// SPDX-License-Identifier: MIT // Copyright (c) 2015-2021 Zig Contributors // This file is part of [zig](https://ziglang.org/), which is MIT licensed. // The MIT license requires this copyright notice to be included in all copies // and substantial portions of the software. const std = @import("../std.zig"); const builtin = @import("builtin"); const assert = std.debug.assert; const testing = std.testing; const mem = std.mem; const Loop = std.event.Loop; /// Thread-safe async/await lock. /// Functions which are waiting for the lock are suspended, and /// are resumed when the lock is released, in order. /// Many readers can hold the lock at the same time; however locking for writing is exclusive. /// When a read lock is held, it will not be released until the reader queue is empty. /// When a write lock is held, it will not be released until the writer queue is empty. /// TODO: make this API also work in blocking I/O mode pub const RwLock = struct { shared_state: State, writer_queue: Queue, reader_queue: Queue, writer_queue_empty: bool, reader_queue_empty: bool, reader_lock_count: usize, const State = enum(u8) { Unlocked, WriteLock, ReadLock, }; const Queue = std.atomic.Queue(anyframe); const global_event_loop = Loop.instance orelse @compileError("std.event.RwLock currently only works with event-based I/O"); pub const HeldRead = struct { lock: *RwLock, pub fn release(self: HeldRead) void { // If other readers still hold the lock, we're done. if (@atomicRmw(usize, &self.lock.reader_lock_count, .Sub, 1, .SeqCst) != 1) { return; } @atomicStore(bool, &self.lock.reader_queue_empty, true, .SeqCst); if (@cmpxchgStrong(State, &self.lock.shared_state, .ReadLock, .Unlocked, .SeqCst, .SeqCst) != null) { // Didn't unlock. Someone else's problem. return; } self.lock.commonPostUnlock(); } }; pub const HeldWrite = struct { lock: *RwLock, pub fn release(self: HeldWrite) void { // See if we can leave it locked for writing, and pass the lock to the next writer // in the queue to grab the lock. if (self.lock.writer_queue.get()) |node| { global_event_loop.onNextTick(node); return; } // We need to release the write lock. Check if any readers are waiting to grab the lock. if (!@atomicLoad(bool, &self.lock.reader_queue_empty, .SeqCst)) { // Switch to a read lock. @atomicStore(State, &self.lock.shared_state, .ReadLock, .SeqCst); while (self.lock.reader_queue.get()) |node| { global_event_loop.onNextTick(node); } return; } @atomicStore(bool, &self.lock.writer_queue_empty, true, .SeqCst); @atomicStore(State, &self.lock.shared_state, .Unlocked, .SeqCst); self.lock.commonPostUnlock(); } }; pub fn init() RwLock { return .{ .shared_state = .Unlocked, .writer_queue = Queue.init(), .writer_queue_empty = true, .reader_queue = Queue.init(), .reader_queue_empty = true, .reader_lock_count = 0, }; } /// Must be called when not locked. Not thread safe. /// All calls to acquire() and release() must complete before calling deinit(). pub fn deinit(self: *RwLock) void { assert(self.shared_state == .Unlocked); while (self.writer_queue.get()) |node| resume node.data; while (self.reader_queue.get()) |node| resume node.data; } pub fn acquireRead(self: *RwLock) callconv(.Async) HeldRead { _ = @atomicRmw(usize, &self.reader_lock_count, .Add, 1, .SeqCst); suspend { var my_tick_node = Loop.NextTickNode{ .data = @frame(), .prev = undefined, .next = undefined, }; self.reader_queue.put(&my_tick_node); // At this point, we are in the reader_queue, so we might have already been resumed. // We set this bit so that later we can rely on the fact, that if reader_queue_empty == true, // some actor will attempt to grab the lock. @atomicStore(bool, &self.reader_queue_empty, false, .SeqCst); // Here we don't care if we are the one to do the locking or if it was already locked for reading. const have_read_lock = if (@cmpxchgStrong(State, &self.shared_state, .Unlocked, .ReadLock, .SeqCst, .SeqCst)) |old_state| old_state == .ReadLock else true; if (have_read_lock) { // Give out all the read locks. if (self.reader_queue.get()) |first_node| { while (self.reader_queue.get()) |node| { global_event_loop.onNextTick(node); } resume first_node.data; } } } return HeldRead{ .lock = self }; } pub fn acquireWrite(self: *RwLock) callconv(.Async) HeldWrite { suspend { var my_tick_node = Loop.NextTickNode{ .data = @frame(), .prev = undefined, .next = undefined, }; self.writer_queue.put(&my_tick_node); // At this point, we are in the writer_queue, so we might have already been resumed. // We set this bit so that later we can rely on the fact, that if writer_queue_empty == true, // some actor will attempt to grab the lock. @atomicStore(bool, &self.writer_queue_empty, false, .SeqCst); // Here we must be the one to acquire the write lock. It cannot already be locked. if (@cmpxchgStrong(State, &self.shared_state, .Unlocked, .WriteLock, .SeqCst, .SeqCst) == null) { // We now have a write lock. if (self.writer_queue.get()) |node| { // Whether this node is us or someone else, we tail resume it. resume node.data; } } } return HeldWrite{ .lock = self }; } fn commonPostUnlock(self: *RwLock) void { while (true) { // There might be a writer_queue item or a reader_queue item // If we check and both are empty, we can be done, because the other actors will try to // obtain the lock. // But if there's a writer_queue item or a reader_queue item, // we are the actor which must loop and attempt to grab the lock again. if (!@atomicLoad(bool, &self.writer_queue_empty, .SeqCst)) { if (@cmpxchgStrong(State, &self.shared_state, .Unlocked, .WriteLock, .SeqCst, .SeqCst) != null) { // We did not obtain the lock. Great, the queues are someone else's problem. return; } // If there's an item in the writer queue, give them the lock, and we're done. if (self.writer_queue.get()) |node| { global_event_loop.onNextTick(node); return; } // Release the lock again. @atomicStore(bool, &self.writer_queue_empty, true, .SeqCst); @atomicStore(State, &self.shared_state, .Unlocked, .SeqCst); continue; } if (!@atomicLoad(bool, &self.reader_queue_empty, .SeqCst)) { if (@cmpxchgStrong(State, &self.shared_state, .Unlocked, .ReadLock, .SeqCst, .SeqCst) != null) { // We did not obtain the lock. Great, the queues are someone else's problem. return; } // If there are any items in the reader queue, give out all the reader locks, and we're done. if (self.reader_queue.get()) |first_node| { global_event_loop.onNextTick(first_node); while (self.reader_queue.get()) |node| { global_event_loop.onNextTick(node); } return; } // Release the lock again. @atomicStore(bool, &self.reader_queue_empty, true, .SeqCst); if (@cmpxchgStrong(State, &self.shared_state, .ReadLock, .Unlocked, .SeqCst, .SeqCst) != null) { // Didn't unlock. Someone else's problem. return; } continue; } return; } } }; test "std.event.RwLock" { // https://github.com/ziglang/zig/issues/2377 if (true) return error.SkipZigTest; // https://github.com/ziglang/zig/issues/1908 if (builtin.single_threaded) return error.SkipZigTest; // TODO provide a way to run tests in evented I/O mode if (!std.io.is_async) return error.SkipZigTest; var lock = RwLock.init(); defer lock.deinit(); const handle = testLock(std.heap.page_allocator, &lock); const expected_result = [1]i32{shared_it_count * @intCast(i32, shared_test_data.len)} ** shared_test_data.len; testing.expectEqualSlices(i32, expected_result, shared_test_data); } fn testLock(allocator: *Allocator, lock: *RwLock) callconv(.Async) void { var read_nodes: [100]Loop.NextTickNode = undefined; for (read_nodes) |*read_node| { const frame = allocator.create(@Frame(readRunner)) catch @panic("memory"); read_node.data = frame; frame.* = async readRunner(lock); Loop.instance.?.onNextTick(read_node); } var write_nodes: [shared_it_count]Loop.NextTickNode = undefined; for (write_nodes) |*write_node| { const frame = allocator.create(@Frame(writeRunner)) catch @panic("memory"); write_node.data = frame; frame.* = async writeRunner(lock); Loop.instance.?.onNextTick(write_node); } for (write_nodes) |*write_node| { const casted = @ptrCast(*const @Frame(writeRunner), write_node.data); await casted; allocator.destroy(casted); } for (read_nodes) |*read_node| { const casted = @ptrCast(*const @Frame(readRunner), read_node.data); await casted; allocator.destroy(casted); } } const shared_it_count = 10; var shared_test_data = [1]i32{0} ** 10; var shared_test_index: usize = 0; var shared_count: usize = 0; fn writeRunner(lock: *RwLock) callconv(.Async) void { suspend; // resumed by onNextTick var i: usize = 0; while (i < shared_test_data.len) : (i += 1) { std.time.sleep(100 * std.time.microsecond); const lock_promise = async lock.acquireWrite(); const handle = await lock_promise; defer handle.release(); shared_count += 1; while (shared_test_index < shared_test_data.len) : (shared_test_index += 1) { shared_test_data[shared_test_index] = shared_test_data[shared_test_index] + 1; } shared_test_index = 0; } } fn readRunner(lock: *RwLock) callconv(.Async) void { suspend; // resumed by onNextTick std.time.sleep(1); var i: usize = 0; while (i < shared_test_data.len) : (i += 1) { const lock_promise = async lock.acquireRead(); const handle = await lock_promise; defer handle.release(); testing.expect(shared_test_index == 0); testing.expect(shared_test_data[i] == @intCast(i32, shared_count)); } }