const std = @import("std"); const builtin = @import("builtin"); const OP = @import("OP.zig"); const leb = std.leb; const dwarf = std.dwarf; const abi = dwarf.abi; const mem = std.mem; const assert = std.debug.assert; /// Expressions can be evaluated in different contexts, each requiring its own set of inputs. /// Callers should specify all the fields relevant to their context. If a field is required /// by the expression and it isn't in the context, error.IncompleteExpressionContext is returned. pub const ExpressionContext = struct { /// This expression is from a DWARF64 section is_64: bool = false, /// If specified, any addresses will pass through this function before being acccessed isValidMemory: ?*const fn (address: usize) bool = null, /// The compilation unit this expression relates to, if any compile_unit: ?*const dwarf.CompileUnit = null, /// When evaluating a user-presented expression, this is the address of the object being evaluated object_address: ?*const anyopaque = null, /// .debug_addr section debug_addr: ?[]const u8 = null, /// Thread context thread_context: ?*std.debug.ThreadContext = null, reg_context: ?abi.RegisterContext = null, /// Call frame address, if in a CFI context cfa: ?usize = null, /// This expression is a sub-expression from an OP.entry_value instruction entry_value_context: bool = false, }; pub const ExpressionOptions = struct { /// The address size of the target architecture addr_size: u8 = @sizeOf(usize), /// Endianess of the target architecture endian: std.builtin.Endian = builtin.target.cpu.arch.endian(), /// Restrict the stack machine to a subset of opcodes used in call frame instructions call_frame_context: bool = false, }; // Explcitly defined to support executing sub-expressions pub const ExpressionError = error{ UnimplementedExpressionCall, UnimplementedOpcode, UnimplementedUserOpcode, UnimplementedTypedComparison, UnimplementedTypeConversion, UnknownExpressionOpcode, IncompleteExpressionContext, InvalidCFAOpcode, InvalidExpression, InvalidFrameBase, InvalidIntegralTypeSize, InvalidRegister, InvalidSubExpression, InvalidTypeLength, TruncatedIntegralType, } || abi.AbiError || error{ EndOfStream, Overflow, OutOfMemory, DivisionByZero }; /// A stack machine that can decode and run DWARF expressions. /// Expressions can be decoded for non-native address size and endianness, /// but can only be executed if the current target matches the configuration. pub fn StackMachine(comptime options: ExpressionOptions) type { const addr_type = switch (options.addr_size) { 2 => u16, 4 => u32, 8 => u64, else => @compileError("Unsupported address size of " ++ options.addr_size), }; const addr_type_signed = switch (options.addr_size) { 2 => i16, 4 => i32, 8 => i64, else => @compileError("Unsupported address size of " ++ options.addr_size), }; return struct { const Self = @This(); const Operand = union(enum) { generic: addr_type, register: u8, type_size: u8, branch_offset: i16, base_register: struct { base_register: u8, offset: i64, }, composite_location: struct { size: u64, offset: i64, }, block: []const u8, register_type: struct { register: u8, type_offset: addr_type, }, const_type: struct { type_offset: addr_type, value_bytes: []const u8, }, deref_type: struct { size: u8, type_offset: addr_type, }, }; const Value = union(enum) { generic: addr_type, // Typed value with a maximum size of a register regval_type: struct { // Offset of DW_TAG_base_type DIE type_offset: addr_type, type_size: u8, value: addr_type, }, // Typed value specified directly in the instruction stream const_type: struct { // Offset of DW_TAG_base_type DIE type_offset: addr_type, // Backed by the instruction stream value_bytes: []const u8, }, pub fn asIntegral(self: Value) !addr_type { return switch (self) { .generic => |v| v, // TODO: For these two prongs, look up the type and assert it's integral? .regval_type => |regval_type| regval_type.value, .const_type => |const_type| { const value: u64 = switch (const_type.value_bytes.len) { 1 => mem.readIntSliceNative(u8, const_type.value_bytes), 2 => mem.readIntSliceNative(u16, const_type.value_bytes), 4 => mem.readIntSliceNative(u32, const_type.value_bytes), 8 => mem.readIntSliceNative(u64, const_type.value_bytes), else => return error.InvalidIntegralTypeSize, }; return std.math.cast(addr_type, value) orelse error.TruncatedIntegralType; }, }; } }; stack: std.ArrayListUnmanaged(Value) = .{}, pub fn reset(self: *Self) void { self.stack.clearRetainingCapacity(); } pub fn deinit(self: *Self, allocator: std.mem.Allocator) void { self.stack.deinit(allocator); } fn generic(value: anytype) Operand { const int_info = @typeInfo(@TypeOf(value)).Int; if (@sizeOf(@TypeOf(value)) > options.addr_size) { return .{ .generic = switch (int_info.signedness) { .signed => @bitCast(@as(addr_type_signed, @truncate(value))), .unsigned => @truncate(value), } }; } else { return .{ .generic = switch (int_info.signedness) { .signed => @bitCast(@as(addr_type_signed, @intCast(value))), .unsigned => @intCast(value), } }; } } pub fn readOperand(stream: *std.io.FixedBufferStream([]const u8), opcode: u8, context: ExpressionContext) !?Operand { const reader = stream.reader(); return switch (opcode) { OP.addr => generic(try reader.readInt(addr_type, options.endian)), OP.call_ref => if (context.is_64) generic(try reader.readInt(u64, options.endian)) else generic(try reader.readInt(u32, options.endian)), OP.const1u, OP.pick, => generic(try reader.readByte()), OP.deref_size, OP.xderef_size, => .{ .type_size = try reader.readByte() }, OP.const1s => generic(try reader.readByteSigned()), OP.const2u, OP.call2, => generic(try reader.readInt(u16, options.endian)), OP.call4 => generic(try reader.readInt(u32, options.endian)), OP.const2s => generic(try reader.readInt(i16, options.endian)), OP.bra, OP.skip, => .{ .branch_offset = try reader.readInt(i16, options.endian) }, OP.const4u => generic(try reader.readInt(u32, options.endian)), OP.const4s => generic(try reader.readInt(i32, options.endian)), OP.const8u => generic(try reader.readInt(u64, options.endian)), OP.const8s => generic(try reader.readInt(i64, options.endian)), OP.constu, OP.plus_uconst, OP.addrx, OP.constx, OP.convert, OP.reinterpret, => generic(try leb.readULEB128(u64, reader)), OP.consts, OP.fbreg, => generic(try leb.readILEB128(i64, reader)), OP.lit0...OP.lit31 => |n| generic(n - OP.lit0), OP.reg0...OP.reg31 => |n| .{ .register = n - OP.reg0 }, OP.breg0...OP.breg31 => |n| .{ .base_register = .{ .base_register = n - OP.breg0, .offset = try leb.readILEB128(i64, reader), } }, OP.regx => .{ .register = try leb.readULEB128(u8, reader) }, OP.bregx => blk: { const base_register = try leb.readULEB128(u8, reader); const offset = try leb.readILEB128(i64, reader); break :blk .{ .base_register = .{ .base_register = base_register, .offset = offset, } }; }, OP.regval_type => blk: { const register = try leb.readULEB128(u8, reader); const type_offset = try leb.readULEB128(addr_type, reader); break :blk .{ .register_type = .{ .register = register, .type_offset = type_offset, } }; }, OP.piece => .{ .composite_location = .{ .size = try leb.readULEB128(u8, reader), .offset = 0, }, }, OP.bit_piece => blk: { const size = try leb.readULEB128(u8, reader); const offset = try leb.readILEB128(i64, reader); break :blk .{ .composite_location = .{ .size = size, .offset = offset, } }; }, OP.implicit_value, OP.entry_value => blk: { const size = try leb.readULEB128(u8, reader); if (stream.pos + size > stream.buffer.len) return error.InvalidExpression; const block = stream.buffer[stream.pos..][0..size]; stream.pos += size; break :blk .{ .block = block, }; }, OP.const_type => blk: { const type_offset = try leb.readULEB128(addr_type, reader); const size = try reader.readByte(); if (stream.pos + size > stream.buffer.len) return error.InvalidExpression; const value_bytes = stream.buffer[stream.pos..][0..size]; stream.pos += size; break :blk .{ .const_type = .{ .type_offset = type_offset, .value_bytes = value_bytes, } }; }, OP.deref_type, OP.xderef_type, => .{ .deref_type = .{ .size = try reader.readByte(), .type_offset = try leb.readULEB128(addr_type, reader), }, }, OP.lo_user...OP.hi_user => return error.UnimplementedUserOpcode, else => null, }; } pub fn run( self: *Self, expression: []const u8, allocator: std.mem.Allocator, context: ExpressionContext, initial_value: ?usize, ) ExpressionError!?Value { if (initial_value) |i| try self.stack.append(allocator, .{ .generic = i }); var stream = std.io.fixedBufferStream(expression); while (try self.step(&stream, allocator, context)) {} if (self.stack.items.len == 0) return null; return self.stack.items[self.stack.items.len - 1]; } /// Reads an opcode and its operands from `stream`, then executes it pub fn step( self: *Self, stream: *std.io.FixedBufferStream([]const u8), allocator: std.mem.Allocator, context: ExpressionContext, ) ExpressionError!bool { if (@sizeOf(usize) != @sizeOf(addr_type) or options.endian != comptime builtin.target.cpu.arch.endian()) @compileError("Execution of non-native address sizes / endianness is not supported"); const opcode = try stream.reader().readByte(); if (options.call_frame_context and !isOpcodeValidInCFA(opcode)) return error.InvalidCFAOpcode; const operand = try readOperand(stream, opcode, context); switch (opcode) { // 2.5.1.1: Literal Encodings OP.lit0...OP.lit31, OP.addr, OP.const1u, OP.const2u, OP.const4u, OP.const8u, OP.const1s, OP.const2s, OP.const4s, OP.const8s, OP.constu, OP.consts, => try self.stack.append(allocator, .{ .generic = operand.?.generic }), OP.const_type => { const const_type = operand.?.const_type; try self.stack.append(allocator, .{ .const_type = .{ .type_offset = const_type.type_offset, .value_bytes = const_type.value_bytes, } }); }, OP.addrx, OP.constx, => { if (context.compile_unit == null) return error.IncompleteExpressionContext; if (context.debug_addr == null) return error.IncompleteExpressionContext; const debug_addr_index = operand.?.generic; const offset = context.compile_unit.?.addr_base + debug_addr_index; if (offset >= context.debug_addr.?.len) return error.InvalidExpression; const value = mem.readIntSliceNative(usize, context.debug_addr.?[offset..][0..@sizeOf(usize)]); try self.stack.append(allocator, .{ .generic = value }); }, // 2.5.1.2: Register Values OP.fbreg => { if (context.compile_unit == null) return error.IncompleteExpressionContext; if (context.compile_unit.?.frame_base == null) return error.IncompleteExpressionContext; const offset: i64 = @intCast(operand.?.generic); _ = offset; switch (context.compile_unit.?.frame_base.?.*) { .ExprLoc => { // TODO: Run this expression in a nested stack machine return error.UnimplementedOpcode; }, .LocListOffset => { // TODO: Read value from .debug_loclists return error.UnimplementedOpcode; }, .SecOffset => { // TODO: Read value from .debug_loclists return error.UnimplementedOpcode; }, else => return error.InvalidFrameBase, } }, OP.breg0...OP.breg31, OP.bregx, => { if (context.thread_context == null) return error.IncompleteExpressionContext; const base_register = operand.?.base_register; var value: i64 = @intCast(mem.readIntSliceNative(usize, try abi.regBytes( context.thread_context.?, base_register.base_register, context.reg_context, ))); value += base_register.offset; try self.stack.append(allocator, .{ .generic = @intCast(value) }); }, OP.regval_type => { const register_type = operand.?.register_type; const value = mem.readIntSliceNative(usize, try abi.regBytes( context.thread_context.?, register_type.register, context.reg_context, )); try self.stack.append(allocator, .{ .regval_type = .{ .type_offset = register_type.type_offset, .type_size = @sizeOf(addr_type), .value = value, }, }); }, // 2.5.1.3: Stack Operations OP.dup => { if (self.stack.items.len == 0) return error.InvalidExpression; try self.stack.append(allocator, self.stack.items[self.stack.items.len - 1]); }, OP.drop => { _ = self.stack.pop(); }, OP.pick, OP.over => { const stack_index = if (opcode == OP.over) 1 else operand.?.generic; if (stack_index >= self.stack.items.len) return error.InvalidExpression; try self.stack.append(allocator, self.stack.items[self.stack.items.len - 1 - stack_index]); }, OP.swap => { if (self.stack.items.len < 2) return error.InvalidExpression; mem.swap(Value, &self.stack.items[self.stack.items.len - 1], &self.stack.items[self.stack.items.len - 2]); }, OP.rot => { if (self.stack.items.len < 3) return error.InvalidExpression; const first = self.stack.items[self.stack.items.len - 1]; self.stack.items[self.stack.items.len - 1] = self.stack.items[self.stack.items.len - 2]; self.stack.items[self.stack.items.len - 2] = self.stack.items[self.stack.items.len - 3]; self.stack.items[self.stack.items.len - 3] = first; }, OP.deref, OP.xderef, OP.deref_size, OP.xderef_size, OP.deref_type, OP.xderef_type, => { if (self.stack.items.len == 0) return error.InvalidExpression; var addr = try self.stack.items[self.stack.items.len - 1].asIntegral(); const addr_space_identifier: ?usize = switch (opcode) { OP.xderef, OP.xderef_size, OP.xderef_type, => blk: { _ = self.stack.pop(); if (self.stack.items.len == 0) return error.InvalidExpression; break :blk try self.stack.items[self.stack.items.len - 1].asIntegral(); }, else => null, }; // Usage of addr_space_identifier in the address calculation is implementation defined. // This code will need to be updated to handle any architectures that utilize this. _ = addr_space_identifier; if (context.isValidMemory) |isValidMemory| if (!isValidMemory(addr)) return error.InvalidExpression; const size = switch (opcode) { OP.deref, OP.xderef, => @sizeOf(addr_type), OP.deref_size, OP.xderef_size, => operand.?.type_size, OP.deref_type, OP.xderef_type, => operand.?.deref_type.size, else => unreachable, }; const value: addr_type = std.math.cast(addr_type, @as(u64, switch (size) { 1 => @as(*const u8, @ptrFromInt(addr)).*, 2 => @as(*const u16, @ptrFromInt(addr)).*, 4 => @as(*const u32, @ptrFromInt(addr)).*, 8 => @as(*const u64, @ptrFromInt(addr)).*, else => return error.InvalidExpression, })) orelse return error.InvalidExpression; switch (opcode) { OP.deref_type, OP.xderef_type, => { self.stack.items[self.stack.items.len - 1] = .{ .regval_type = .{ .type_offset = operand.?.deref_type.type_offset, .type_size = operand.?.deref_type.size, .value = value, }, }; }, else => { self.stack.items[self.stack.items.len - 1] = .{ .generic = value }; }, } }, OP.push_object_address => { // In sub-expressions, `push_object_address` is not meaningful (as per the // spec), so treat it like a nop if (!context.entry_value_context) { if (context.object_address == null) return error.IncompleteExpressionContext; try self.stack.append(allocator, .{ .generic = @intFromPtr(context.object_address.?) }); } }, OP.form_tls_address => { return error.UnimplementedOpcode; }, OP.call_frame_cfa => { if (context.cfa) |cfa| { try self.stack.append(allocator, .{ .generic = cfa }); } else return error.IncompleteExpressionContext; }, // 2.5.1.4: Arithmetic and Logical Operations OP.abs => { if (self.stack.items.len == 0) return error.InvalidExpression; const value: isize = @bitCast(try self.stack.items[self.stack.items.len - 1].asIntegral()); self.stack.items[self.stack.items.len - 1] = .{ .generic = std.math.absCast(value), }; }, OP.@"and" => { if (self.stack.items.len < 2) return error.InvalidExpression; const a = try self.stack.pop().asIntegral(); self.stack.items[self.stack.items.len - 1] = .{ .generic = a & try self.stack.items[self.stack.items.len - 1].asIntegral(), }; }, OP.div => { if (self.stack.items.len < 2) return error.InvalidExpression; const a: isize = @bitCast(try self.stack.pop().asIntegral()); const b: isize = @bitCast(try self.stack.items[self.stack.items.len - 1].asIntegral()); self.stack.items[self.stack.items.len - 1] = .{ .generic = @bitCast(try std.math.divTrunc(isize, b, a)), }; }, OP.minus => { if (self.stack.items.len < 2) return error.InvalidExpression; const b = try self.stack.pop().asIntegral(); self.stack.items[self.stack.items.len - 1] = .{ .generic = try std.math.sub(addr_type, try self.stack.items[self.stack.items.len - 1].asIntegral(), b), }; }, OP.mod => { if (self.stack.items.len < 2) return error.InvalidExpression; const a: isize = @bitCast(try self.stack.pop().asIntegral()); const b: isize = @bitCast(try self.stack.items[self.stack.items.len - 1].asIntegral()); self.stack.items[self.stack.items.len - 1] = .{ .generic = @bitCast(@mod(b, a)), }; }, OP.mul => { if (self.stack.items.len < 2) return error.InvalidExpression; const a: isize = @bitCast(try self.stack.pop().asIntegral()); const b: isize = @bitCast(try self.stack.items[self.stack.items.len - 1].asIntegral()); self.stack.items[self.stack.items.len - 1] = .{ .generic = @bitCast(@mulWithOverflow(a, b)[0]), }; }, OP.neg => { if (self.stack.items.len == 0) return error.InvalidExpression; self.stack.items[self.stack.items.len - 1] = .{ .generic = @bitCast( try std.math.negate( @as(isize, @bitCast(try self.stack.items[self.stack.items.len - 1].asIntegral())), ), ), }; }, OP.not => { if (self.stack.items.len == 0) return error.InvalidExpression; self.stack.items[self.stack.items.len - 1] = .{ .generic = ~try self.stack.items[self.stack.items.len - 1].asIntegral(), }; }, OP.@"or" => { if (self.stack.items.len < 2) return error.InvalidExpression; const a = try self.stack.pop().asIntegral(); self.stack.items[self.stack.items.len - 1] = .{ .generic = a | try self.stack.items[self.stack.items.len - 1].asIntegral(), }; }, OP.plus => { if (self.stack.items.len < 2) return error.InvalidExpression; const b = try self.stack.pop().asIntegral(); self.stack.items[self.stack.items.len - 1] = .{ .generic = try std.math.add(addr_type, try self.stack.items[self.stack.items.len - 1].asIntegral(), b), }; }, OP.plus_uconst => { if (self.stack.items.len == 0) return error.InvalidExpression; const constant = operand.?.generic; self.stack.items[self.stack.items.len - 1] = .{ .generic = try std.math.add(addr_type, try self.stack.items[self.stack.items.len - 1].asIntegral(), constant), }; }, OP.shl => { if (self.stack.items.len < 2) return error.InvalidExpression; const a = try self.stack.pop().asIntegral(); const b = try self.stack.items[self.stack.items.len - 1].asIntegral(); self.stack.items[self.stack.items.len - 1] = .{ .generic = std.math.shl(usize, b, a), }; }, OP.shr => { if (self.stack.items.len < 2) return error.InvalidExpression; const a = try self.stack.pop().asIntegral(); const b = try self.stack.items[self.stack.items.len - 1].asIntegral(); self.stack.items[self.stack.items.len - 1] = .{ .generic = std.math.shr(usize, b, a), }; }, OP.shra => { if (self.stack.items.len < 2) return error.InvalidExpression; const a = try self.stack.pop().asIntegral(); const b: isize = @bitCast(try self.stack.items[self.stack.items.len - 1].asIntegral()); self.stack.items[self.stack.items.len - 1] = .{ .generic = @bitCast(std.math.shr(isize, b, a)), }; }, OP.xor => { if (self.stack.items.len < 2) return error.InvalidExpression; const a = try self.stack.pop().asIntegral(); self.stack.items[self.stack.items.len - 1] = .{ .generic = a ^ try self.stack.items[self.stack.items.len - 1].asIntegral(), }; }, // 2.5.1.5: Control Flow Operations OP.le, OP.ge, OP.eq, OP.lt, OP.gt, OP.ne, => { if (self.stack.items.len < 2) return error.InvalidExpression; const a = self.stack.pop(); const b = self.stack.items[self.stack.items.len - 1]; if (a == .generic and b == .generic) { const a_int: isize = @bitCast(a.asIntegral() catch unreachable); const b_int: isize = @bitCast(b.asIntegral() catch unreachable); const result = @intFromBool(switch (opcode) { OP.le => b_int <= a_int, OP.ge => b_int >= a_int, OP.eq => b_int == a_int, OP.lt => b_int < a_int, OP.gt => b_int > a_int, OP.ne => b_int != a_int, else => unreachable, }); self.stack.items[self.stack.items.len - 1] = .{ .generic = result }; } else { // TODO: Load the types referenced by these values, find their comparison operator, and run it return error.UnimplementedTypedComparison; } }, OP.skip, OP.bra => { const branch_offset = operand.?.branch_offset; const condition = if (opcode == OP.bra) blk: { if (self.stack.items.len == 0) return error.InvalidExpression; break :blk try self.stack.pop().asIntegral() != 0; } else true; if (condition) { const new_pos = std.math.cast( usize, try std.math.add(isize, @as(isize, @intCast(stream.pos)), branch_offset), ) orelse return error.InvalidExpression; if (new_pos < 0 or new_pos > stream.buffer.len) return error.InvalidExpression; stream.pos = new_pos; } }, OP.call2, OP.call4, OP.call_ref, => { const debug_info_offset = operand.?.generic; _ = debug_info_offset; // TODO: Load a DIE entry at debug_info_offset in a .debug_info section (the spec says that it // can be in a separate exe / shared object from the one containing this expression). // Transfer control to the DW_AT_location attribute, with the current stack as input. return error.UnimplementedExpressionCall; }, // 2.5.1.6: Type Conversions OP.convert => { if (self.stack.items.len == 0) return error.InvalidExpression; const type_offset = operand.?.generic; // TODO: Load the DW_TAG_base_type entries in context.compile_unit and verify both types are the same size const value = self.stack.items[self.stack.items.len - 1]; if (type_offset == 0) { self.stack.items[self.stack.items.len - 1] = .{ .generic = try value.asIntegral() }; } else { // TODO: Load the DW_TAG_base_type entry in context.compile_unit, find a conversion operator // from the old type to the new type, run it. return error.UnimplementedTypeConversion; } }, OP.reinterpret => { if (self.stack.items.len == 0) return error.InvalidExpression; const type_offset = operand.?.generic; // TODO: Load the DW_TAG_base_type entries in context.compile_unit and verify both types are the same size const value = self.stack.items[self.stack.items.len - 1]; if (type_offset == 0) { self.stack.items[self.stack.items.len - 1] = .{ .generic = try value.asIntegral() }; } else { self.stack.items[self.stack.items.len - 1] = switch (value) { .generic => |v| .{ .regval_type = .{ .type_offset = type_offset, .type_size = @sizeOf(addr_type), .value = v, }, }, .regval_type => |r| .{ .regval_type = .{ .type_offset = type_offset, .type_size = r.type_size, .value = r.value, }, }, .const_type => |c| .{ .const_type = .{ .type_offset = type_offset, .value_bytes = c.value_bytes, }, }, }; } }, // 2.5.1.7: Special Operations OP.nop => {}, OP.entry_value => { const block = operand.?.block; if (block.len == 0) return error.InvalidSubExpression; // TODO: The spec states that this sub-expression needs to observe the state (ie. registers) // as it was upon entering the current subprogram. If this isn't being called at the // end of a frame unwind operation, an additional ThreadContext with this state will be needed. if (isOpcodeRegisterLocation(block[0])) { if (context.thread_context == null) return error.IncompleteExpressionContext; var block_stream = std.io.fixedBufferStream(block); const register = (try readOperand(&block_stream, block[0], context)).?.register; const value = mem.readIntSliceNative(usize, try abi.regBytes(context.thread_context.?, register, context.reg_context)); try self.stack.append(allocator, .{ .generic = value }); } else { var stack_machine: Self = .{}; defer stack_machine.deinit(allocator); var sub_context = context; sub_context.entry_value_context = true; const result = try stack_machine.run(block, allocator, sub_context, null); try self.stack.append(allocator, result orelse return error.InvalidSubExpression); } }, // These have already been handled by readOperand OP.lo_user...OP.hi_user => unreachable, else => { //std.debug.print("Unknown DWARF expression opcode: {x}\n", .{opcode}); return error.UnknownExpressionOpcode; }, } return stream.pos < stream.buffer.len; } }; } pub fn Builder(comptime options: ExpressionOptions) type { const addr_type = switch (options.addr_size) { 2 => u16, 4 => u32, 8 => u64, else => @compileError("Unsupported address size of " ++ options.addr_size), }; return struct { /// Zero-operand instructions pub fn writeOpcode(writer: anytype, comptime opcode: u8) !void { if (options.call_frame_context and !comptime isOpcodeValidInCFA(opcode)) return error.InvalidCFAOpcode; switch (opcode) { OP.dup, OP.drop, OP.over, OP.swap, OP.rot, OP.deref, OP.xderef, OP.push_object_address, OP.form_tls_address, OP.call_frame_cfa, OP.abs, OP.@"and", OP.div, OP.minus, OP.mod, OP.mul, OP.neg, OP.not, OP.@"or", OP.plus, OP.shl, OP.shr, OP.shra, OP.xor, OP.le, OP.ge, OP.eq, OP.lt, OP.gt, OP.ne, OP.nop, OP.stack_value, => try writer.writeByte(opcode), else => @compileError("This opcode requires operands, use `write()` instead"), } } // 2.5.1.1: Literal Encodings pub fn writeLiteral(writer: anytype, literal: u8) !void { switch (literal) { 0...31 => |n| try writer.writeByte(n + OP.lit0), else => return error.InvalidLiteral, } } pub fn writeConst(writer: anytype, comptime T: type, value: T) !void { if (@typeInfo(T) != .Int) @compileError("Constants must be integers"); switch (T) { u8, i8, u16, i16, u32, i32, u64, i64 => { try writer.writeByte(switch (T) { u8 => OP.const1u, i8 => OP.const1s, u16 => OP.const2u, i16 => OP.const2s, u32 => OP.const4u, i32 => OP.const4s, u64 => OP.const8u, i64 => OP.const8s, else => unreachable, }); try writer.writeInt(T, value, options.endian); }, else => switch (@typeInfo(T).Int.signedness) { .unsigned => { try writer.writeByte(OP.constu); try leb.writeULEB128(writer, value); }, .signed => { try writer.writeByte(OP.consts); try leb.writeILEB128(writer, value); }, }, } } pub fn writeConstx(writer: anytype, debug_addr_offset: anytype) !void { try writer.writeByte(OP.constx); try leb.writeULEB128(writer, debug_addr_offset); } pub fn writeConstType(writer: anytype, die_offset: anytype, value_bytes: []const u8) !void { if (options.call_frame_context) return error.InvalidCFAOpcode; if (value_bytes.len > 0xff) return error.InvalidTypeLength; try writer.writeByte(OP.const_type); try leb.writeULEB128(writer, die_offset); try writer.writeByte(@intCast(value_bytes.len)); try writer.writeAll(value_bytes); } pub fn writeAddr(writer: anytype, value: addr_type) !void { try writer.writeByte(OP.addr); try writer.writeInt(addr_type, value, options.endian); } pub fn writeAddrx(writer: anytype, debug_addr_offset: anytype) !void { if (options.call_frame_context) return error.InvalidCFAOpcode; try writer.writeByte(OP.addrx); try leb.writeULEB128(writer, debug_addr_offset); } // 2.5.1.2: Register Values pub fn writeFbreg(writer: anytype, offset: anytype) !void { try writer.writeByte(OP.fbreg); try leb.writeILEB128(writer, offset); } pub fn writeBreg(writer: anytype, register: u8, offset: anytype) !void { if (register > 31) return error.InvalidRegister; try writer.writeByte(OP.breg0 + register); try leb.writeILEB128(writer, offset); } pub fn writeBregx(writer: anytype, register: anytype, offset: anytype) !void { try writer.writeByte(OP.bregx); try leb.writeULEB128(writer, register); try leb.writeILEB128(writer, offset); } pub fn writeRegvalType(writer: anytype, register: anytype, offset: anytype) !void { if (options.call_frame_context) return error.InvalidCFAOpcode; try writer.writeByte(OP.regval_type); try leb.writeULEB128(writer, register); try leb.writeULEB128(writer, offset); } // 2.5.1.3: Stack Operations pub fn writePick(writer: anytype, index: u8) !void { try writer.writeByte(OP.pick); try writer.writeByte(index); } pub fn writeDerefSize(writer: anytype, size: u8) !void { try writer.writeByte(OP.deref_size); try writer.writeByte(size); } pub fn writeXDerefSize(writer: anytype, size: u8) !void { try writer.writeByte(OP.xderef_size); try writer.writeByte(size); } pub fn writeDerefType(writer: anytype, size: u8, die_offset: anytype) !void { if (options.call_frame_context) return error.InvalidCFAOpcode; try writer.writeByte(OP.deref_type); try writer.writeByte(size); try leb.writeULEB128(writer, die_offset); } pub fn writeXDerefType(writer: anytype, size: u8, die_offset: anytype) !void { try writer.writeByte(OP.xderef_type); try writer.writeByte(size); try leb.writeULEB128(writer, die_offset); } // 2.5.1.4: Arithmetic and Logical Operations pub fn writePlusUconst(writer: anytype, uint_value: anytype) !void { try writer.writeByte(OP.plus_uconst); try leb.writeULEB128(writer, uint_value); } // 2.5.1.5: Control Flow Operations pub fn writeSkip(writer: anytype, offset: i16) !void { try writer.writeByte(OP.skip); try writer.writeInt(i16, offset, options.endian); } pub fn writeBra(writer: anytype, offset: i16) !void { try writer.writeByte(OP.bra); try writer.writeInt(i16, offset, options.endian); } pub fn writeCall(writer: anytype, comptime T: type, offset: T) !void { if (options.call_frame_context) return error.InvalidCFAOpcode; switch (T) { u16 => try writer.writeByte(OP.call2), u32 => try writer.writeByte(OP.call4), else => @compileError("Call operand must be a 2 or 4 byte offset"), } try writer.writeInt(T, offset, options.endian); } pub fn writeCallRef(writer: anytype, comptime is_64: bool, value: if (is_64) u64 else u32) !void { if (options.call_frame_context) return error.InvalidCFAOpcode; try writer.writeByte(OP.call_ref); try writer.writeInt(if (is_64) u64 else u32, value, options.endian); } pub fn writeConvert(writer: anytype, die_offset: anytype) !void { if (options.call_frame_context) return error.InvalidCFAOpcode; try writer.writeByte(OP.convert); try leb.writeULEB128(writer, die_offset); } pub fn writeReinterpret(writer: anytype, die_offset: anytype) !void { if (options.call_frame_context) return error.InvalidCFAOpcode; try writer.writeByte(OP.reinterpret); try leb.writeULEB128(writer, die_offset); } // 2.5.1.7: Special Operations pub fn writeEntryValue(writer: anytype, expression: []const u8) !void { try writer.writeByte(OP.entry_value); try leb.writeULEB128(writer, expression.len); try writer.writeAll(expression); } // 2.6: Location Descriptions pub fn writeReg(writer: anytype, register: u8) !void { try writer.writeByte(OP.reg0 + register); } pub fn writeRegx(writer: anytype, register: anytype) !void { try writer.writeByte(OP.regx); try leb.writeULEB128(writer, register); } pub fn writeImplicitValue(writer: anytype, value_bytes: []const u8) !void { try writer.writeByte(OP.implicit_value); try leb.writeULEB128(writer, value_bytes.len); try writer.writeAll(value_bytes); } }; } // Certain opcodes are not allowed in a CFA context, see 6.4.2 fn isOpcodeValidInCFA(opcode: u8) bool { return switch (opcode) { OP.addrx, OP.call2, OP.call4, OP.call_ref, OP.const_type, OP.constx, OP.convert, OP.deref_type, OP.regval_type, OP.reinterpret, OP.push_object_address, OP.call_frame_cfa, => false, else => true, }; } fn isOpcodeRegisterLocation(opcode: u8) bool { return switch (opcode) { OP.reg0...OP.reg31, OP.regx => true, else => false, }; } const testing = std.testing; test "DWARF expressions" { const allocator = std.testing.allocator; const options = ExpressionOptions{}; var stack_machine = StackMachine(options){}; defer stack_machine.deinit(allocator); const b = Builder(options); var program = std.ArrayList(u8).init(allocator); defer program.deinit(); const writer = program.writer(); // Literals { const context = ExpressionContext{}; for (0..32) |i| { try b.writeLiteral(writer, @intCast(i)); } _ = try stack_machine.run(program.items, allocator, context, 0); for (0..32) |i| { const expected = 31 - i; try testing.expectEqual(expected, stack_machine.stack.popOrNull().?.generic); } } // Constants { stack_machine.reset(); program.clearRetainingCapacity(); const input = [_]comptime_int{ 1, -1, @as(usize, @truncate(0x0fff)), @as(isize, @truncate(-0x0fff)), @as(usize, @truncate(0x0fffffff)), @as(isize, @truncate(-0x0fffffff)), @as(usize, @truncate(0x0fffffffffffffff)), @as(isize, @truncate(-0x0fffffffffffffff)), @as(usize, @truncate(0x8000000)), @as(isize, @truncate(-0x8000000)), @as(usize, @truncate(0x12345678_12345678)), @as(usize, @truncate(0xffffffff_ffffffff)), @as(usize, @truncate(0xeeeeeeee_eeeeeeee)), }; try b.writeConst(writer, u8, input[0]); try b.writeConst(writer, i8, input[1]); try b.writeConst(writer, u16, input[2]); try b.writeConst(writer, i16, input[3]); try b.writeConst(writer, u32, input[4]); try b.writeConst(writer, i32, input[5]); try b.writeConst(writer, u64, input[6]); try b.writeConst(writer, i64, input[7]); try b.writeConst(writer, u28, input[8]); try b.writeConst(writer, i28, input[9]); try b.writeAddr(writer, input[10]); var mock_compile_unit: dwarf.CompileUnit = undefined; mock_compile_unit.addr_base = 1; var mock_debug_addr = std.ArrayList(u8).init(allocator); defer mock_debug_addr.deinit(); try mock_debug_addr.writer().writeIntNative(u16, 0); try mock_debug_addr.writer().writeIntNative(usize, input[11]); try mock_debug_addr.writer().writeIntNative(usize, input[12]); const context = ExpressionContext{ .compile_unit = &mock_compile_unit, .debug_addr = mock_debug_addr.items, }; try b.writeConstx(writer, @as(usize, 1)); try b.writeAddrx(writer, @as(usize, 1 + @sizeOf(usize))); const die_offset: usize = @truncate(0xaabbccdd); const type_bytes: []const u8 = &.{ 1, 2, 3, 4 }; try b.writeConstType(writer, die_offset, type_bytes); _ = try stack_machine.run(program.items, allocator, context, 0); const const_type = stack_machine.stack.popOrNull().?.const_type; try testing.expectEqual(die_offset, const_type.type_offset); try testing.expectEqualSlices(u8, type_bytes, const_type.value_bytes); const expected = .{ .{ usize, input[12], usize }, .{ usize, input[11], usize }, .{ usize, input[10], usize }, .{ isize, input[9], isize }, .{ usize, input[8], usize }, .{ isize, input[7], isize }, .{ usize, input[6], usize }, .{ isize, input[5], isize }, .{ usize, input[4], usize }, .{ isize, input[3], isize }, .{ usize, input[2], usize }, .{ isize, input[1], isize }, .{ usize, input[0], usize }, }; inline for (expected) |e| { try testing.expectEqual(@as(e[0], e[1]), @as(e[2], @bitCast(stack_machine.stack.popOrNull().?.generic))); } } // Register values if (@sizeOf(std.debug.ThreadContext) != 0) { stack_machine.reset(); program.clearRetainingCapacity(); const reg_context = abi.RegisterContext{ .eh_frame = true, .is_macho = builtin.os.tag == .macos, }; var thread_context: std.debug.ThreadContext = undefined; std.debug.relocateContext(&thread_context); const context = ExpressionContext{ .thread_context = &thread_context, .reg_context = reg_context, }; // Only test register operations on arch / os that have them implemented if (abi.regBytes(&thread_context, 0, reg_context)) |reg_bytes| { // TODO: Test fbreg (once implemented): mock a DIE and point compile_unit.frame_base at it mem.writeIntSliceNative(usize, reg_bytes, 0xee); (try abi.regValueNative(usize, &thread_context, abi.fpRegNum(reg_context), reg_context)).* = 1; (try abi.regValueNative(usize, &thread_context, abi.spRegNum(reg_context), reg_context)).* = 2; (try abi.regValueNative(usize, &thread_context, abi.ipRegNum(), reg_context)).* = 3; try b.writeBreg(writer, abi.fpRegNum(reg_context), @as(usize, 100)); try b.writeBreg(writer, abi.spRegNum(reg_context), @as(usize, 200)); try b.writeBregx(writer, abi.ipRegNum(), @as(usize, 300)); try b.writeRegvalType(writer, @as(u8, 0), @as(usize, 400)); _ = try stack_machine.run(program.items, allocator, context, 0); const regval_type = stack_machine.stack.popOrNull().?.regval_type; try testing.expectEqual(@as(usize, 400), regval_type.type_offset); try testing.expectEqual(@as(u8, @sizeOf(usize)), regval_type.type_size); try testing.expectEqual(@as(usize, 0xee), regval_type.value); try testing.expectEqual(@as(usize, 303), stack_machine.stack.popOrNull().?.generic); try testing.expectEqual(@as(usize, 202), stack_machine.stack.popOrNull().?.generic); try testing.expectEqual(@as(usize, 101), stack_machine.stack.popOrNull().?.generic); } else |err| { switch (err) { error.UnimplementedArch, error.UnimplementedOs, error.ThreadContextNotSupported, => {}, else => return err, } } } // Stack operations { var context = ExpressionContext{}; stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, u8, 1); try b.writeOpcode(writer, OP.dup); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 1), stack_machine.stack.popOrNull().?.generic); try testing.expectEqual(@as(usize, 1), stack_machine.stack.popOrNull().?.generic); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, u8, 1); try b.writeOpcode(writer, OP.drop); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expect(stack_machine.stack.popOrNull() == null); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, u8, 4); try b.writeConst(writer, u8, 5); try b.writeConst(writer, u8, 6); try b.writePick(writer, 2); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 4), stack_machine.stack.popOrNull().?.generic); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, u8, 4); try b.writeConst(writer, u8, 5); try b.writeConst(writer, u8, 6); try b.writeOpcode(writer, OP.over); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 5), stack_machine.stack.popOrNull().?.generic); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, u8, 5); try b.writeConst(writer, u8, 6); try b.writeOpcode(writer, OP.swap); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 5), stack_machine.stack.popOrNull().?.generic); try testing.expectEqual(@as(usize, 6), stack_machine.stack.popOrNull().?.generic); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, u8, 4); try b.writeConst(writer, u8, 5); try b.writeConst(writer, u8, 6); try b.writeOpcode(writer, OP.rot); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 5), stack_machine.stack.popOrNull().?.generic); try testing.expectEqual(@as(usize, 4), stack_machine.stack.popOrNull().?.generic); try testing.expectEqual(@as(usize, 6), stack_machine.stack.popOrNull().?.generic); const deref_target: usize = @truncate(0xffeeffee_ffeeffee); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeAddr(writer, @intFromPtr(&deref_target)); try b.writeOpcode(writer, OP.deref); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(deref_target, stack_machine.stack.popOrNull().?.generic); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeLiteral(writer, 0); try b.writeAddr(writer, @intFromPtr(&deref_target)); try b.writeOpcode(writer, OP.xderef); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(deref_target, stack_machine.stack.popOrNull().?.generic); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeAddr(writer, @intFromPtr(&deref_target)); try b.writeDerefSize(writer, 1); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, @as(*const u8, @ptrCast(&deref_target)).*), stack_machine.stack.popOrNull().?.generic); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeLiteral(writer, 0); try b.writeAddr(writer, @intFromPtr(&deref_target)); try b.writeXDerefSize(writer, 1); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, @as(*const u8, @ptrCast(&deref_target)).*), stack_machine.stack.popOrNull().?.generic); const type_offset: usize = @truncate(0xaabbaabb_aabbaabb); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeAddr(writer, @intFromPtr(&deref_target)); try b.writeDerefType(writer, 1, type_offset); _ = try stack_machine.run(program.items, allocator, context, null); const deref_type = stack_machine.stack.popOrNull().?.regval_type; try testing.expectEqual(type_offset, deref_type.type_offset); try testing.expectEqual(@as(u8, 1), deref_type.type_size); try testing.expectEqual(@as(usize, @as(*const u8, @ptrCast(&deref_target)).*), deref_type.value); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeLiteral(writer, 0); try b.writeAddr(writer, @intFromPtr(&deref_target)); try b.writeXDerefType(writer, 1, type_offset); _ = try stack_machine.run(program.items, allocator, context, null); const xderef_type = stack_machine.stack.popOrNull().?.regval_type; try testing.expectEqual(type_offset, xderef_type.type_offset); try testing.expectEqual(@as(u8, 1), xderef_type.type_size); try testing.expectEqual(@as(usize, @as(*const u8, @ptrCast(&deref_target)).*), xderef_type.value); context.object_address = &deref_target; stack_machine.reset(); program.clearRetainingCapacity(); try b.writeOpcode(writer, OP.push_object_address); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, @intFromPtr(context.object_address.?)), stack_machine.stack.popOrNull().?.generic); // TODO: Test OP.form_tls_address context.cfa = @truncate(0xccddccdd_ccddccdd); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeOpcode(writer, OP.call_frame_cfa); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(context.cfa.?, stack_machine.stack.popOrNull().?.generic); } // Arithmetic and Logical Operations { var context = ExpressionContext{}; stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, i16, -4096); try b.writeOpcode(writer, OP.abs); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 4096), stack_machine.stack.popOrNull().?.generic); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, u16, 0xff0f); try b.writeConst(writer, u16, 0xf0ff); try b.writeOpcode(writer, OP.@"and"); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 0xf00f), stack_machine.stack.popOrNull().?.generic); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, i16, -404); try b.writeConst(writer, i16, 100); try b.writeOpcode(writer, OP.div); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(isize, -404 / 100), @as(isize, @bitCast(stack_machine.stack.popOrNull().?.generic))); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, u16, 200); try b.writeConst(writer, u16, 50); try b.writeOpcode(writer, OP.minus); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 150), stack_machine.stack.popOrNull().?.generic); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, u16, 123); try b.writeConst(writer, u16, 100); try b.writeOpcode(writer, OP.mod); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 23), stack_machine.stack.popOrNull().?.generic); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, u16, 0xff); try b.writeConst(writer, u16, 0xee); try b.writeOpcode(writer, OP.mul); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 0xed12), stack_machine.stack.popOrNull().?.generic); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, u16, 5); try b.writeOpcode(writer, OP.neg); try b.writeConst(writer, i16, -6); try b.writeOpcode(writer, OP.neg); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 6), stack_machine.stack.popOrNull().?.generic); try testing.expectEqual(@as(isize, -5), @as(isize, @bitCast(stack_machine.stack.popOrNull().?.generic))); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, u16, 0xff0f); try b.writeOpcode(writer, OP.not); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(~@as(usize, 0xff0f), stack_machine.stack.popOrNull().?.generic); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, u16, 0xff0f); try b.writeConst(writer, u16, 0xf0ff); try b.writeOpcode(writer, OP.@"or"); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 0xffff), stack_machine.stack.popOrNull().?.generic); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, i16, 402); try b.writeConst(writer, i16, 100); try b.writeOpcode(writer, OP.plus); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 502), stack_machine.stack.popOrNull().?.generic); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, u16, 4096); try b.writePlusUconst(writer, @as(usize, 8192)); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 4096 + 8192), stack_machine.stack.popOrNull().?.generic); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, u16, 0xfff); try b.writeConst(writer, u16, 1); try b.writeOpcode(writer, OP.shl); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 0xfff << 1), stack_machine.stack.popOrNull().?.generic); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, u16, 0xfff); try b.writeConst(writer, u16, 1); try b.writeOpcode(writer, OP.shr); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 0xfff >> 1), stack_machine.stack.popOrNull().?.generic); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, u16, 0xfff); try b.writeConst(writer, u16, 1); try b.writeOpcode(writer, OP.shr); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, @bitCast(@as(isize, 0xfff) >> 1)), stack_machine.stack.popOrNull().?.generic); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, u16, 0xf0ff); try b.writeConst(writer, u16, 0xff0f); try b.writeOpcode(writer, OP.xor); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 0x0ff0), stack_machine.stack.popOrNull().?.generic); } // Control Flow Operations { var context = ExpressionContext{}; const expected = .{ .{ OP.le, 1, 1, 0 }, .{ OP.ge, 1, 0, 1 }, .{ OP.eq, 1, 0, 0 }, .{ OP.lt, 0, 1, 0 }, .{ OP.gt, 0, 0, 1 }, .{ OP.ne, 0, 1, 1 }, }; inline for (expected) |e| { stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConst(writer, u16, 0); try b.writeConst(writer, u16, 0); try b.writeOpcode(writer, e[0]); try b.writeConst(writer, u16, 0); try b.writeConst(writer, u16, 1); try b.writeOpcode(writer, e[0]); try b.writeConst(writer, u16, 1); try b.writeConst(writer, u16, 0); try b.writeOpcode(writer, e[0]); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, e[3]), stack_machine.stack.popOrNull().?.generic); try testing.expectEqual(@as(usize, e[2]), stack_machine.stack.popOrNull().?.generic); try testing.expectEqual(@as(usize, e[1]), stack_machine.stack.popOrNull().?.generic); } stack_machine.reset(); program.clearRetainingCapacity(); try b.writeLiteral(writer, 2); try b.writeSkip(writer, 1); try b.writeLiteral(writer, 3); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 2), stack_machine.stack.popOrNull().?.generic); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeLiteral(writer, 2); try b.writeBra(writer, 1); try b.writeLiteral(writer, 3); try b.writeLiteral(writer, 0); try b.writeBra(writer, 1); try b.writeLiteral(writer, 4); try b.writeLiteral(writer, 5); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 5), stack_machine.stack.popOrNull().?.generic); try testing.expectEqual(@as(usize, 4), stack_machine.stack.popOrNull().?.generic); try testing.expect(stack_machine.stack.popOrNull() == null); // TODO: Test call2, call4, call_ref once implemented } // Type conversions { var context = ExpressionContext{}; stack_machine.reset(); program.clearRetainingCapacity(); // TODO: Test typed OP.convert once implemented const value: usize = @truncate(0xffeeffee_ffeeffee); var value_bytes: [options.addr_size]u8 = undefined; mem.writeIntSliceNative(usize, &value_bytes, value); // Convert to generic type stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConstType(writer, @as(usize, 0), &value_bytes); try b.writeConvert(writer, @as(usize, 0)); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(value, stack_machine.stack.popOrNull().?.generic); // Reinterpret to generic type stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConstType(writer, @as(usize, 0), &value_bytes); try b.writeReinterpret(writer, @as(usize, 0)); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(value, stack_machine.stack.popOrNull().?.generic); // Reinterpret to new type const die_offset: usize = 0xffee; stack_machine.reset(); program.clearRetainingCapacity(); try b.writeConstType(writer, @as(usize, 0), &value_bytes); try b.writeReinterpret(writer, die_offset); _ = try stack_machine.run(program.items, allocator, context, null); const const_type = stack_machine.stack.popOrNull().?.const_type; try testing.expectEqual(die_offset, const_type.type_offset); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeLiteral(writer, 0); try b.writeReinterpret(writer, die_offset); _ = try stack_machine.run(program.items, allocator, context, null); const regval_type = stack_machine.stack.popOrNull().?.regval_type; try testing.expectEqual(die_offset, regval_type.type_offset); } // Special operations { var context = ExpressionContext{}; stack_machine.reset(); program.clearRetainingCapacity(); try b.writeOpcode(writer, OP.nop); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expect(stack_machine.stack.popOrNull() == null); // Sub-expression { var sub_program = std.ArrayList(u8).init(allocator); defer sub_program.deinit(); const sub_writer = sub_program.writer(); try b.writeLiteral(sub_writer, 3); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeEntryValue(writer, sub_program.items); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 3), stack_machine.stack.popOrNull().?.generic); } // Register location description const reg_context = abi.RegisterContext{ .eh_frame = true, .is_macho = builtin.os.tag == .macos, }; var thread_context: std.debug.ThreadContext = undefined; std.debug.relocateContext(&thread_context); context = ExpressionContext{ .thread_context = &thread_context, .reg_context = reg_context, }; if (abi.regBytes(&thread_context, 0, reg_context)) |reg_bytes| { mem.writeIntSliceNative(usize, reg_bytes, 0xee); var sub_program = std.ArrayList(u8).init(allocator); defer sub_program.deinit(); const sub_writer = sub_program.writer(); try b.writeReg(sub_writer, 0); stack_machine.reset(); program.clearRetainingCapacity(); try b.writeEntryValue(writer, sub_program.items); _ = try stack_machine.run(program.items, allocator, context, null); try testing.expectEqual(@as(usize, 0xee), stack_machine.stack.popOrNull().?.generic); } else |err| { switch (err) { error.UnimplementedArch, error.UnimplementedOs, error.ThreadContextNotSupported, => {}, else => return err, } } } }