithOverflow(underflow, self.v); return out; } /// Converts a field element to the Montgomery form. pub fn toMontgomery(self: Self, x: *Fe) RepresentationError!void { if (x.montgomery) { return error.UnexpectedRepresentation; } self.shrink(x) catch unreachable; x.* = self.montgomeryMul(x.*, self.rr); x.montgomery = true; } /// Takes a field element out of the Montgomery form. pub fn fromMontgomery(self: Self, x: *Fe) RepresentationError!void { if (!x.montgomery) { return error.UnexpectedRepresentation; } self.shrink(x) catch unreachable; x.* = self.montgomeryMul(x.*, self.one()); x.montgomery = false; } /// Reduces an arbitrary `Uint`, converting it to a field element. pub fn reduce(self: Self, x: anytype) Fe { var out = self.zero; var i = x.limbs_len - 1; if (self.limbs_count() >= 2) { const start = @min(i, self.limbs_count() - 2); var j = start; while (true) : (j -= 1) { out.v.limbs()[j] = x.limbsConst()[i]; i -= 1; if (j == 0) break; } } while (true) : (i -= 1) { self.shiftIn(&out, x.limbsConst()[i]); if (i == 0) break; } return out; } fn montgomeryLoop(self: Self, d: *Fe, x: Fe, y: Fe) u1 { assert(d.limbs_count() == x.limbs_count()); assert(d.limbs_count() == y.limbs_count()); assert(d.limbs_count() == self.limbs_count()); const a_limbs = x.v.limbsConst(); const b_limbs = y.v.limbsConst(); const d_limbs = d.v.limbs(); const m_limbs = self.v.limbsConst(); var overflow: u1 = 0; for (0..self.limbs_count()) |i| { var carry: Limb = 0; var wide = ct.mulWide(a_limbs[i], b_limbs[0]); var z_lo = @addWithOverflow(d_limbs[0], wide.lo); const f = @as(TLimb, @truncate(z_lo[0] *% self.m0inv)); var z_hi = wide.hi +% z_lo[1]; wide = ct.mulWide(f, m_limbs[0]); z_lo = @addWithOverflow(z_lo[0], wide.lo); z_hi +%= z_lo[1]; z_hi +%= wide.hi; carry = (z_hi << 1) | (z_lo[0] >> t_bits); for (1..self.limbs_count()) |j| { wide = ct.mulWide(a_limbs[i], b_limbs[j]); z_lo = @addWithOverflow(d_limbs[j], wide.lo); z_hi = wide.hi +% z_lo[1]; wide = ct.mulWide(f, m_limbs[j]); z_lo = @addWithOverflow(z_lo[0], wide.lo); z_hi +%= z_lo[1]; z_hi +%= wide.hi; z_lo = @addWithOverflow(z_lo[0], carry); z_hi +%= z_lo[1]; if (j > 0) { d_limbs[j - 1] = @as(TLimb, @truncate(z_lo[0])); } carry = (z_hi << 1) | (z_lo[0] >> t_bits); } const z = overflow + carry; d_limbs[self.limbs_count() - 1] = @as(TLimb, @truncate(z)); overflow = @as(u1, @truncate(z >> t_bits)); } return overflow; } // Montgomery multiplication. fn montgomeryMul(self: Self, x: Fe, y: Fe) Fe { var d = self.zero; assert(x.limbs_count() == self.limbs_count()); assert(y.limbs_count() == self.limbs_count()); const overflow = self.montgomeryLoop(&d, x, y); const underflow = 1 -% @intFromBool(ct.limbsCmpGeq(d.v, self.v)); const need_sub = ct.eql(overflow, underflow); _ = d.v.conditionalSubWithOverflow(need_sub, self.v); d.montgomery = x.montgomery == y.montgomery; return d; } // Montgomery squaring. fn montgomerySq(self: Self, x: Fe) Fe { var d = self.zero; assert(x.limbs_count() == self.limbs_count()); const overflow = self.montgomeryLoop(&d, x, x); const underflow = 1 -% @intFromBool(ct.limbsCmpGeq(d.v, self.v)); const need_sub = ct.eql(overflow, underflow); _ = d.v.conditionalSubWithOverflow(need_sub, self.v); d.montgomery = true; return d; } // Returns x^e (mod m), with the exponent provided as a byte string. // `public` must be set to `false` if the exponent it secret. fn powWithEncodedExponentInternal(self: Self, x: Fe, e: []const u8, endian: Endian, comptime public: bool) NullExponentError!Fe { var acc: u8 = 0; for (e) |b| acc |= b; if (acc == 0) return error.NullExponent; var out = self.one(); self.toMontgomery(&out) catch unreachable; if (public and e.len < 3 or (e.len == 3 and e[if (endian == .big) 0 else 2] <= 0b1111)) { // Do not use a precomputation table for short, public exponents var x_m = x; if (x.montgomery == false) { self.toMontgomery(&x_m) catch unreachable; } var s = switch (endian) { .big => 0, .little => e.len - 1, }; while (true) { const b = e[s]; var j: u3 = 7; while (true) : (j -= 1) { out = self.montgomerySq(out); const k: u1 = @truncate(b >> j); if (k != 0) { const t = self.montgomeryMul(out, x_m); @memcpy(out.v.limbs(), t.v.limbsConst()); } if (j == 0) break; } switch (endian) { .big => { s += 1; if (s == e.len) break; }, .little => { if (s == 0) break; s -= 1; }, } } } else { // Use a precomputation table for large exponents var pc = [1]Fe{x} ++ [_]Fe{self.zero} ** 14; if (x.montgomery == false) { self.toMontgomery(&pc[0]) catch unreachable; } for (1..pc.len) |i| { pc[i] = self.montgomeryMul(pc[i - 1], pc[0]); } var t0 = self.zero; var s = switch (endian) { .big => 0, .little => e.len - 1, }; while (true) { const b = e[s]; for ([_]u3{ 4, 0 }) |j| { for (0..4) |_| { out = self.montgomerySq(out); } const k = (b >> j) & 0b1111; if (public or std.options.side_channels_mitigations == .none) { if (k == 0) continue; t0 = pc[k - 1]; } else { for (pc, 0..) |t, i| { t0.v.cmov(ct.eql(k, @as(u8, @truncate(i + 1))), t.v); } } const t1 = self.montgomeryMul(out, t0); if (public) { @memcpy(out.v.limbs(), t1.v.limbsConst()); } else { out.v.cmov(!ct.eql(k, 0), t1.v); } } switch (endian) { .big => { s += 1; if (s == e.len) break; }, .little => { if (s == 0) break; s -= 1; }, } } } self.fromMontgomery(&out) catch unreachable; return out; } /// Multiplies two field elements. pub fn mul(self: Self, x: Fe, y: Fe) Fe { if (x.montgomery != y.montgomery) { return self.montgomeryMul(x, y); } var a_ = x; if (x.montgomery == false) { self.toMontgomery(&a_) catch unreachable; } else { self.fromMontgomery(&a_) catch unreachable; } return self.montgomeryMul(a_, y); } /// Squares a field element. pub fn sq(self: Self, x: Fe) Fe { var out = x; if (x.montgomery == true) { self.fromMontgomery(&out) catch unreachable; } out = self.montgomerySq(out); out.montgomery = false; self.toMontgomery(&out) catch unreachable; return out; } /// Returns x^e (mod m) in constant time. pub fn pow(self: Self, x: Fe, e: Fe) NullExponentError!Fe { var buf: [Fe.encoded_bytes]u8 = undefined; e.toBytes(&buf, native_endian) catch unreachable; return self.powWithEncodedExponent(x, &buf, native_endian); } /// Returns x^e (mod m), assuming that the exponent is public. /// The function remains constant time with respect to `x`. pub fn powPublic(self: Self, x: Fe, e: Fe) NullExponentError!Fe { var e_normalized = Fe{ .v = e.v.normalize() }; var buf_: [Fe.encoded_bytes]u8 = undefined; var buf = buf_[0 .. math.divCeil(usize, e_normalized.v.limbs_len * t_bits, 8) catch unreachable]; e_normalized.toBytes(buf, .little) catch unreachable; const leading = @clz(e_normalized.v.limbsConst()[e_normalized.v.limbs_len - carry_bits]); buf = buf[0 .. buf.len - leading / 8]; return self.powWithEncodedPublicExponent(x, buf, .little); } /// Returns x^e (mod m), with the exponent provided as a byte string. /// Exponents are usually small, so this function is faster than `powPublic` as a field element /// doesn't have to be created if a serialized representation is already available. /// /// If the exponent is public, `powWithEncodedPublicExponent()` can be used instead for a slight speedup. pub fn powWithEncodedExponent(self: Self, x: Fe, e: []const u8, endian: Endian) NullExponentError!Fe { return self.powWithEncodedExponentInternal(x, e, endian, false); } /// Returns x^e (mod m), the exponent being public and provided as a byte string. /// Exponents are usually small, so this function is faster than `powPublic` as a field element /// doesn't have to be created if a serialized representation is already available. /// /// If the exponent is secret, `powWithEncodedExponent` must be used instead. pub fn powWithEncodedPublicExponent(self: Self, x: Fe, e: []const u8, endian: Endian) NullExponentError!Fe { return self.powWithEncodedExponentInternal(x, e, endian, true); } }; } const ct = if (std.options.side_channels_mitigations == .none) ct_unprotected else ct_protected; const ct_protected = struct { // Returns x if on is true, otherwise y. fn select(on: bool, x: Limb, y: Limb) Limb { const mask = @as(Limb, 0) -% @intFromBool(on); return y ^ (mask & (y ^ x)); } // Compares two values in constant time. fn eql(x: anytype, y: @TypeOf(x)) bool { const c1 = @subWithOverflow(x, y)[1]; const c2 = @subWithOverflow(y, x)[1]; return @as(bool, @bitCast(1 - (c1 | c2))); } // Compares two big integers in constant time, returning true if x < y. fn limbsCmpLt(x: anytype, y: @TypeOf(x)) bool { var c: u1 = 0; for (x.limbsConst(), y.limbsConst()) |x_limb, y_limb| { c = @truncate((x_limb -% y_limb -% c) >> t_bits); } return c != 0; } // Compares two big integers in constant time, returning true if x >= y. fn limbsCmpGeq(x: anytype, y: @TypeOf(x)) bool { return !limbsCmpLt(x, y); } // Multiplies two limbs and returns the result as a wide limb. fn mulWide(x: Limb, y: Limb) WideLimb { const half_bits = @typeInfo(Limb).Int.bits / 2; const Half = meta.Int(.unsigned, half_bits); const x0 = @as(Half, @truncate(x)); const x1 = @as(Half, @truncate(x >> half_bits)); const y0 = @as(Half, @truncate(y)); const y1 = @as(Half, @truncate(y >> half_bits)); const w0 = math.mulWide(Half, x0, y0); const t = math.mulWide(Half, x1, y0) + (w0 >> half_bits); var w1: Limb = @as(Half, @truncate(t)); const w2 = @as(Half, @truncate(t >> half_bits)); w1 += math.mulWide(Half, x0, y1); const hi = math.mulWide(Half, x1, y1) + w2 + (w1 >> half_bits); const lo = x *% y; return .{ .hi = hi, .lo = lo }; } }; const ct_unprotected = struct { // Returns x if on is true, otherwise y. fn select(on: bool, x: Limb, y: Limb) Limb { return if (on) x else y; } // Compares two values in constant time. fn eql(x: anytype, y: @TypeOf(x)) bool { return x == y; } // Compares two big integers in constant time, returning true if x < y. fn limbsCmpLt(x: anytype, y: @TypeOf(x)) bool { const x_limbs = x.limbsConst(); const y_limbs = y.limbsConst(); assert(x_limbs.len == y_limbs.len); var i = x_limbs.len; while (i != 0) { i -= 1; if (x_limbs[i] != y_limbs[i]) { return x_limbs[i] < y_limbs[i]; } } return false; } // Compares two big integers in constant time, returning true if x >= y. fn limbsCmpGeq(x: anytype, y: @TypeOf(x)) bool { return !limbsCmpLt(x, y); } // Multiplies two limbs and returns the result as a wide limb. fn mulWide(x: Limb, y: Limb) WideLimb { const wide = math.mulWide(Limb, x, y); return .{ .hi = @as(Limb, @truncate(wide >> @typeInfo(Limb).Int.bits)), .lo = @as(Limb, @truncate(wide)), }; } }; test "finite field arithmetic" { if (builtin.zig_backend == .stage2_c) return error.SkipZigTest; const M = Modulus(256); const m = try M.fromPrimitive(u256, 3429938563481314093726330772853735541133072814650493833233); var x = try M.Fe.fromPrimitive(u256, m, 80169837251094269539116136208111827396136208141182357733); var y = try M.Fe.fromPrimitive(u256, m, 24620149608466364616251608466389896540098571); const x_ = try x.toPrimitive(u256); try testing.expect((try M.Fe.fromPrimitive(@TypeOf(x_), m, x_)).eql(x)); try testing.expectError(error.Overflow, x.toPrimitive(u50)); const bits = m.bits(); try testing.expectEqual(bits, 192); var x_y = m.mul(x, y); try testing.expectEqual(x_y.toPrimitive(u256), 1666576607955767413750776202132407807424848069716933450241); try m.toMontgomery(&x); x_y = m.mul(x, y); try testing.expectEqual(x_y.toPrimitive(u256), 1666576607955767413750776202132407807424848069716933450241); try m.fromMontgomery(&x); x = m.add(x, y); try testing.expectEqual(x.toPrimitive(u256), 80169837251118889688724602572728079004602598037722456304); x = m.sub(x, y); try testing.expectEqual(x.toPrimitive(u256), 80169837251094269539116136208111827396136208141182357733); const big = try Uint(512).fromPrimitive(u495, 77285373554113307281465049383342993856348131409372633077285373554113307281465049383323332333429938563481314093726330772853735541133072814650493833233); const reduced = m.reduce(big); try testing.expectEqual(reduced.toPrimitive(u495), 858047099884257670294681641776170038885500210968322054970); const x_pow_y = try m.powPublic(x, y); try testing.expectEqual(x_pow_y.toPrimitive(u256), 1631933139300737762906024873185789093007782131928298618473); try m.toMontgomery(&x); const x_pow_y2 = try m.powPublic(x, y); try m.fromMontgomery(&x); try testing.expect(x_pow_y2.eql(x_pow_y)); try testing.expectError(error.NullExponent, m.powPublic(x, m.zero)); try testing.expect(!x.isZero()); try testing.expect(!y.isZero()); try testing.expect(m.v.isOdd()); const x_sq = m.sq(x); const x_sq2 = m.mul(x, x); try testing.expect(x_sq.eql(x_sq2)); try m.toMontgomery(&x); const x_sq3 = m.sq(x); const x_sq4 = m.mul(x, x); try testing.expect(x_sq.eql(x_sq3)); try testing.expect(x_sq3.eql(x_sq4)); try m.fromMontgomery(&x); } fn testCt(ct_: anytype) !void { if (builtin.zig_backend == .stage2_c) return error.SkipZigTest; const l0: Limb = 0; const l1: Limb = 1; try testing.expectEqual(l1, ct_.select(true, l1, l0)); try testing.expectEqual(l0, ct_.select(false, l1, l0)); try testing.expectEqual(false, ct_.eql(l1, l0)); try testing.expectEqual(true, ct_.eql(l1, l1)); const M = Modulus(256); const m = try M.fromPrimitive(u256, 3429938563481314093726330772853735541133072814650493833233); const x = try M.Fe.fromPrimitive(u256, m, 80169837251094269539116136208111827396136208141182357733); const y = try M.Fe.fromPrimitive(u256, m, 24620149608466364616251608466389896540098571); try testing.expectEqual(false, ct_.limbsCmpLt(x.v, y.v)); try testing.expectEqual(true, ct_.limbsCmpGeq(x.v, y.v)); try testing.expectEqual(WideLimb{ .hi = 0, .lo = 0x88 }, ct_.mulWide(1 << 3, (1 << 4) + 1)); } test ct { try testCt(ct_protected); try testCt(ct_unprotected); }