// Ported from musl, which is licensed under the MIT license: // https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT // // https://git.musl-libc.org/cgit/musl/tree/src/math/__rem_pio2_large.c const std = @import("std"); const math = std.math; const init_jk = [_]i32{ 3, 4, 4, 6 }; // initial value for jk /// /// Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi /// /// integer array, contains the (24*i)-th to (24*i+23)-th /// bit of 2/pi after binary point. The corresponding /// floating value is /// /// ipio2[i] * 2^(-24(i+1)). /// /// NB: This table must have at least (e0-3)/24 + jk terms. /// For quad precision (e0 <= 16360, jk = 6), this is 686. const ipio2 = [_]i32{ 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, 0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6, 0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2, 0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35, 0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30, 0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C, 0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4, 0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770, 0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7, 0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19, 0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522, 0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16, 0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6, 0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E, 0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48, 0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3, 0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF, 0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55, 0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612, 0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929, 0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC, 0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B, 0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C, 0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4, 0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB, 0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC, 0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C, 0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F, 0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5, 0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437, 0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B, 0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA, 0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD, 0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3, 0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3, 0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717, 0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F, 0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61, 0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB, 0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51, 0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0, 0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C, 0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6, 0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC, 0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED, 0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328, 0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D, 0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0, 0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B, 0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4, 0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3, 0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F, 0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD, 0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B, 0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4, 0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761, 0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31, 0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30, 0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262, 0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E, 0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1, 0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C, 0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4, 0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08, 0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196, 0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9, 0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4, 0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC, 0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C, 0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0, 0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C, 0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0, 0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC, 0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22, 0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893, 0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7, 0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5, 0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F, 0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4, 0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF, 0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B, 0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2, 0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138, 0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E, 0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569, 0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34, 0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9, 0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D, 0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F, 0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855, 0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569, 0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B, 0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE, 0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41, 0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49, 0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F, 0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110, 0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8, 0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365, 0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A, 0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270, 0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5, 0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616, 0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B, 0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0, }; const PIo2 = [_]f64{ 1.57079625129699707031e+00, // 0x3FF921FB, 0x40000000 7.54978941586159635335e-08, // 0x3E74442D, 0x00000000 5.39030252995776476554e-15, // 0x3CF84698, 0x80000000 3.28200341580791294123e-22, // 0x3B78CC51, 0x60000000 1.27065575308067607349e-29, // 0x39F01B83, 0x80000000 1.22933308981111328932e-36, // 0x387A2520, 0x40000000 2.73370053816464559624e-44, // 0x36E38222, 0x80000000 2.16741683877804819444e-51, // 0x3569F31D, 0x00000000 }; fn U(x: anytype) usize { return @intCast(usize, x); } /// Returns the last three digits of N with y = x - N*pi/2 so that |y| < pi/2. /// /// The method is to compute the integer (mod 8) and fraction parts of /// (2/pi)*x without doing the full multiplication. In general we /// skip the part of the product that are known to be a huge integer ( /// more accurately, = 0 mod 8 ). Thus the number of operations are /// independent of the exponent of the input. /// /// (2/pi) is represented by an array of 24-bit integers in ipio2[]. /// /// Input parameters: /// x[] The input value (must be positive) is broken into nx /// pieces of 24-bit integers in double precision format. /// x[i] will be the i-th 24 bit of x. The scaled exponent /// of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 /// match x's up to 24 bits. /// /// Example of breaking a double positive z into x[0]+x[1]+x[2]: /// e0 = ilogb(z)-23 /// z = scalbn(z,-e0) /// for i = 0,1,2 /// x[i] = floor(z) /// z = (z-x[i])*2**24 /// /// /// y[] ouput result in an array of double precision numbers. /// The dimension of y[] is: /// 24-bit precision 1 /// 53-bit precision 2 /// 64-bit precision 2 /// 113-bit precision 3 /// The actual value is the sum of them. Thus for 113-bit /// precison, one may have to do something like: /// /// long double t,w,r_head, r_tail; /// t = (long double)y[2] + (long double)y[1]; /// w = (long double)y[0]; /// r_head = t+w; /// r_tail = w - (r_head - t); /// /// e0 The exponent of x[0]. Must be <= 16360 or you need to /// expand the ipio2 table. /// /// nx dimension of x[] /// /// prec an integer indicating the precision: /// 0 24 bits (single) /// 1 53 bits (double) /// 2 64 bits (extended) /// 3 113 bits (quad) /// /// Here is the description of some local variables: /// /// jk jk+1 is the initial number of terms of ipio2[] needed /// in the computation. The minimum and recommended value /// for jk is 3,4,4,6 for single, double, extended, and quad. /// jk+1 must be 2 larger than you might expect so that our /// recomputation test works. (Up to 24 bits in the integer /// part (the 24 bits of it that we compute) and 23 bits in /// the fraction part may be lost to cancelation before we /// recompute.) /// /// jz local integer variable indicating the number of /// terms of ipio2[] used. /// /// jx nx - 1 /// /// jv index for pointing to the suitable ipio2[] for the /// computation. In general, we want /// ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 /// is an integer. Thus /// e0-3-24*jv >= 0 or (e0-3)/24 >= jv /// Hence jv = max(0,(e0-3)/24). /// /// jp jp+1 is the number of terms in PIo2[] needed, jp = jk. /// /// q[] double array with integral value, representing the /// 24-bits chunk of the product of x and 2/pi. /// /// q0 the corresponding exponent of q[0]. Note that the /// exponent for q[i] would be q0-24*i. /// /// PIo2[] double precision array, obtained by cutting pi/2 /// into 24 bits chunks. /// /// f[] ipio2[] in floating point /// /// iq[] integer array by breaking up q[] in 24-bits chunk. /// /// fq[] final product of x*(2/pi) in fq[0],..,fq[jk] /// /// ih integer. If >0 it indicates q[] is >= 0.5, hence /// it also indicates the *sign* of the result. /// /// /// /// Constants: /// The hexadecimal values are the intended ones for the following /// constants. The decimal values may be used, provided that the /// compiler will convert from decimal to binary accurately enough /// to produce the hexadecimal values shown. /// pub fn rem_pio2_large(x: []f64, y: []f64, e0: i32, nx: i32, prec: usize) i32 { var jz: i32 = undefined; var jx: i32 = undefined; var jv: i32 = undefined; var jp: i32 = undefined; var jk: i32 = undefined; var carry: i32 = undefined; var n: i32 = undefined; var iq: [20]i32 = undefined; var i: i32 = undefined; var j: i32 = undefined; var k: i32 = undefined; var m: i32 = undefined; var q0: i32 = undefined; var ih: i32 = undefined; var z: f64 = undefined; var fw: f64 = undefined; var f: [20]f64 = undefined; var fq: [20]f64 = undefined; var q: [20]f64 = undefined; // initialize jk jk = init_jk[prec]; jp = jk; // determine jx,jv,q0, note that 3>q0 jx = nx - 1; jv = @divFloor(e0 - 3, 24); if (jv < 0) jv = 0; q0 = e0 - 24 * (jv + 1); // set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] j = jv - jx; m = jx + jk; i = 0; while (i <= m) : ({ i += 1; j += 1; }) { f[U(i)] = if (j < 0) 0.0 else @intToFloat(f64, ipio2[U(j)]); } // compute q[0],q[1],...q[jk] i = 0; while (i <= jk) : (i += 1) { j = 0; fw = 0; while (j <= jx) : (j += 1) { fw += x[U(j)] * f[U(jx + i - j)]; } q[U(i)] = fw; } jz = jk; // This is to handle a non-trivial goto translation from C. // An unconditional return statement is found at the end of this loop. recompute: while (true) { // distill q[] into iq[] reversingly i = 0; j = jz; z = q[U(jz)]; while (j > 0) : ({ i += 1; j -= 1; }) { fw = @intToFloat(f64, @floatToInt(i32, 0x1p-24 * z)); iq[U(i)] = @floatToInt(i32, z - 0x1p24 * fw); z = q[U(j - 1)] + fw; } // compute n z = math.scalbn(z, q0); // actual value of z z -= 8.0 * @floor(z * 0.125); // trim off integer >= 8 n = @floatToInt(i32, z); z -= @intToFloat(f64, n); ih = 0; if (q0 > 0) { // need iq[jz-1] to determine n i = iq[U(jz - 1)] >> @intCast(u5, 24 - q0); n += i; iq[U(jz - 1)] -= i << @intCast(u5, 24 - q0); ih = iq[U(jz - 1)] >> @intCast(u5, 23 - q0); } else if (q0 == 0) { ih = iq[U(jz - 1)] >> 23; } else if (z >= 0.5) { ih = 2; } if (ih > 0) { // q > 0.5 n += 1; carry = 0; i = 0; while (i < jz) : (i += 1) { // compute 1-q j = iq[U(i)]; if (carry == 0) { if (j != 0) { carry = 1; iq[U(i)] = 0x1000000 - j; } } else { iq[U(i)] = 0xffffff - j; } } if (q0 > 0) { // rare case: chance is 1 in 12 switch (q0) { 1 => iq[U(jz - 1)] &= 0x7fffff, 2 => iq[U(jz - 1)] &= 0x3fffff, else => unreachable, } } if (ih == 2) { z = 1.0 - z; if (carry != 0) { z -= math.scalbn(@as(f64, 1.0), q0); } } } // check if recomputation is needed if (z == 0.0) { j = 0; i = jz - 1; while (i >= jk) : (i -= 1) { j |= iq[U(i)]; } if (j == 0) { // need recomputation k = 1; while (iq[U(jk - k)] == 0) : (k += 1) { // k = no. of terms needed } i = jz + 1; while (i <= jz + k) : (i += 1) { // add q[jz+1] to q[jz+k] f[U(jx + i)] = @intToFloat(f64, ipio2[U(jv + i)]); j = 0; fw = 0; while (j <= jx) : (j += 1) { fw += x[U(j)] * f[U(jx + i - j)]; } q[U(i)] = fw; } jz += k; continue :recompute; // mimic goto recompute } } // chop off zero terms if (z == 0.0) { jz -= 1; q0 -= 24; while (iq[U(jz)] == 0) { jz -= 1; q0 -= 24; } } else { // break z into 24-bit if necessary z = math.scalbn(z, -q0); if (z >= 0x1p24) { fw = @intToFloat(f64, @floatToInt(i32, 0x1p-24 * z)); iq[U(jz)] = @floatToInt(i32, z - 0x1p24 * fw); jz += 1; q0 += 24; iq[U(jz)] = @floatToInt(i32, fw); } else { iq[U(jz)] = @floatToInt(i32, z); } } // convert integer "bit" chunk to floating-point value fw = math.scalbn(@as(f64, 1.0), q0); i = jz; while (i >= 0) : (i -= 1) { q[U(i)] = fw * @intToFloat(f64, iq[U(i)]); fw *= 0x1p-24; } // compute PIo2[0,...,jp]*q[jz,...,0] i = jz; while (i >= 0) : (i -= 1) { fw = 0; k = 0; while (k <= jp and k <= jz - i) : (k += 1) { fw += PIo2[U(k)] * q[U(i + k)]; } fq[U(jz - i)] = fw; } // compress fq[] into y[] switch (prec) { 0 => { fw = 0.0; i = jz; while (i >= 0) : (i -= 1) { fw += fq[U(i)]; } y[0] = if (ih == 0) fw else -fw; }, 1, 2 => { fw = 0.0; i = jz; while (i >= 0) : (i -= 1) { fw += fq[U(i)]; } // TODO: drop excess precision here once double_t is used fw = fw; y[0] = if (ih == 0) fw else -fw; fw = fq[0] - fw; i = 1; while (i <= jz) : (i += 1) { fw += fq[U(i)]; } y[1] = if (ih == 0) fw else -fw; }, 3 => { // painful i = jz; while (i > 0) : (i -= 1) { fw = fq[U(i - 1)] + fq[U(i)]; fq[U(i)] += fq[U(i - 1)] - fw; fq[U(i - 1)] = fw; } i = jz; while (i > 1) : (i -= 1) { fw = fq[U(i - 1)] + fq[U(i)]; fq[U(i)] += fq[U(i - 1)] - fw; fq[U(i - 1)] = fw; } fw = 0; i = jz; while (i >= 2) : (i -= 1) { fw += fq[U(i)]; } if (ih == 0) { y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; } else { y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; } }, else => unreachable, } return n & 7; } }