//! Ported from musl, which is licensed under the MIT license: //! https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT //! //! https://git.musl-libc.org/cgit/musl/tree/src/math/lnf.c //! https://git.musl-libc.org/cgit/musl/tree/src/math/ln.c const std = @import("std"); const builtin = @import("builtin"); const math = std.math; const testing = std.testing; const arch = builtin.cpu.arch; const common = @import("common.zig"); pub const panic = common.panic; comptime { @export(__logh, .{ .name = "__logh", .linkage = common.linkage }); @export(logf, .{ .name = "logf", .linkage = common.linkage }); @export(log, .{ .name = "log", .linkage = common.linkage }); @export(__logx, .{ .name = "__logx", .linkage = common.linkage }); if (common.want_ppc_abi) { @export(logq, .{ .name = "logf128", .linkage = common.linkage }); } @export(logq, .{ .name = "logq", .linkage = common.linkage }); @export(logl, .{ .name = "logl", .linkage = common.linkage }); } pub fn __logh(a: f16) callconv(.C) f16 { // TODO: more efficient implementation return @floatCast(f16, logf(a)); } pub fn logf(x_: f32) callconv(.C) f32 { const ln2_hi: f32 = 6.9313812256e-01; const ln2_lo: f32 = 9.0580006145e-06; const Lg1: f32 = 0xaaaaaa.0p-24; const Lg2: f32 = 0xccce13.0p-25; const Lg3: f32 = 0x91e9ee.0p-25; const Lg4: f32 = 0xf89e26.0p-26; var x = x_; var ix = @bitCast(u32, x); var k: i32 = 0; // x < 2^(-126) if (ix < 0x00800000 or ix >> 31 != 0) { // log(+-0) = -inf if (ix << 1 == 0) { return -math.inf(f32); } // log(-#) = nan if (ix >> 31 != 0) { return math.nan(f32); } // subnormal, scale x k -= 25; x *= 0x1.0p25; ix = @bitCast(u32, x); } else if (ix >= 0x7F800000) { return x; } else if (ix == 0x3F800000) { return 0; } // x into [sqrt(2) / 2, sqrt(2)] ix += 0x3F800000 - 0x3F3504F3; k += @intCast(i32, ix >> 23) - 0x7F; ix = (ix & 0x007FFFFF) + 0x3F3504F3; x = @bitCast(f32, ix); const f = x - 1.0; const s = f / (2.0 + f); const z = s * s; const w = z * z; const t1 = w * (Lg2 + w * Lg4); const t2 = z * (Lg1 + w * Lg3); const R = t2 + t1; const hfsq = 0.5 * f * f; const dk = @intToFloat(f32, k); return s * (hfsq + R) + dk * ln2_lo - hfsq + f + dk * ln2_hi; } pub fn log(x_: f64) callconv(.C) f64 { const ln2_hi: f64 = 6.93147180369123816490e-01; const ln2_lo: f64 = 1.90821492927058770002e-10; const Lg1: f64 = 6.666666666666735130e-01; const Lg2: f64 = 3.999999999940941908e-01; const Lg3: f64 = 2.857142874366239149e-01; const Lg4: f64 = 2.222219843214978396e-01; const Lg5: f64 = 1.818357216161805012e-01; const Lg6: f64 = 1.531383769920937332e-01; const Lg7: f64 = 1.479819860511658591e-01; var x = x_; var ix = @bitCast(u64, x); var hx = @intCast(u32, ix >> 32); var k: i32 = 0; if (hx < 0x00100000 or hx >> 31 != 0) { // log(+-0) = -inf if (ix << 1 == 0) { return -math.inf(f64); } // log(-#) = nan if (hx >> 31 != 0) { return math.nan(f64); } // subnormal, scale x k -= 54; x *= 0x1.0p54; hx = @intCast(u32, @bitCast(u64, ix) >> 32); } else if (hx >= 0x7FF00000) { return x; } else if (hx == 0x3FF00000 and ix << 32 == 0) { return 0; } // x into [sqrt(2) / 2, sqrt(2)] hx += 0x3FF00000 - 0x3FE6A09E; k += @intCast(i32, hx >> 20) - 0x3FF; hx = (hx & 0x000FFFFF) + 0x3FE6A09E; ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF); x = @bitCast(f64, ix); const f = x - 1.0; const hfsq = 0.5 * f * f; const s = f / (2.0 + f); const z = s * s; const w = z * z; const t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); const R = t2 + t1; const dk = @intToFloat(f64, k); return s * (hfsq + R) + dk * ln2_lo - hfsq + f + dk * ln2_hi; } pub fn __logx(a: f80) callconv(.C) f80 { // TODO: more efficient implementation return @floatCast(f80, logq(a)); } pub fn logq(a: f128) callconv(.C) f128 { // TODO: more correct implementation return log(@floatCast(f64, a)); } pub fn logl(x: c_longdouble) callconv(.C) c_longdouble { switch (@typeInfo(c_longdouble).Float.bits) { 16 => return __logh(x), 32 => return logf(x), 64 => return log(x), 80 => return __logx(x), 128 => return logq(x), else => @compileError("unreachable"), } } test "ln32" { const epsilon = 0.000001; try testing.expect(math.approxEqAbs(f32, logf(0.2), -1.609438, epsilon)); try testing.expect(math.approxEqAbs(f32, logf(0.8923), -0.113953, epsilon)); try testing.expect(math.approxEqAbs(f32, logf(1.5), 0.405465, epsilon)); try testing.expect(math.approxEqAbs(f32, logf(37.45), 3.623007, epsilon)); try testing.expect(math.approxEqAbs(f32, logf(89.123), 4.490017, epsilon)); try testing.expect(math.approxEqAbs(f32, logf(123123.234375), 11.720941, epsilon)); } test "ln64" { const epsilon = 0.000001; try testing.expect(math.approxEqAbs(f64, log(0.2), -1.609438, epsilon)); try testing.expect(math.approxEqAbs(f64, log(0.8923), -0.113953, epsilon)); try testing.expect(math.approxEqAbs(f64, log(1.5), 0.405465, epsilon)); try testing.expect(math.approxEqAbs(f64, log(37.45), 3.623007, epsilon)); try testing.expect(math.approxEqAbs(f64, log(89.123), 4.490017, epsilon)); try testing.expect(math.approxEqAbs(f64, log(123123.234375), 11.720941, epsilon)); } test "ln32.special" { try testing.expect(math.isPositiveInf(logf(math.inf(f32)))); try testing.expect(math.isNegativeInf(logf(0.0))); try testing.expect(math.isNan(logf(-1.0))); try testing.expect(math.isNan(logf(math.nan(f32)))); } test "ln64.special" { try testing.expect(math.isPositiveInf(log(math.inf(f64)))); try testing.expect(math.isNegativeInf(log(0.0))); try testing.expect(math.isNan(log(-1.0))); try testing.expect(math.isNan(log(math.nan(f64)))); }