const builtin = @import("builtin"); const std = @import("../std.zig"); const mem = std.mem; const debug = std.debug; const leb = std.leb; const dwarf = std.dwarf; const abi = dwarf.abi; const expressions = dwarf.expressions; const assert = std.debug.assert; const Opcode = enum(u8) { advance_loc = 0x1 << 6, offset = 0x2 << 6, restore = 0x3 << 6, nop = 0x00, set_loc = 0x01, advance_loc1 = 0x02, advance_loc2 = 0x03, advance_loc4 = 0x04, offset_extended = 0x05, restore_extended = 0x06, undefined = 0x07, same_value = 0x08, register = 0x09, remember_state = 0x0a, restore_state = 0x0b, def_cfa = 0x0c, def_cfa_register = 0x0d, def_cfa_offset = 0x0e, def_cfa_expression = 0x0f, expression = 0x10, offset_extended_sf = 0x11, def_cfa_sf = 0x12, def_cfa_offset_sf = 0x13, val_offset = 0x14, val_offset_sf = 0x15, val_expression = 0x16, // These opcodes encode an operand in the lower 6 bits of the opcode itself pub const lo_inline = @intFromEnum(Opcode.advance_loc); pub const hi_inline = @intFromEnum(Opcode.restore) | 0b111111; // These opcodes are trailed by zero or more operands pub const lo_reserved = @intFromEnum(Opcode.nop); pub const hi_reserved = @intFromEnum(Opcode.val_expression); // Vendor-specific opcodes pub const lo_user = 0x1c; pub const hi_user = 0x3f; }; fn readBlock(stream: *std.io.FixedBufferStream([]const u8)) ![]const u8 { const reader = stream.reader(); const block_len = try leb.readULEB128(usize, reader); if (stream.pos + block_len > stream.buffer.len) return error.InvalidOperand; const block = stream.buffer[stream.pos..][0..block_len]; reader.context.pos += block_len; return block; } pub const Instruction = union(Opcode) { advance_loc: struct { delta: u8, }, offset: struct { register: u8, offset: u64, }, offset_extended: struct { register: u8, offset: u64, }, restore: struct { register: u8, }, restore_extended: struct { register: u8, }, nop: void, set_loc: struct { address: u64, }, advance_loc1: struct { delta: u8, }, advance_loc2: struct { delta: u16, }, advance_loc4: struct { delta: u32, }, undefined: struct { register: u8, }, same_value: struct { register: u8, }, register: struct { register: u8, target_register: u8, }, remember_state: void, restore_state: void, def_cfa: struct { register: u8, offset: u64, }, def_cfa_register: struct { register: u8, }, def_cfa_offset: struct { offset: u64, }, def_cfa_expression: struct { block: []const u8, }, expression: struct { register: u8, block: []const u8, }, offset_extended_sf: struct { register: u8, offset: i64, }, def_cfa_sf: struct { register: u8, offset: i64, }, def_cfa_offset_sf: struct { offset: i64, }, val_offset: struct { register: u8, offset: u64, }, val_offset_sf: struct { register: u8, offset: i64, }, val_expression: struct { register: u8, block: []const u8, }, pub fn read( stream: *std.io.FixedBufferStream([]const u8), addr_size_bytes: u8, endian: std.builtin.Endian, ) !Instruction { const reader = stream.reader(); switch (try reader.readByte()) { Opcode.lo_inline...Opcode.hi_inline => |opcode| { const e: Opcode = @enumFromInt(opcode & 0b11000000); const value: u6 = @intCast(opcode & 0b111111); return switch (e) { .advance_loc => .{ .advance_loc = .{ .delta = value }, }, .offset => .{ .offset = .{ .register = value, .offset = try leb.readULEB128(u64, reader), }, }, .restore => .{ .restore = .{ .register = value }, }, else => unreachable, }; }, Opcode.lo_reserved...Opcode.hi_reserved => |opcode| { const e: Opcode = @enumFromInt(opcode); return switch (e) { .advance_loc, .offset, .restore, => unreachable, .nop => .{ .nop = {} }, .set_loc => .{ .set_loc = .{ .address = switch (addr_size_bytes) { 2 => try reader.readInt(u16, endian), 4 => try reader.readInt(u32, endian), 8 => try reader.readInt(u64, endian), else => return error.InvalidAddrSize, }, }, }, .advance_loc1 => .{ .advance_loc1 = .{ .delta = try reader.readByte() }, }, .advance_loc2 => .{ .advance_loc2 = .{ .delta = try reader.readInt(u16, endian) }, }, .advance_loc4 => .{ .advance_loc4 = .{ .delta = try reader.readInt(u32, endian) }, }, .offset_extended => .{ .offset_extended = .{ .register = try leb.readULEB128(u8, reader), .offset = try leb.readULEB128(u64, reader), }, }, .restore_extended => .{ .restore_extended = .{ .register = try leb.readULEB128(u8, reader), }, }, .undefined => .{ .undefined = .{ .register = try leb.readULEB128(u8, reader), }, }, .same_value => .{ .same_value = .{ .register = try leb.readULEB128(u8, reader), }, }, .register => .{ .register = .{ .register = try leb.readULEB128(u8, reader), .target_register = try leb.readULEB128(u8, reader), }, }, .remember_state => .{ .remember_state = {} }, .restore_state => .{ .restore_state = {} }, .def_cfa => .{ .def_cfa = .{ .register = try leb.readULEB128(u8, reader), .offset = try leb.readULEB128(u64, reader), }, }, .def_cfa_register => .{ .def_cfa_register = .{ .register = try leb.readULEB128(u8, reader), }, }, .def_cfa_offset => .{ .def_cfa_offset = .{ .offset = try leb.readULEB128(u64, reader), }, }, .def_cfa_expression => .{ .def_cfa_expression = .{ .block = try readBlock(stream), }, }, .expression => .{ .expression = .{ .register = try leb.readULEB128(u8, reader), .block = try readBlock(stream), }, }, .offset_extended_sf => .{ .offset_extended_sf = .{ .register = try leb.readULEB128(u8, reader), .offset = try leb.readILEB128(i64, reader), }, }, .def_cfa_sf => .{ .def_cfa_sf = .{ .register = try leb.readULEB128(u8, reader), .offset = try leb.readILEB128(i64, reader), }, }, .def_cfa_offset_sf => .{ .def_cfa_offset_sf = .{ .offset = try leb.readILEB128(i64, reader), }, }, .val_offset => .{ .val_offset = .{ .register = try leb.readULEB128(u8, reader), .offset = try leb.readULEB128(u64, reader), }, }, .val_offset_sf => .{ .val_offset_sf = .{ .register = try leb.readULEB128(u8, reader), .offset = try leb.readILEB128(i64, reader), }, }, .val_expression => .{ .val_expression = .{ .register = try leb.readULEB128(u8, reader), .block = try readBlock(stream), }, }, }; }, Opcode.lo_user...Opcode.hi_user => return error.UnimplementedUserOpcode, else => return error.InvalidOpcode, } } }; /// Since register rules are applied (usually) during a panic, /// checked addition / subtraction is used so that we can return /// an error and fall back to FP-based unwinding. pub fn applyOffset(base: usize, offset: i64) !usize { return if (offset >= 0) try std.math.add(usize, base, @as(usize, @intCast(offset))) else try std.math.sub(usize, base, @as(usize, @intCast(-offset))); } /// This is a virtual machine that runs DWARF call frame instructions. pub const VirtualMachine = struct { /// See section 6.4.1 of the DWARF5 specification for details on each const RegisterRule = union(enum) { // The spec says that the default rule for each column is the undefined rule. // However, it also allows ABI / compiler authors to specify alternate defaults, so // there is a distinction made here. default: void, undefined: void, same_value: void, // offset(N) offset: i64, // val_offset(N) val_offset: i64, // register(R) register: u8, // expression(E) expression: []const u8, // val_expression(E) val_expression: []const u8, // Augmenter-defined rule architectural: void, }; /// Each row contains unwinding rules for a set of registers. pub const Row = struct { /// Offset from `FrameDescriptionEntry.pc_begin` offset: u64 = 0, /// Special-case column that defines the CFA (Canonical Frame Address) rule. /// The register field of this column defines the register that CFA is derived from. cfa: Column = .{}, /// The register fields in these columns define the register the rule applies to. columns: ColumnRange = .{}, /// Indicates that the next write to any column in this row needs to copy /// the backing column storage first, as it may be referenced by previous rows. copy_on_write: bool = false, }; pub const Column = struct { register: ?u8 = null, rule: RegisterRule = .{ .default = {} }, /// Resolves the register rule and places the result into `out` (see dwarf.abi.regBytes) pub fn resolveValue( self: Column, context: *dwarf.UnwindContext, expression_context: dwarf.expressions.ExpressionContext, out: []u8, ) !void { switch (self.rule) { .default => { const register = self.register orelse return error.InvalidRegister; try abi.getRegDefaultValue(register, context, out); }, .undefined => { @memset(out, undefined); }, .same_value => { // TODO: This copy could be eliminated if callers always copy the state then call this function to update it const register = self.register orelse return error.InvalidRegister; const src = try abi.regBytes(context.thread_context, register, context.reg_context); if (src.len != out.len) return error.RegisterSizeMismatch; @memcpy(out, src); }, .offset => |offset| { if (context.cfa) |cfa| { const addr = try applyOffset(cfa, offset); if (expression_context.isValidMemory) |isValidMemory| if (!isValidMemory(addr)) return error.InvalidAddress; const ptr: *const usize = @ptrFromInt(addr); mem.writeIntSliceNative(usize, out, ptr.*); } else return error.InvalidCFA; }, .val_offset => |offset| { if (context.cfa) |cfa| { mem.writeIntSliceNative(usize, out, try applyOffset(cfa, offset)); } else return error.InvalidCFA; }, .register => |register| { const src = try abi.regBytes(context.thread_context, register, context.reg_context); if (src.len != out.len) return error.RegisterSizeMismatch; @memcpy(out, try abi.regBytes(context.thread_context, register, context.reg_context)); }, .expression => |expression| { context.stack_machine.reset(); const value = try context.stack_machine.run(expression, context.allocator, expression_context, context.cfa.?); const addr = if (value) |v| blk: { if (v != .generic) return error.InvalidExpressionValue; break :blk v.generic; } else return error.NoExpressionValue; if (!context.isValidMemory(addr)) return error.InvalidExpressionAddress; const ptr: *usize = @ptrFromInt(addr); mem.writeIntSliceNative(usize, out, ptr.*); }, .val_expression => |expression| { context.stack_machine.reset(); const value = try context.stack_machine.run(expression, context.allocator, expression_context, context.cfa.?); if (value) |v| { if (v != .generic) return error.InvalidExpressionValue; mem.writeIntSliceNative(usize, out, v.generic); } else return error.NoExpressionValue; }, .architectural => return error.UnimplementedRegisterRule, } } }; const ColumnRange = struct { /// Index into `columns` of the first column in this row. start: usize = undefined, len: u8 = 0, }; columns: std.ArrayListUnmanaged(Column) = .{}, stack: std.ArrayListUnmanaged(ColumnRange) = .{}, current_row: Row = .{}, /// The result of executing the CIE's initial_instructions cie_row: ?Row = null, pub fn deinit(self: *VirtualMachine, allocator: std.mem.Allocator) void { self.stack.deinit(allocator); self.columns.deinit(allocator); self.* = undefined; } pub fn reset(self: *VirtualMachine) void { self.stack.clearRetainingCapacity(); self.columns.clearRetainingCapacity(); self.current_row = .{}; self.cie_row = null; } /// Return a slice backed by the row's non-CFA columns pub fn rowColumns(self: VirtualMachine, row: Row) []Column { if (row.columns.len == 0) return &.{}; return self.columns.items[row.columns.start..][0..row.columns.len]; } /// Either retrieves or adds a column for `register` (non-CFA) in the current row. fn getOrAddColumn(self: *VirtualMachine, allocator: std.mem.Allocator, register: u8) !*Column { for (self.rowColumns(self.current_row)) |*c| { if (c.register == register) return c; } if (self.current_row.columns.len == 0) { self.current_row.columns.start = self.columns.items.len; } self.current_row.columns.len += 1; const column = try self.columns.addOne(allocator); column.* = .{ .register = register, }; return column; } /// Runs the CIE instructions, then the FDE instructions. Execution halts /// once the row that corresponds to `pc` is known, and the row is returned. pub fn runTo( self: *VirtualMachine, allocator: std.mem.Allocator, pc: u64, cie: dwarf.CommonInformationEntry, fde: dwarf.FrameDescriptionEntry, addr_size_bytes: u8, endian: std.builtin.Endian, ) !Row { assert(self.cie_row == null); if (pc < fde.pc_begin or pc >= fde.pc_begin + fde.pc_range) return error.AddressOutOfRange; var prev_row: Row = self.current_row; var cie_stream = std.io.fixedBufferStream(cie.initial_instructions); var fde_stream = std.io.fixedBufferStream(fde.instructions); var streams = [_]*std.io.FixedBufferStream([]const u8){ &cie_stream, &fde_stream, }; for (&streams, 0..) |stream, i| { while (stream.pos < stream.buffer.len) { const instruction = try dwarf.call_frame.Instruction.read(stream, addr_size_bytes, endian); prev_row = try self.step(allocator, cie, i == 0, instruction); if (pc < fde.pc_begin + self.current_row.offset) return prev_row; } } return self.current_row; } pub fn runToNative( self: *VirtualMachine, allocator: std.mem.Allocator, pc: u64, cie: dwarf.CommonInformationEntry, fde: dwarf.FrameDescriptionEntry, ) !Row { return self.runTo(allocator, pc, cie, fde, @sizeOf(usize), builtin.target.cpu.arch.endian()); } fn resolveCopyOnWrite(self: *VirtualMachine, allocator: std.mem.Allocator) !void { if (!self.current_row.copy_on_write) return; const new_start = self.columns.items.len; if (self.current_row.columns.len > 0) { try self.columns.ensureUnusedCapacity(allocator, self.current_row.columns.len); self.columns.appendSliceAssumeCapacity(self.rowColumns(self.current_row)); self.current_row.columns.start = new_start; } } /// Executes a single instruction. /// If this instruction is from the CIE, `is_initial` should be set. /// Returns the value of `current_row` before executing this instruction. pub fn step( self: *VirtualMachine, allocator: std.mem.Allocator, cie: dwarf.CommonInformationEntry, is_initial: bool, instruction: Instruction, ) !Row { // CIE instructions must be run before FDE instructions assert(!is_initial or self.cie_row == null); if (!is_initial and self.cie_row == null) { self.cie_row = self.current_row; self.current_row.copy_on_write = true; } const prev_row = self.current_row; switch (instruction) { .set_loc => |i| { if (i.address <= self.current_row.offset) return error.InvalidOperation; // TODO: Check cie.segment_selector_size != 0 for DWARFV4 self.current_row.offset = i.address; }, inline .advance_loc, .advance_loc1, .advance_loc2, .advance_loc4, => |i| { self.current_row.offset += i.delta * cie.code_alignment_factor; self.current_row.copy_on_write = true; }, inline .offset, .offset_extended, .offset_extended_sf, => |i| { try self.resolveCopyOnWrite(allocator); const column = try self.getOrAddColumn(allocator, i.register); column.rule = .{ .offset = @as(i64, @intCast(i.offset)) * cie.data_alignment_factor }; }, inline .restore, .restore_extended, => |i| { try self.resolveCopyOnWrite(allocator); if (self.cie_row) |cie_row| { const column = try self.getOrAddColumn(allocator, i.register); column.rule = for (self.rowColumns(cie_row)) |cie_column| { if (cie_column.register == i.register) break cie_column.rule; } else .{ .default = {} }; } else return error.InvalidOperation; }, .nop => {}, .undefined => |i| { try self.resolveCopyOnWrite(allocator); const column = try self.getOrAddColumn(allocator, i.register); column.rule = .{ .undefined = {} }; }, .same_value => |i| { try self.resolveCopyOnWrite(allocator); const column = try self.getOrAddColumn(allocator, i.register); column.rule = .{ .same_value = {} }; }, .register => |i| { try self.resolveCopyOnWrite(allocator); const column = try self.getOrAddColumn(allocator, i.register); column.rule = .{ .register = i.target_register }; }, .remember_state => { try self.stack.append(allocator, self.current_row.columns); self.current_row.copy_on_write = true; }, .restore_state => { const restored_columns = self.stack.popOrNull() orelse return error.InvalidOperation; self.columns.shrinkRetainingCapacity(self.columns.items.len - self.current_row.columns.len); try self.columns.ensureUnusedCapacity(allocator, restored_columns.len); self.current_row.columns.start = self.columns.items.len; self.current_row.columns.len = restored_columns.len; self.columns.appendSliceAssumeCapacity(self.columns.items[restored_columns.start..][0..restored_columns.len]); }, .def_cfa => |i| { try self.resolveCopyOnWrite(allocator); self.current_row.cfa = .{ .register = i.register, .rule = .{ .val_offset = @intCast(i.offset) }, }; }, .def_cfa_sf => |i| { try self.resolveCopyOnWrite(allocator); self.current_row.cfa = .{ .register = i.register, .rule = .{ .val_offset = i.offset * cie.data_alignment_factor }, }; }, .def_cfa_register => |i| { try self.resolveCopyOnWrite(allocator); if (self.current_row.cfa.register == null or self.current_row.cfa.rule != .val_offset) return error.InvalidOperation; self.current_row.cfa.register = i.register; }, .def_cfa_offset => |i| { try self.resolveCopyOnWrite(allocator); if (self.current_row.cfa.register == null or self.current_row.cfa.rule != .val_offset) return error.InvalidOperation; self.current_row.cfa.rule = .{ .val_offset = @intCast(i.offset), }; }, .def_cfa_offset_sf => |i| { try self.resolveCopyOnWrite(allocator); if (self.current_row.cfa.register == null or self.current_row.cfa.rule != .val_offset) return error.InvalidOperation; self.current_row.cfa.rule = .{ .val_offset = i.offset * cie.data_alignment_factor, }; }, .def_cfa_expression => |i| { try self.resolveCopyOnWrite(allocator); self.current_row.cfa.register = undefined; self.current_row.cfa.rule = .{ .expression = i.block, }; }, .expression => |i| { try self.resolveCopyOnWrite(allocator); const column = try self.getOrAddColumn(allocator, i.register); column.rule = .{ .expression = i.block, }; }, .val_offset => |i| { try self.resolveCopyOnWrite(allocator); const column = try self.getOrAddColumn(allocator, i.register); column.rule = .{ .val_offset = @as(i64, @intCast(i.offset)) * cie.data_alignment_factor, }; }, .val_offset_sf => |i| { try self.resolveCopyOnWrite(allocator); const column = try self.getOrAddColumn(allocator, i.register); column.rule = .{ .val_offset = i.offset * cie.data_alignment_factor, }; }, .val_expression => |i| { try self.resolveCopyOnWrite(allocator); const column = try self.getOrAddColumn(allocator, i.register); column.rule = .{ .val_expression = i.block, }; }, } return prev_row; } };