// Ported from musl, which is licensed under the MIT license: // https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT // // https://git.musl-libc.org/cgit/musl/tree/src/math/__cos.c // https://git.musl-libc.org/cgit/musl/tree/src/math/__cosdf.c // https://git.musl-libc.org/cgit/musl/tree/src/math/__sin.c // https://git.musl-libc.org/cgit/musl/tree/src/math/__sindf.c // https://git.musl-libc.org/cgit/musl/tree/src/math/__tand.c // https://git.musl-libc.org/cgit/musl/tree/src/math/__tandf.c /// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 /// Input x is assumed to be bounded by ~pi/4 in magnitude. /// Input y is the tail of x. /// /// Algorithm /// 1. Since cos(-x) = cos(x), we need only to consider positive x. /// 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. /// 3. cos(x) is approximated by a polynomial of degree 14 on /// [0,pi/4] /// 4 14 /// cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x /// where the remez error is /// /// | 2 4 6 8 10 12 14 | -58 /// |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 /// | | /// /// 4 6 8 10 12 14 /// 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then /// cos(x) ~ 1 - x*x/2 + r /// since cos(x+y) ~ cos(x) - sin(x)*y /// ~ cos(x) - x*y, /// a correction term is necessary in cos(x) and hence /// cos(x+y) = 1 - (x*x/2 - (r - x*y)) /// For better accuracy, rearrange to /// cos(x+y) ~ w + (tmp + (r-x*y)) /// where w = 1 - x*x/2 and tmp is a tiny correction term /// (1 - x*x/2 == w + tmp exactly in infinite precision). /// The exactness of w + tmp in infinite precision depends on w /// and tmp having the same precision as x. If they have extra /// precision due to compiler bugs, then the extra precision is /// only good provided it is retained in all terms of the final /// expression for cos(). Retention happens in all cases tested /// under FreeBSD, so don't pessimize things by forcibly clipping /// any extra precision in w. pub fn __cos(x: f64, y: f64) f64 { const C1 = 4.16666666666666019037e-02; // 0x3FA55555, 0x5555554C const C2 = -1.38888888888741095749e-03; // 0xBF56C16C, 0x16C15177 const C3 = 2.48015872894767294178e-05; // 0x3EFA01A0, 0x19CB1590 const C4 = -2.75573143513906633035e-07; // 0xBE927E4F, 0x809C52AD const C5 = 2.08757232129817482790e-09; // 0x3E21EE9E, 0xBDB4B1C4 const C6 = -1.13596475577881948265e-11; // 0xBDA8FAE9, 0xBE8838D4 const z = x * x; const zs = z * z; const r = z * (C1 + z * (C2 + z * C3)) + zs * zs * (C4 + z * (C5 + z * C6)); const hz = 0.5 * z; const w = 1.0 - hz; return w + (((1.0 - w) - hz) + (z * r - x * y)); } pub fn __cosdf(x: f64) f32 { // |cos(x) - c(x)| < 2**-34.1 (~[-5.37e-11, 5.295e-11]). const C0 = -0x1ffffffd0c5e81.0p-54; // -0.499999997251031003120 const C1 = 0x155553e1053a42.0p-57; // 0.0416666233237390631894 const C2 = -0x16c087e80f1e27.0p-62; // -0.00138867637746099294692 const C3 = 0x199342e0ee5069.0p-68; // 0.0000243904487962774090654 // Try to optimize for parallel evaluation as in __tandf.c. const z = x * x; const w = z * z; const r = C2 + z * C3; return @floatCast(f32, ((1.0 + z * C0) + w * C1) + (w * z) * r); } /// kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854 /// Input x is assumed to be bounded by ~pi/4 in magnitude. /// Input y is the tail of x. /// Input iy indicates whether y is 0. (if iy=0, y assume to be 0). /// /// Algorithm /// 1. Since sin(-x) = -sin(x), we need only to consider positive x. /// 2. Callers must return sin(-0) = -0 without calling here since our /// odd polynomial is not evaluated in a way that preserves -0. /// Callers may do the optimization sin(x) ~ x for tiny x. /// 3. sin(x) is approximated by a polynomial of degree 13 on /// [0,pi/4] /// 3 13 /// sin(x) ~ x + S1*x + ... + S6*x /// where /// /// |sin(x) 2 4 6 8 10 12 | -58 /// |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 /// | x | /// /// 4. sin(x+y) = sin(x) + sin'(x')*y /// ~ sin(x) + (1-x*x/2)*y /// For better accuracy, let /// 3 2 2 2 2 /// r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) /// then 3 2 /// sin(x) = x + (S1*x + (x *(r-y/2)+y)) pub fn __sin(x: f64, y: f64, iy: i32) f64 { const S1 = -1.66666666666666324348e-01; // 0xBFC55555, 0x55555549 const S2 = 8.33333333332248946124e-03; // 0x3F811111, 0x1110F8A6 const S3 = -1.98412698298579493134e-04; // 0xBF2A01A0, 0x19C161D5 const S4 = 2.75573137070700676789e-06; // 0x3EC71DE3, 0x57B1FE7D const S5 = -2.50507602534068634195e-08; // 0xBE5AE5E6, 0x8A2B9CEB const S6 = 1.58969099521155010221e-10; // 0x3DE5D93A, 0x5ACFD57C const z = x * x; const w = z * z; const r = S2 + z * (S3 + z * S4) + z * w * (S5 + z * S6); const v = z * x; if (iy == 0) { return x + v * (S1 + z * r); } else { return x - ((z * (0.5 * y - v * r) - y) - v * S1); } } pub fn __sindf(x: f64) f32 { // |sin(x)/x - s(x)| < 2**-37.5 (~[-4.89e-12, 4.824e-12]). const S1 = -0x15555554cbac77.0p-55; // -0.166666666416265235595 const S2 = 0x111110896efbb2.0p-59; // 0.0083333293858894631756 const S3 = -0x1a00f9e2cae774.0p-65; // -0.000198393348360966317347 const S4 = 0x16cd878c3b46a7.0p-71; // 0.0000027183114939898219064 // Try to optimize for parallel evaluation as in __tandf.c. const z = x * x; const w = z * z; const r = S3 + z * S4; const s = z * x; return @floatCast(f32, (x + s * (S1 + z * S2)) + s * w * r); } /// kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854 /// Input x is assumed to be bounded by ~pi/4 in magnitude. /// Input y is the tail of x. /// Input odd indicates whether tan (if odd = 0) or -1/tan (if odd = 1) is returned. /// /// Algorithm /// 1. Since tan(-x) = -tan(x), we need only to consider positive x. /// 2. Callers must return tan(-0) = -0 without calling here since our /// odd polynomial is not evaluated in a way that preserves -0. /// Callers may do the optimization tan(x) ~ x for tiny x. /// 3. tan(x) is approximated by a odd polynomial of degree 27 on /// [0,0.67434] /// 3 27 /// tan(x) ~ x + T1*x + ... + T13*x /// where /// /// |tan(x) 2 4 26 | -59.2 /// |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 /// | x | /// /// Note: tan(x+y) = tan(x) + tan'(x)*y /// ~ tan(x) + (1+x*x)*y /// Therefore, for better accuracy in computing tan(x+y), let /// 3 2 2 2 2 /// r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) /// then /// 3 2 /// tan(x+y) = x + (T1*x + (x *(r+y)+y)) /// /// 4. For x in [0.67434,pi/4], let y = pi/4 - x, then /// tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) /// = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) pub fn __tan(x_: f64, y_: f64, odd: bool) f64 { var x = x_; var y = y_; const T = [_]f64{ 3.33333333333334091986e-01, // 3FD55555, 55555563 1.33333333333201242699e-01, // 3FC11111, 1110FE7A 5.39682539762260521377e-02, // 3FABA1BA, 1BB341FE 2.18694882948595424599e-02, // 3F9664F4, 8406D637 8.86323982359930005737e-03, // 3F8226E3, E96E8493 3.59207910759131235356e-03, // 3F6D6D22, C9560328 1.45620945432529025516e-03, // 3F57DBC8, FEE08315 5.88041240820264096874e-04, // 3F4344D8, F2F26501 2.46463134818469906812e-04, // 3F3026F7, 1A8D1068 7.81794442939557092300e-05, // 3F147E88, A03792A6 7.14072491382608190305e-05, // 3F12B80F, 32F0A7E9 -1.85586374855275456654e-05, // BEF375CB, DB605373 2.59073051863633712884e-05, // 3EFB2A70, 74BF7AD4 }; const pio4 = 7.85398163397448278999e-01; // 3FE921FB, 54442D18 const pio4lo = 3.06161699786838301793e-17; // 3C81A626, 33145C07 var z: f64 = undefined; var r: f64 = undefined; var v: f64 = undefined; var w: f64 = undefined; var s: f64 = undefined; var a: f64 = undefined; var w0: f64 = undefined; var a0: f64 = undefined; var hx: u32 = undefined; var sign: bool = undefined; hx = @intCast(u32, @bitCast(u64, x) >> 32); const big = (hx & 0x7fffffff) >= 0x3FE59428; // |x| >= 0.6744 if (big) { sign = hx >> 31 != 0; if (sign) { x = -x; y = -y; } x = (pio4 - x) + (pio4lo - y); y = 0.0; } z = x * x; w = z * z; // Break x^5*(T[1]+x^2*T[2]+...) into // x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + // x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + w * T[11])))); v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + w * T[12]))))); s = z * x; r = y + z * (s * (r + v) + y) + s * T[0]; w = x + r; if (big) { s = 1 - 2 * @intToFloat(f64, @boolToInt(odd)); v = s - 2.0 * (x + (r - w * w / (w + s))); return if (sign) -v else v; } if (!odd) { return w; } // -1.0/(x+r) has up to 2ulp error, so compute it accurately w0 = w; w0 = @bitCast(f64, @bitCast(u64, w0) & 0xffffffff00000000); v = r - (w0 - x); // w0+v = r+x a = -1.0 / w; a0 = a; a0 = @bitCast(f64, @bitCast(u64, a0) & 0xffffffff00000000); return a0 + a * (1.0 + a0 * w0 + a0 * v); } pub fn __tandf(x: f64, odd: bool) f32 { // |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). const T = [_]f64{ 0x15554d3418c99f.0p-54, // 0.333331395030791399758 0x1112fd38999f72.0p-55, // 0.133392002712976742718 0x1b54c91d865afe.0p-57, // 0.0533812378445670393523 0x191df3908c33ce.0p-58, // 0.0245283181166547278873 0x185dadfcecf44e.0p-61, // 0.00297435743359967304927 0x1362b9bf971bcd.0p-59, // 0.00946564784943673166728 }; const z = x * x; // Split up the polynomial into small independent terms to give // opportunities for parallel evaluation. The chosen splitting is // micro-optimized for Athlons (XP, X64). It costs 2 multiplications // relative to Horner's method on sequential machines. // // We add the small terms from lowest degree up for efficiency on // non-sequential machines (the lowest degree terms tend to be ready // earlier). Apart from this, we don't care about order of // operations, and don't need to to care since we have precision to // spare. However, the chosen splitting is good for accuracy too, // and would give results as accurate as Horner's method if the // small terms were added from highest degree down. const r = T[4] + z * T[5]; const t = T[2] + z * T[3]; const w = z * z; const s = z * x; const u = T[0] + z * T[1]; const r0 = (x + s * u) + (s * w) * (t + w * r); return @floatCast(f32, if (odd) -1.0 / r0 else r0); }