const std = @import("std"); const builtin = @import("builtin"); const common = @import("common.zig"); const normalize = common.normalize; const wideMultiply = common.wideMultiply; pub const panic = common.panic; comptime { if (common.want_ppc_abi) { // TODO: why did this not error? @export(__divtf3, .{ .name = "__divkf3", .linkage = common.linkage }); } else if (common.want_sparc_abi) { @export(_Qp_div, .{ .name = "_Qp_div", .linkage = common.linkage }); } @export(__divtf3, .{ .name = "__divtf3", .linkage = common.linkage }); } pub fn __divtf3(a: f128, b: f128) callconv(.C) f128 { return div(a, b); } fn _Qp_div(c: *f128, a: *const f128, b: *const f128) callconv(.C) void { c.* = div(a.*, b.*); } inline fn div(a: f128, b: f128) f128 { const Z = std.meta.Int(.unsigned, 128); const significandBits = std.math.floatMantissaBits(f128); const exponentBits = std.math.floatExponentBits(f128); const signBit = (@as(Z, 1) << (significandBits + exponentBits)); const maxExponent = ((1 << exponentBits) - 1); const exponentBias = (maxExponent >> 1); const implicitBit = (@as(Z, 1) << significandBits); const quietBit = implicitBit >> 1; const significandMask = implicitBit - 1; const absMask = signBit - 1; const exponentMask = absMask ^ significandMask; const qnanRep = exponentMask | quietBit; const infRep = @bitCast(Z, std.math.inf(f128)); const aExponent = @truncate(u32, (@bitCast(Z, a) >> significandBits) & maxExponent); const bExponent = @truncate(u32, (@bitCast(Z, b) >> significandBits) & maxExponent); const quotientSign: Z = (@bitCast(Z, a) ^ @bitCast(Z, b)) & signBit; var aSignificand: Z = @bitCast(Z, a) & significandMask; var bSignificand: Z = @bitCast(Z, b) & significandMask; var scale: i32 = 0; // Detect if a or b is zero, denormal, infinity, or NaN. if (aExponent -% 1 >= maxExponent - 1 or bExponent -% 1 >= maxExponent - 1) { const aAbs: Z = @bitCast(Z, a) & absMask; const bAbs: Z = @bitCast(Z, b) & absMask; // NaN / anything = qNaN if (aAbs > infRep) return @bitCast(f128, @bitCast(Z, a) | quietBit); // anything / NaN = qNaN if (bAbs > infRep) return @bitCast(f128, @bitCast(Z, b) | quietBit); if (aAbs == infRep) { // infinity / infinity = NaN if (bAbs == infRep) { return @bitCast(f128, qnanRep); } // infinity / anything else = +/- infinity else { return @bitCast(f128, aAbs | quotientSign); } } // anything else / infinity = +/- 0 if (bAbs == infRep) return @bitCast(f128, quotientSign); if (aAbs == 0) { // zero / zero = NaN if (bAbs == 0) { return @bitCast(f128, qnanRep); } // zero / anything else = +/- zero else { return @bitCast(f128, quotientSign); } } // anything else / zero = +/- infinity if (bAbs == 0) return @bitCast(f128, infRep | quotientSign); // one or both of a or b is denormal, the other (if applicable) is a // normal number. Renormalize one or both of a and b, and set scale to // include the necessary exponent adjustment. if (aAbs < implicitBit) scale +%= normalize(f128, &aSignificand); if (bAbs < implicitBit) scale -%= normalize(f128, &bSignificand); } // Set the implicit significand bit. If we fell through from the // denormal path it was already set by normalize( ), but setting it twice // won't hurt anything. aSignificand |= implicitBit; bSignificand |= implicitBit; var quotientExponent: i32 = @bitCast(i32, aExponent -% bExponent) +% scale; // Align the significand of b as a Q63 fixed-point number in the range // [1, 2.0) and get a Q64 approximate reciprocal using a small minimax // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This // is accurate to about 3.5 binary digits. const q63b = @truncate(u64, bSignificand >> 49); var recip64 = @as(u64, 0x7504f333F9DE6484) -% q63b; // 0x7504f333F9DE6484 / 2^64 + 1 = 3/4 + 1/sqrt(2) // Now refine the reciprocal estimate using a Newton-Raphson iteration: // // x1 = x0 * (2 - x0 * b) // // This doubles the number of correct binary digits in the approximation // with each iteration. var correction64: u64 = undefined; correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1); recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63); correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1); recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63); correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1); recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63); correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1); recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63); correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1); recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63); // The reciprocal may have overflowed to zero if the upper half of b is // exactly 1.0. This would sabatoge the full-width final stage of the // computation that follows, so we adjust the reciprocal down by one bit. recip64 -%= 1; // We need to perform one more iteration to get us to 112 binary digits; // The last iteration needs to happen with extra precision. const q127blo: u64 = @truncate(u64, bSignificand << 15); var correction: u128 = undefined; var reciprocal: u128 = undefined; // NOTE: This operation is equivalent to __multi3, which is not implemented // in some architechure var r64q63: u128 = undefined; var r64q127: u128 = undefined; var r64cH: u128 = undefined; var r64cL: u128 = undefined; var dummy: u128 = undefined; wideMultiply(u128, recip64, q63b, &dummy, &r64q63); wideMultiply(u128, recip64, q127blo, &dummy, &r64q127); correction = -%(r64q63 + (r64q127 >> 64)); const cHi = @truncate(u64, correction >> 64); const cLo = @truncate(u64, correction); wideMultiply(u128, recip64, cHi, &dummy, &r64cH); wideMultiply(u128, recip64, cLo, &dummy, &r64cL); reciprocal = r64cH + (r64cL >> 64); // Adjust the final 128-bit reciprocal estimate downward to ensure that it // is strictly smaller than the infinitely precise exact reciprocal. Because // the computation of the Newton-Raphson step is truncating at every step, // this adjustment is small; most of the work is already done. reciprocal -%= 2; // The numerical reciprocal is accurate to within 2^-112, lies in the // interval [0.5, 1.0), and is strictly smaller than the true reciprocal // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b // in Q127 with the following properties: // // 1. q < a/b // 2. q is in the interval [0.5, 2.0) // 3. The error in q is bounded away from 2^-113 (actually, we have a // couple of bits to spare, but this is all we need). // We need a 128 x 128 multiply high to compute q. var quotient: u128 = undefined; var quotientLo: u128 = undefined; wideMultiply(u128, aSignificand << 2, reciprocal, "ient, "ientLo); // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0). // In either case, we are going to compute a residual of the form // // r = a - q*b // // We know from the construction of q that r satisfies: // // 0 <= r < ulp(q)*b // // If r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we // already have the correct result. The exact halfway case cannot occur. // We also take this time to right shift quotient if it falls in the [1,2) // range and adjust the exponent accordingly. var residual: u128 = undefined; var qb: u128 = undefined; if (quotient < (implicitBit << 1)) { wideMultiply(u128, quotient, bSignificand, &dummy, &qb); residual = (aSignificand << 113) -% qb; quotientExponent -%= 1; } else { quotient >>= 1; wideMultiply(u128, quotient, bSignificand, &dummy, &qb); residual = (aSignificand << 112) -% qb; } const writtenExponent = quotientExponent +% exponentBias; if (writtenExponent >= maxExponent) { // If we have overflowed the exponent, return infinity. return @bitCast(f128, infRep | quotientSign); } else if (writtenExponent < 1) { if (writtenExponent == 0) { // Check whether the rounded result is normal. const round = @boolToInt((residual << 1) > bSignificand); // Clear the implicit bit. var absResult = quotient & significandMask; // Round. absResult += round; if ((absResult & ~significandMask) > 0) { // The rounded result is normal; return it. return @bitCast(f128, absResult | quotientSign); } } // Flush denormals to zero. In the future, it would be nice to add // code to round them correctly. return @bitCast(f128, quotientSign); } else { const round = @boolToInt((residual << 1) >= bSignificand); // Clear the implicit bit var absResult = quotient & significandMask; // Insert the exponent absResult |= @intCast(Z, writtenExponent) << significandBits; // Round absResult +%= round; // Insert the sign and return return @bitCast(f128, absResult | quotientSign); } } test { _ = @import("divtf3_test.zig"); }