// Ported from go, which is licensed under a BSD-3 license. // https://golang.org/LICENSE // // https://golang.org/src/math/pow.go const std = @import("../std.zig"); const math = std.math; const expect = std.testing.expect; /// Returns x raised to the power of y (x^y). /// /// Special Cases: /// - pow(x, +-0) = 1 for any x /// - pow(1, y) = 1 for any y /// - pow(x, 1) = x for any x /// - pow(nan, y) = nan /// - pow(x, nan) = nan /// - pow(+-0, y) = +-inf for y an odd integer < 0 /// - pow(+-0, -inf) = +inf /// - pow(+-0, +inf) = +0 /// - pow(+-0, y) = +inf for finite y < 0 and not an odd integer /// - pow(+-0, y) = +-0 for y an odd integer > 0 /// - pow(+-0, y) = +0 for finite y > 0 and not an odd integer /// - pow(-1, +-inf) = 1 /// - pow(x, +inf) = +inf for |x| > 1 /// - pow(x, -inf) = +0 for |x| > 1 /// - pow(x, +inf) = +0 for |x| < 1 /// - pow(x, -inf) = +inf for |x| < 1 /// - pow(+inf, y) = +inf for y > 0 /// - pow(+inf, y) = +0 for y < 0 /// - pow(-inf, y) = pow(-0, -y) /// - pow(x, y) = nan for finite x < 0 and finite non-integer y pub fn pow(comptime T: type, x: T, y: T) T { if (@typeInfo(T) == .Int) { return math.powi(T, x, y) catch unreachable; } if (T != f32 and T != f64) { @compileError("pow not implemented for " ++ @typeName(T)); } // pow(x, +-0) = 1 for all x // pow(1, y) = 1 for all y if (y == 0 or x == 1) { return 1; } // pow(nan, y) = nan for all y // pow(x, nan) = nan for all x if (math.isNan(x) or math.isNan(y)) { return math.nan(T); } // pow(x, 1) = x for all x if (y == 1) { return x; } if (x == 0) { if (y < 0) { // pow(+-0, y) = +- 0 for y an odd integer if (isOddInteger(y)) { return math.copysign(math.inf(T), x); } // pow(+-0, y) = +inf for y an even integer else { return math.inf(T); } } else { if (isOddInteger(y)) { return x; } else { return 0; } } } if (math.isInf(y)) { // pow(-1, inf) = 1 for all x if (x == -1) { return 1.0; } // pow(x, +inf) = +0 for |x| < 1 // pow(x, -inf) = +0 for |x| > 1 else if ((@abs(x) < 1) == math.isPositiveInf(y)) { return 0; } // pow(x, -inf) = +inf for |x| < 1 // pow(x, +inf) = +inf for |x| > 1 else { return math.inf(T); } } if (math.isInf(x)) { if (math.isNegativeInf(x)) { return pow(T, 1 / x, -y); } // pow(+inf, y) = +0 for y < 0 else if (y < 0) { return 0; } // pow(+inf, y) = +0 for y > 0 else if (y > 0) { return math.inf(T); } } // special case sqrt if (y == 0.5) { return @sqrt(x); } if (y == -0.5) { return 1 / @sqrt(x); } const r1 = math.modf(@abs(y)); var yi = r1.ipart; var yf = r1.fpart; if (yf != 0 and x < 0) { return math.nan(T); } if (yi >= 1 << (@typeInfo(T).Float.bits - 1)) { return @exp(y * @log(x)); } // a = a1 * 2^ae var a1: T = 1.0; var ae: i32 = 0; // a *= x^yf if (yf != 0) { if (yf > 0.5) { yf -= 1; yi += 1; } a1 = @exp(yf * @log(x)); } // a *= x^yi const r2 = math.frexp(x); var xe = r2.exponent; var x1 = r2.significand; var i = @as(std.meta.Int(.signed, @typeInfo(T).Float.bits), @intFromFloat(yi)); while (i != 0) : (i >>= 1) { const overflow_shift = math.floatExponentBits(T) + 1; if (xe < -(1 << overflow_shift) or (1 << overflow_shift) < xe) { // catch xe before it overflows the left shift below // Since i != 0 it has at least one bit still set, so ae will accumulate xe // on at least one more iteration, ae += xe is a lower bound on ae // the lower bound on ae exceeds the size of a float exp // so the final call to Ldexp will produce under/overflow (0/Inf) ae += xe; break; } if (i & 1 == 1) { a1 *= x1; ae += xe; } x1 *= x1; xe <<= 1; if (x1 < 0.5) { x1 += x1; xe -= 1; } } // a *= a1 * 2^ae if (y < 0) { a1 = 1 / a1; ae = -ae; } return math.scalbn(a1, ae); } fn isOddInteger(x: f64) bool { if (@abs(x) >= 1 << 53) { // From https://golang.org/src/math/pow.go // 1 << 53 is the largest exact integer in the float64 format. // Any number outside this range will be truncated before the decimal point and therefore will always be // an even integer. // Without this check and if x overflows i64 the @intFromFloat(r.ipart) conversion below will panic return false; } const r = math.modf(x); return r.fpart == 0.0 and @as(i64, @intFromFloat(r.ipart)) & 1 == 1; } test isOddInteger { try expect(isOddInteger(math.maxInt(i64) * 2) == false); try expect(isOddInteger(math.maxInt(i64) * 2 + 1) == false); try expect(isOddInteger(1 << 53) == false); try expect(isOddInteger(12.0) == false); try expect(isOddInteger(15.0) == true); } test pow { const epsilon = 0.000001; try expect(math.approxEqAbs(f32, pow(f32, 0.0, 3.3), 0.0, epsilon)); try expect(math.approxEqAbs(f32, pow(f32, 0.8923, 3.3), 0.686572, epsilon)); try expect(math.approxEqAbs(f32, pow(f32, 0.2, 3.3), 0.004936, epsilon)); try expect(math.approxEqAbs(f32, pow(f32, 1.5, 3.3), 3.811546, epsilon)); try expect(math.approxEqAbs(f32, pow(f32, 37.45, 3.3), 155736.703125, epsilon)); try expect(math.approxEqAbs(f32, pow(f32, 89.123, 3.3), 2722489.5, epsilon)); try expect(math.approxEqAbs(f64, pow(f64, 0.0, 3.3), 0.0, epsilon)); try expect(math.approxEqAbs(f64, pow(f64, 0.8923, 3.3), 0.686572, epsilon)); try expect(math.approxEqAbs(f64, pow(f64, 0.2, 3.3), 0.004936, epsilon)); try expect(math.approxEqAbs(f64, pow(f64, 1.5, 3.3), 3.811546, epsilon)); try expect(math.approxEqAbs(f64, pow(f64, 37.45, 3.3), 155736.7160616, epsilon)); try expect(math.approxEqAbs(f64, pow(f64, 89.123, 3.3), 2722490.231436, epsilon)); } test "special" { const epsilon = 0.000001; try expect(pow(f32, 4, 0.0) == 1.0); try expect(pow(f32, 7, -0.0) == 1.0); try expect(pow(f32, 45, 1.0) == 45); try expect(pow(f32, -45, 1.0) == -45); try expect(math.isNan(pow(f32, math.nan(f32), 5.0))); try expect(math.isPositiveInf(pow(f32, -math.inf(f32), 0.5))); try expect(math.isPositiveInf(pow(f32, -0.0, -0.5))); try expect(pow(f32, -0.0, 0.5) == 0); try expect(math.isNan(pow(f32, 5.0, math.nan(f32)))); try expect(math.isPositiveInf(pow(f32, 0.0, -1.0))); //expect(math.isNegativeInf(pow(f32, -0.0, -3.0))); TODO is this required? try expect(math.isPositiveInf(pow(f32, 0.0, -math.inf(f32)))); try expect(math.isPositiveInf(pow(f32, -0.0, -math.inf(f32)))); try expect(pow(f32, 0.0, math.inf(f32)) == 0.0); try expect(pow(f32, -0.0, math.inf(f32)) == 0.0); try expect(math.isPositiveInf(pow(f32, 0.0, -2.0))); try expect(math.isPositiveInf(pow(f32, -0.0, -2.0))); try expect(pow(f32, 0.0, 1.0) == 0.0); try expect(pow(f32, -0.0, 1.0) == -0.0); try expect(pow(f32, 0.0, 2.0) == 0.0); try expect(pow(f32, -0.0, 2.0) == 0.0); try expect(math.approxEqAbs(f32, pow(f32, -1.0, math.inf(f32)), 1.0, epsilon)); try expect(math.approxEqAbs(f32, pow(f32, -1.0, -math.inf(f32)), 1.0, epsilon)); try expect(math.isPositiveInf(pow(f32, 1.2, math.inf(f32)))); try expect(math.isPositiveInf(pow(f32, -1.2, math.inf(f32)))); try expect(pow(f32, 1.2, -math.inf(f32)) == 0.0); try expect(pow(f32, -1.2, -math.inf(f32)) == 0.0); try expect(pow(f32, 0.2, math.inf(f32)) == 0.0); try expect(pow(f32, -0.2, math.inf(f32)) == 0.0); try expect(math.isPositiveInf(pow(f32, 0.2, -math.inf(f32)))); try expect(math.isPositiveInf(pow(f32, -0.2, -math.inf(f32)))); try expect(math.isPositiveInf(pow(f32, math.inf(f32), 1.0))); try expect(pow(f32, math.inf(f32), -1.0) == 0.0); //expect(pow(f32, -math.inf(f32), 5.0) == pow(f32, -0.0, -5.0)); TODO support negative 0? try expect(pow(f32, -math.inf(f32), -5.2) == pow(f32, -0.0, 5.2)); try expect(math.isNan(pow(f32, -1.0, 1.2))); try expect(math.isNan(pow(f32, -12.4, 78.5))); } test "overflow" { try expect(math.isPositiveInf(pow(f64, 2, 1 << 32))); try expect(pow(f64, 2, -(1 << 32)) == 0); try expect(math.isNegativeInf(pow(f64, -2, (1 << 32) + 1))); try expect(pow(f64, 0.5, 1 << 45) == 0); try expect(math.isPositiveInf(pow(f64, 0.5, -(1 << 45)))); }