const Int = @import("std").meta.Int; const math = @import("std").math; const Log2Int = math.Log2Int; pub inline fn floatToInt(comptime I: type, a: anytype) I { const F = @TypeOf(a); const float_bits = @typeInfo(F).Float.bits; const int_bits = @typeInfo(I).Int.bits; const rep_t = Int(.unsigned, float_bits); const sig_bits = math.floatMantissaBits(F); const exp_bits = math.floatExponentBits(F); const fractional_bits = math.floatFractionalBits(F); const implicit_bit = if (F != f80) (@as(rep_t, 1) << sig_bits) else 0; const max_exp = (1 << (exp_bits - 1)); const exp_bias = max_exp - 1; const sig_mask = (@as(rep_t, 1) << sig_bits) - 1; // Break a into sign, exponent, significand const a_rep: rep_t = @bitCast(rep_t, a); const negative = (a_rep >> (float_bits - 1)) != 0; const exponent = @intCast(i32, (a_rep << 1) >> (sig_bits + 1)) - exp_bias; const significand: rep_t = (a_rep & sig_mask) | implicit_bit; // If the exponent is negative, the result rounds to zero. if (exponent < 0) return 0; // If the value is too large for the integer type, saturate. switch (@typeInfo(I).Int.signedness) { .unsigned => { if (negative) return 0; if (@intCast(c_uint, exponent) >= @min(int_bits, max_exp)) return math.maxInt(I); }, .signed => if (@intCast(c_uint, exponent) >= @min(int_bits - 1, max_exp)) { return if (negative) math.minInt(I) else math.maxInt(I); }, } // If 0 <= exponent < sig_bits, right shift to get the result. // Otherwise, shift left. var result: I = undefined; if (exponent < fractional_bits) { result = @intCast(I, significand >> @intCast(Log2Int(rep_t), fractional_bits - exponent)); } else { result = @intCast(I, significand) << @intCast(Log2Int(I), exponent - fractional_bits); } if ((@typeInfo(I).Int.signedness == .signed) and negative) return ~result +% 1; return result; } test { _ = @import("float_to_int_test.zig"); }