//! Ported from: //! //! https://github.com/llvm/llvm-project/commit/d674d96bc56c0f377879d01c9d8dfdaaa7859cdb/compiler-rt/lib/builtins/divsf3.c const std = @import("std"); const builtin = @import("builtin"); const arch = builtin.cpu.arch; const common = @import("common.zig"); const normalize = common.normalize; pub const panic = common.panic; comptime { if (common.want_aeabi) { @export(__aeabi_fdiv, .{ .name = "__aeabi_fdiv", .linkage = common.linkage }); } else { @export(__divsf3, .{ .name = "__divsf3", .linkage = common.linkage }); } } pub fn __divsf3(a: f32, b: f32) callconv(.C) f32 { return div(a, b); } fn __aeabi_fdiv(a: f32, b: f32) callconv(.AAPCS) f32 { return div(a, b); } inline fn div(a: f32, b: f32) f32 { const Z = std.meta.Int(.unsigned, 32); const significandBits = std.math.floatMantissaBits(f32); const exponentBits = std.math.floatExponentBits(f32); const signBit = (@as(Z, 1) << (significandBits + exponentBits)); const maxExponent = ((1 << exponentBits) - 1); const exponentBias = (maxExponent >> 1); const implicitBit = (@as(Z, 1) << significandBits); const quietBit = implicitBit >> 1; const significandMask = implicitBit - 1; const absMask = signBit - 1; const exponentMask = absMask ^ significandMask; const qnanRep = exponentMask | quietBit; const infRep = @bitCast(Z, std.math.inf(f32)); const aExponent = @truncate(u32, (@bitCast(Z, a) >> significandBits) & maxExponent); const bExponent = @truncate(u32, (@bitCast(Z, b) >> significandBits) & maxExponent); const quotientSign: Z = (@bitCast(Z, a) ^ @bitCast(Z, b)) & signBit; var aSignificand: Z = @bitCast(Z, a) & significandMask; var bSignificand: Z = @bitCast(Z, b) & significandMask; var scale: i32 = 0; // Detect if a or b is zero, denormal, infinity, or NaN. if (aExponent -% 1 >= maxExponent - 1 or bExponent -% 1 >= maxExponent - 1) { const aAbs: Z = @bitCast(Z, a) & absMask; const bAbs: Z = @bitCast(Z, b) & absMask; // NaN / anything = qNaN if (aAbs > infRep) return @bitCast(f32, @bitCast(Z, a) | quietBit); // anything / NaN = qNaN if (bAbs > infRep) return @bitCast(f32, @bitCast(Z, b) | quietBit); if (aAbs == infRep) { // infinity / infinity = NaN if (bAbs == infRep) { return @bitCast(f32, qnanRep); } // infinity / anything else = +/- infinity else { return @bitCast(f32, aAbs | quotientSign); } } // anything else / infinity = +/- 0 if (bAbs == infRep) return @bitCast(f32, quotientSign); if (aAbs == 0) { // zero / zero = NaN if (bAbs == 0) { return @bitCast(f32, qnanRep); } // zero / anything else = +/- zero else { return @bitCast(f32, quotientSign); } } // anything else / zero = +/- infinity if (bAbs == 0) return @bitCast(f32, infRep | quotientSign); // one or both of a or b is denormal, the other (if applicable) is a // normal number. Renormalize one or both of a and b, and set scale to // include the necessary exponent adjustment. if (aAbs < implicitBit) scale +%= normalize(f32, &aSignificand); if (bAbs < implicitBit) scale -%= normalize(f32, &bSignificand); } // Or in the implicit significand bit. (If we fell through from the // denormal path it was already set by normalize( ), but setting it twice // won't hurt anything.) aSignificand |= implicitBit; bSignificand |= implicitBit; var quotientExponent: i32 = @bitCast(i32, aExponent -% bExponent) +% scale; // Align the significand of b as a Q31 fixed-point number in the range // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This // is accurate to about 3.5 binary digits. const q31b = bSignificand << 8; var reciprocal = @as(u32, 0x7504f333) -% q31b; // Now refine the reciprocal estimate using a Newton-Raphson iteration: // // x1 = x0 * (2 - x0 * b) // // This doubles the number of correct binary digits in the approximation // with each iteration, so after three iterations, we have about 28 binary // digits of accuracy. var correction: u32 = undefined; correction = @truncate(u32, ~(@as(u64, reciprocal) *% q31b >> 32) +% 1); reciprocal = @truncate(u32, @as(u64, reciprocal) *% correction >> 31); correction = @truncate(u32, ~(@as(u64, reciprocal) *% q31b >> 32) +% 1); reciprocal = @truncate(u32, @as(u64, reciprocal) *% correction >> 31); correction = @truncate(u32, ~(@as(u64, reciprocal) *% q31b >> 32) +% 1); reciprocal = @truncate(u32, @as(u64, reciprocal) *% correction >> 31); // Exhaustive testing shows that the error in reciprocal after three steps // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our // expectations. We bump the reciprocal by a tiny value to force the error // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to // be specific). This also causes 1/1 to give a sensible approximation // instead of zero (due to overflow). reciprocal -%= 2; // The numerical reciprocal is accurate to within 2^-28, lies in the // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller // than the true reciprocal of b. Multiplying a by this reciprocal thus // gives a numerical q = a/b in Q24 with the following properties: // // 1. q < a/b // 2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0) // 3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes // from the fact that we truncate the product, and the 2^27 term // is the error in the reciprocal of b scaled by the maximum // possible value of a. As a consequence of this error bound, // either q or nextafter(q) is the correctly rounded var quotient: Z = @truncate(u32, @as(u64, reciprocal) *% (aSignificand << 1) >> 32); // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0). // In either case, we are going to compute a residual of the form // // r = a - q*b // // We know from the construction of q that r satisfies: // // 0 <= r < ulp(q)*b // // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we // already have the correct result. The exact halfway case cannot occur. // We also take this time to right shift quotient if it falls in the [1,2) // range and adjust the exponent accordingly. var residual: Z = undefined; if (quotient < (implicitBit << 1)) { residual = (aSignificand << 24) -% quotient *% bSignificand; quotientExponent -%= 1; } else { quotient >>= 1; residual = (aSignificand << 23) -% quotient *% bSignificand; } const writtenExponent = quotientExponent +% exponentBias; if (writtenExponent >= maxExponent) { // If we have overflowed the exponent, return infinity. return @bitCast(f32, infRep | quotientSign); } else if (writtenExponent < 1) { if (writtenExponent == 0) { // Check whether the rounded result is normal. const round = @boolToInt((residual << 1) > bSignificand); // Clear the implicit bit. var absResult = quotient & significandMask; // Round. absResult += round; if ((absResult & ~significandMask) > 0) { // The rounded result is normal; return it. return @bitCast(f32, absResult | quotientSign); } } // Flush denormals to zero. In the future, it would be nice to add // code to round them correctly. return @bitCast(f32, quotientSign); } else { const round = @boolToInt((residual << 1) > bSignificand); // Clear the implicit bit var absResult = quotient & significandMask; // Insert the exponent absResult |= @bitCast(Z, writtenExponent) << significandBits; // Round absResult +%= round; // Insert the sign and return return @bitCast(f32, absResult | quotientSign); } } test { _ = @import("divsf3_test.zig"); }