// Ported from musl, which is licensed under the MIT license: // https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT // // https://git.musl-libc.org/cgit/musl/tree/src/complex/cexpf.c // https://git.musl-libc.org/cgit/musl/tree/src/complex/cexp.c const std = @import("../../std.zig"); const testing = std.testing; const math = std.math; const cmath = math.complex; const Complex = cmath.Complex; const ldexp_cexp = @import("ldexp.zig").ldexp_cexp; /// Returns e raised to the power of z (e^z). pub fn exp(z: anytype) Complex(@TypeOf(z.re, z.im)) { const T = @TypeOf(z.re, z.im); return switch (T) { f32 => exp32(z), f64 => exp64(z), else => @compileError("exp not implemented for " ++ @typeName(z)), }; } fn exp32(z: Complex(f32)) Complex(f32) { const exp_overflow = 0x42b17218; // max_exp * ln2 ~= 88.72283955 const cexp_overflow = 0x43400074; // (max_exp - min_denom_exp) * ln2 const x = z.re; const y = z.im; const hy = @as(u32, @bitCast(y)) & 0x7fffffff; // cexp(x + i0) = exp(x) + i0 if (hy == 0) { return Complex(f32).init(@exp(x), y); } const hx = @as(u32, @bitCast(x)); // cexp(0 + iy) = cos(y) + isin(y) if ((hx & 0x7fffffff) == 0) { return Complex(f32).init(@cos(y), @sin(y)); } if (hy >= 0x7f800000) { // cexp(finite|nan +- i inf|nan) = nan + i nan if ((hx & 0x7fffffff) != 0x7f800000) { return Complex(f32).init(y - y, y - y); } // cexp(-inf +- i inf|nan) = 0 + i0 else if (hx & 0x80000000 != 0) { return Complex(f32).init(0, 0); } // cexp(+inf +- i inf|nan) = inf + i nan else { return Complex(f32).init(x, y - y); } } // 88.7 <= x <= 192 so must scale if (hx >= exp_overflow and hx <= cexp_overflow) { return ldexp_cexp(z, 0); } // - x < exp_overflow => exp(x) won't overflow (common) // - x > cexp_overflow, so exp(x) * s overflows for s > 0 // - x = +-inf // - x = nan else { const exp_x = @exp(x); return Complex(f32).init(exp_x * @cos(y), exp_x * @sin(y)); } } fn exp64(z: Complex(f64)) Complex(f64) { const exp_overflow = 0x40862e42; // high bits of max_exp * ln2 ~= 710 const cexp_overflow = 0x4096b8e4; // (max_exp - min_denorm_exp) * ln2 const x = z.re; const y = z.im; const fy: u64 = @bitCast(y); const hy: u32 = @intCast((fy >> 32) & 0x7fffffff); const ly: u32 = @truncate(fy); // cexp(x + i0) = exp(x) + i0 if (hy | ly == 0) { return Complex(f64).init(@exp(x), y); } const fx: u64 = @bitCast(x); const hx: u32 = @intCast(fx >> 32); const lx: u32 = @truncate(fx); // cexp(0 + iy) = cos(y) + isin(y) if ((hx & 0x7fffffff) | lx == 0) { return Complex(f64).init(@cos(y), @sin(y)); } if (hy >= 0x7ff00000) { // cexp(finite|nan +- i inf|nan) = nan + i nan if (lx != 0 or (hx & 0x7fffffff) != 0x7ff00000) { return Complex(f64).init(y - y, y - y); } // cexp(-inf +- i inf|nan) = 0 + i0 else if (hx & 0x80000000 != 0) { return Complex(f64).init(0, 0); } // cexp(+inf +- i inf|nan) = inf + i nan else { return Complex(f64).init(x, y - y); } } // 709.7 <= x <= 1454.3 so must scale if (hx >= exp_overflow and hx <= cexp_overflow) { return ldexp_cexp(z, 0); } // - x < exp_overflow => exp(x) won't overflow (common) // - x > cexp_overflow, so exp(x) * s overflows for s > 0 // - x = +-inf // - x = nan else { const exp_x = @exp(x); return Complex(f64).init(exp_x * @cos(y), exp_x * @sin(y)); } } test exp32 { const tolerance_f32 = @sqrt(math.floatEps(f32)); { const a = Complex(f32).init(5, 3); const c = exp(a); try testing.expectApproxEqRel(@as(f32, -1.46927917e+02), c.re, tolerance_f32); try testing.expectApproxEqRel(@as(f32, 2.0944065e+01), c.im, tolerance_f32); } { const a = Complex(f32).init(88.8, 0x1p-149); const c = exp(a); try testing.expectApproxEqAbs(math.inf(f32), c.re, tolerance_f32); try testing.expectApproxEqAbs(@as(f32, 5.15088629e-07), c.im, tolerance_f32); } } test exp64 { const tolerance_f64 = @sqrt(math.floatEps(f64)); { const a = Complex(f64).init(5, 3); const c = exp(a); try testing.expectApproxEqRel(@as(f64, -1.469279139083189e+02), c.re, tolerance_f64); try testing.expectApproxEqRel(@as(f64, 2.094406620874596e+01), c.im, tolerance_f64); } { const a = Complex(f64).init(709.8, 0x1p-1074); const c = exp(a); try testing.expectApproxEqAbs(math.inf(f64), c.re, tolerance_f64); try testing.expectApproxEqAbs(@as(f64, 9.036659362159884e-16), c.im, tolerance_f64); } }