// SPDX-License-Identifier: MIT // Copyright (c) 2015-2020 Zig Contributors // This file is part of [zig](https://ziglang.org/), which is MIT licensed. // The MIT license requires this copyright notice to be included in all copies // and substantial portions of the software. const std = @import("../std.zig"); const builtin = @import("builtin"); const root = @import("root"); const assert = std.debug.assert; const testing = std.testing; const mem = std.mem; const os = std.os; const windows = os.windows; const maxInt = std.math.maxInt; const Thread = std.Thread; const is_windows = std.Target.current.os.tag == .windows; pub const Loop = struct { next_tick_queue: std.atomic.Queue(anyframe), os_data: OsData, final_resume_node: ResumeNode, pending_event_count: usize, extra_threads: []*Thread, /// TODO change this to a pool of configurable number of threads /// and rename it to be not file-system-specific. it will become /// a thread pool for turning non-CPU-bound blocking things into /// async things. A fallback for any missing OS-specific API. fs_thread: *Thread, fs_queue: std.atomic.Queue(Request), fs_end_request: Request.Node, fs_thread_wakeup: std.ResetEvent, /// For resources that have the same lifetime as the `Loop`. /// This is only used by `Loop` for the thread pool and associated resources. arena: std.heap.ArenaAllocator, /// Pre-allocated eventfds. All permanently active. /// This is how `Loop` sends promises to be resumed on other threads. available_eventfd_resume_nodes: std.atomic.Stack(ResumeNode.EventFd), eventfd_resume_nodes: []std.atomic.Stack(ResumeNode.EventFd).Node, pub const NextTickNode = std.atomic.Queue(anyframe).Node; pub const ResumeNode = struct { id: Id, handle: anyframe, overlapped: Overlapped, pub const overlapped_init = switch (builtin.os.tag) { .windows => windows.OVERLAPPED{ .Internal = 0, .InternalHigh = 0, .Offset = 0, .OffsetHigh = 0, .hEvent = null, }, else => {}, }; pub const Overlapped = @TypeOf(overlapped_init); pub const Id = enum { Basic, Stop, EventFd, }; pub const EventFd = switch (builtin.os.tag) { .macosx, .freebsd, .netbsd, .dragonfly => KEventFd, .linux => struct { base: ResumeNode, epoll_op: u32, eventfd: i32, }, .windows => struct { base: ResumeNode, completion_key: usize, }, else => struct {}, }; const KEventFd = struct { base: ResumeNode, kevent: os.Kevent, }; pub const Basic = switch (builtin.os.tag) { .macosx, .freebsd, .netbsd, .dragonfly => KEventBasic, .linux => struct { base: ResumeNode, }, .windows => struct { base: ResumeNode, }, else => @compileError("unsupported OS"), }; const KEventBasic = struct { base: ResumeNode, kev: os.Kevent, }; }; var global_instance_state: Loop = undefined; const default_instance: ?*Loop = switch (std.io.mode) { .blocking => null, .evented => &global_instance_state, }; pub const instance: ?*Loop = if (@hasDecl(root, "event_loop")) root.event_loop else default_instance; /// TODO copy elision / named return values so that the threads referencing *Loop /// have the correct pointer value. /// https://github.com/ziglang/zig/issues/2761 and https://github.com/ziglang/zig/issues/2765 pub fn init(self: *Loop) !void { if (builtin.single_threaded or (@hasDecl(root, "event_loop_mode") and root.event_loop_mode == .single_threaded)) { return self.initSingleThreaded(); } else { return self.initMultiThreaded(); } } /// After initialization, call run(). /// TODO copy elision / named return values so that the threads referencing *Loop /// have the correct pointer value. /// https://github.com/ziglang/zig/issues/2761 and https://github.com/ziglang/zig/issues/2765 pub fn initSingleThreaded(self: *Loop) !void { return self.initThreadPool(1); } /// After initialization, call run(). /// This is the same as `initThreadPool` using `Thread.cpuCount` to determine the thread /// pool size. /// TODO copy elision / named return values so that the threads referencing *Loop /// have the correct pointer value. /// https://github.com/ziglang/zig/issues/2761 and https://github.com/ziglang/zig/issues/2765 pub fn initMultiThreaded(self: *Loop) !void { if (builtin.single_threaded) @compileError("initMultiThreaded unavailable when building in single-threaded mode"); const core_count = try Thread.cpuCount(); return self.initThreadPool(core_count); } /// Thread count is the total thread count. The thread pool size will be /// max(thread_count - 1, 0) pub fn initThreadPool(self: *Loop, thread_count: usize) !void { self.* = Loop{ .arena = std.heap.ArenaAllocator.init(std.heap.page_allocator), .pending_event_count = 1, .os_data = undefined, .next_tick_queue = std.atomic.Queue(anyframe).init(), .extra_threads = undefined, .available_eventfd_resume_nodes = std.atomic.Stack(ResumeNode.EventFd).init(), .eventfd_resume_nodes = undefined, .final_resume_node = ResumeNode{ .id = ResumeNode.Id.Stop, .handle = undefined, .overlapped = ResumeNode.overlapped_init, }, .fs_end_request = .{ .data = .{ .msg = .end, .finish = .NoAction } }, .fs_queue = std.atomic.Queue(Request).init(), .fs_thread = undefined, .fs_thread_wakeup = std.ResetEvent.init(), }; errdefer self.fs_thread_wakeup.deinit(); errdefer self.arena.deinit(); // We need at least one of these in case the fs thread wants to use onNextTick const extra_thread_count = thread_count - 1; const resume_node_count = std.math.max(extra_thread_count, 1); self.eventfd_resume_nodes = try self.arena.allocator.alloc( std.atomic.Stack(ResumeNode.EventFd).Node, resume_node_count, ); self.extra_threads = try self.arena.allocator.alloc(*Thread, extra_thread_count); try self.initOsData(extra_thread_count); errdefer self.deinitOsData(); if (!builtin.single_threaded) { self.fs_thread = try Thread.spawn(self, posixFsRun); } errdefer if (!builtin.single_threaded) { self.posixFsRequest(&self.fs_end_request); self.fs_thread.wait(); }; } pub fn deinit(self: *Loop) void { self.deinitOsData(); self.fs_thread_wakeup.deinit(); self.arena.deinit(); self.* = undefined; } const InitOsDataError = os.EpollCreateError || mem.Allocator.Error || os.EventFdError || Thread.SpawnError || os.EpollCtlError || os.KEventError || windows.CreateIoCompletionPortError; const wakeup_bytes = [_]u8{0x1} ** 8; fn initOsData(self: *Loop, extra_thread_count: usize) InitOsDataError!void { nosuspend switch (builtin.os.tag) { .linux => { errdefer { while (self.available_eventfd_resume_nodes.pop()) |node| os.close(node.data.eventfd); } for (self.eventfd_resume_nodes) |*eventfd_node| { eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{ .data = ResumeNode.EventFd{ .base = ResumeNode{ .id = .EventFd, .handle = undefined, .overlapped = ResumeNode.overlapped_init, }, .eventfd = try os.eventfd(1, os.EFD_CLOEXEC | os.EFD_NONBLOCK), .epoll_op = os.EPOLL_CTL_ADD, }, .next = undefined, }; self.available_eventfd_resume_nodes.push(eventfd_node); } self.os_data.epollfd = try os.epoll_create1(os.EPOLL_CLOEXEC); errdefer os.close(self.os_data.epollfd); self.os_data.final_eventfd = try os.eventfd(0, os.EFD_CLOEXEC | os.EFD_NONBLOCK); errdefer os.close(self.os_data.final_eventfd); self.os_data.final_eventfd_event = os.epoll_event{ .events = os.EPOLLIN, .data = os.epoll_data{ .ptr = @ptrToInt(&self.final_resume_node) }, }; try os.epoll_ctl( self.os_data.epollfd, os.EPOLL_CTL_ADD, self.os_data.final_eventfd, &self.os_data.final_eventfd_event, ); if (builtin.single_threaded) { assert(extra_thread_count == 0); return; } var extra_thread_index: usize = 0; errdefer { // writing 8 bytes to an eventfd cannot fail const amt = os.write(self.os_data.final_eventfd, &wakeup_bytes) catch unreachable; assert(amt == wakeup_bytes.len); while (extra_thread_index != 0) { extra_thread_index -= 1; self.extra_threads[extra_thread_index].wait(); } } while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) { self.extra_threads[extra_thread_index] = try Thread.spawn(self, workerRun); } }, .macosx, .freebsd, .netbsd, .dragonfly => { self.os_data.kqfd = try os.kqueue(); errdefer os.close(self.os_data.kqfd); const empty_kevs = &[0]os.Kevent{}; for (self.eventfd_resume_nodes) |*eventfd_node, i| { eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{ .data = ResumeNode.EventFd{ .base = ResumeNode{ .id = ResumeNode.Id.EventFd, .handle = undefined, .overlapped = ResumeNode.overlapped_init, }, // this one is for sending events .kevent = os.Kevent{ .ident = i, .filter = os.EVFILT_USER, .flags = os.EV_CLEAR | os.EV_ADD | os.EV_DISABLE, .fflags = 0, .data = 0, .udata = @ptrToInt(&eventfd_node.data.base), }, }, .next = undefined, }; self.available_eventfd_resume_nodes.push(eventfd_node); const kevent_array = @as(*const [1]os.Kevent, &eventfd_node.data.kevent); _ = try os.kevent(self.os_data.kqfd, kevent_array, empty_kevs, null); eventfd_node.data.kevent.flags = os.EV_CLEAR | os.EV_ENABLE; eventfd_node.data.kevent.fflags = os.NOTE_TRIGGER; } // Pre-add so that we cannot get error.SystemResources // later when we try to activate it. self.os_data.final_kevent = os.Kevent{ .ident = extra_thread_count, .filter = os.EVFILT_USER, .flags = os.EV_ADD | os.EV_DISABLE, .fflags = 0, .data = 0, .udata = @ptrToInt(&self.final_resume_node), }; const final_kev_arr = @as(*const [1]os.Kevent, &self.os_data.final_kevent); _ = try os.kevent(self.os_data.kqfd, final_kev_arr, empty_kevs, null); self.os_data.final_kevent.flags = os.EV_ENABLE; self.os_data.final_kevent.fflags = os.NOTE_TRIGGER; if (builtin.single_threaded) { assert(extra_thread_count == 0); return; } var extra_thread_index: usize = 0; errdefer { _ = os.kevent(self.os_data.kqfd, final_kev_arr, empty_kevs, null) catch unreachable; while (extra_thread_index != 0) { extra_thread_index -= 1; self.extra_threads[extra_thread_index].wait(); } } while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) { self.extra_threads[extra_thread_index] = try Thread.spawn(self, workerRun); } }, .windows => { self.os_data.io_port = try windows.CreateIoCompletionPort( windows.INVALID_HANDLE_VALUE, null, undefined, maxInt(windows.DWORD), ); errdefer windows.CloseHandle(self.os_data.io_port); for (self.eventfd_resume_nodes) |*eventfd_node, i| { eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{ .data = ResumeNode.EventFd{ .base = ResumeNode{ .id = ResumeNode.Id.EventFd, .handle = undefined, .overlapped = ResumeNode.overlapped_init, }, // this one is for sending events .completion_key = @ptrToInt(&eventfd_node.data.base), }, .next = undefined, }; self.available_eventfd_resume_nodes.push(eventfd_node); } if (builtin.single_threaded) { assert(extra_thread_count == 0); return; } var extra_thread_index: usize = 0; errdefer { var i: usize = 0; while (i < extra_thread_index) : (i += 1) { while (true) { const overlapped = &self.final_resume_node.overlapped; windows.PostQueuedCompletionStatus(self.os_data.io_port, undefined, undefined, overlapped) catch continue; break; } } while (extra_thread_index != 0) { extra_thread_index -= 1; self.extra_threads[extra_thread_index].wait(); } } while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) { self.extra_threads[extra_thread_index] = try Thread.spawn(self, workerRun); } }, else => {}, }; } fn deinitOsData(self: *Loop) void { nosuspend switch (builtin.os.tag) { .linux => { os.close(self.os_data.final_eventfd); while (self.available_eventfd_resume_nodes.pop()) |node| os.close(node.data.eventfd); os.close(self.os_data.epollfd); }, .macosx, .freebsd, .netbsd, .dragonfly => { os.close(self.os_data.kqfd); }, .windows => { windows.CloseHandle(self.os_data.io_port); }, else => {}, }; } /// resume_node must live longer than the anyframe that it holds a reference to. /// flags must contain EPOLLET pub fn linuxAddFd(self: *Loop, fd: i32, resume_node: *ResumeNode, flags: u32) !void { assert(flags & os.EPOLLET == os.EPOLLET); self.beginOneEvent(); errdefer self.finishOneEvent(); try self.linuxModFd( fd, os.EPOLL_CTL_ADD, flags, resume_node, ); } pub fn linuxModFd(self: *Loop, fd: i32, op: u32, flags: u32, resume_node: *ResumeNode) !void { assert(flags & os.EPOLLET == os.EPOLLET); var ev = os.linux.epoll_event{ .events = flags, .data = os.linux.epoll_data{ .ptr = @ptrToInt(resume_node) }, }; try os.epoll_ctl(self.os_data.epollfd, op, fd, &ev); } pub fn linuxRemoveFd(self: *Loop, fd: i32) void { os.epoll_ctl(self.os_data.epollfd, os.linux.EPOLL_CTL_DEL, fd, null) catch {}; self.finishOneEvent(); } pub fn linuxWaitFd(self: *Loop, fd: i32, flags: u32) void { assert(flags & os.EPOLLET == os.EPOLLET); assert(flags & os.EPOLLONESHOT == os.EPOLLONESHOT); var resume_node = ResumeNode.Basic{ .base = ResumeNode{ .id = .Basic, .handle = @frame(), .overlapped = ResumeNode.overlapped_init, }, }; var need_to_delete = false; defer if (need_to_delete) self.linuxRemoveFd(fd); suspend { if (self.linuxAddFd(fd, &resume_node.base, flags)) |_| { need_to_delete = true; } else |err| switch (err) { error.FileDescriptorNotRegistered => unreachable, error.OperationCausesCircularLoop => unreachable, error.FileDescriptorIncompatibleWithEpoll => unreachable, error.FileDescriptorAlreadyPresentInSet => unreachable, // evented writes to the same fd is not thread-safe error.SystemResources, error.UserResourceLimitReached, error.Unexpected, => { // Fall back to a blocking poll(). Ideally this codepath is never hit, since // epoll should be just fine. But this is better than incorrect behavior. var poll_flags: i16 = 0; if ((flags & os.EPOLLIN) != 0) poll_flags |= os.POLLIN; if ((flags & os.EPOLLOUT) != 0) poll_flags |= os.POLLOUT; var pfd = [1]os.pollfd{os.pollfd{ .fd = fd, .events = poll_flags, .revents = undefined, }}; _ = os.poll(&pfd, -1) catch |poll_err| switch (poll_err) { error.SystemResources, error.Unexpected, => { // Even poll() didn't work. The best we can do now is sleep for a // small duration and then hope that something changed. std.time.sleep(1 * std.time.ns_per_ms); }, }; resume @frame(); }, } } } pub fn waitUntilFdReadable(self: *Loop, fd: os.fd_t) void { switch (builtin.os.tag) { .linux => { self.linuxWaitFd(fd, os.EPOLLET | os.EPOLLONESHOT | os.EPOLLIN); }, .macosx, .freebsd, .netbsd, .dragonfly => { self.bsdWaitKev(@intCast(usize, fd), os.EVFILT_READ, os.EV_ONESHOT); }, else => @compileError("Unsupported OS"), } } pub fn waitUntilFdWritable(self: *Loop, fd: os.fd_t) void { switch (builtin.os.tag) { .linux => { self.linuxWaitFd(fd, os.EPOLLET | os.EPOLLONESHOT | os.EPOLLOUT); }, .macosx, .freebsd, .netbsd, .dragonfly => { self.bsdWaitKev(@intCast(usize, fd), os.EVFILT_WRITE, os.EV_ONESHOT); }, else => @compileError("Unsupported OS"), } } pub fn waitUntilFdWritableOrReadable(self: *Loop, fd: os.fd_t) void { switch (builtin.os.tag) { .linux => { self.linuxWaitFd(fd, os.EPOLLET | os.EPOLLONESHOT | os.EPOLLOUT | os.EPOLLIN); }, .macosx, .freebsd, .netbsd, .dragonfly => { self.bsdWaitKev(@intCast(usize, fd), os.EVFILT_READ, os.EV_ONESHOT); self.bsdWaitKev(@intCast(usize, fd), os.EVFILT_WRITE, os.EV_ONESHOT); }, else => @compileError("Unsupported OS"), } } pub fn bsdWaitKev(self: *Loop, ident: usize, filter: i16, flags: u16) void { var resume_node = ResumeNode.Basic{ .base = ResumeNode{ .id = ResumeNode.Id.Basic, .handle = @frame(), .overlapped = ResumeNode.overlapped_init, }, .kev = undefined, }; defer { // If the kevent was set to be ONESHOT, it doesn't need to be deleted manually. if (flags & os.EV_ONESHOT != 0) { self.bsdRemoveKev(ident, filter); } } suspend { self.bsdAddKev(&resume_node, ident, filter, flags) catch unreachable; } } /// resume_node must live longer than the anyframe that it holds a reference to. pub fn bsdAddKev(self: *Loop, resume_node: *ResumeNode.Basic, ident: usize, filter: i16, flags: u16) !void { self.beginOneEvent(); errdefer self.finishOneEvent(); var kev = [1]os.Kevent{os.Kevent{ .ident = ident, .filter = filter, .flags = os.EV_ADD | os.EV_ENABLE | os.EV_CLEAR | flags, .fflags = 0, .data = 0, .udata = @ptrToInt(&resume_node.base), }}; const empty_kevs = &[0]os.Kevent{}; _ = try os.kevent(self.os_data.kqfd, &kev, empty_kevs, null); } pub fn bsdRemoveKev(self: *Loop, ident: usize, filter: i16) void { var kev = [1]os.Kevent{os.Kevent{ .ident = ident, .filter = filter, .flags = os.EV_DELETE, .fflags = 0, .data = 0, .udata = 0, }}; const empty_kevs = &[0]os.Kevent{}; _ = os.kevent(self.os_data.kqfd, &kev, empty_kevs, null) catch undefined; self.finishOneEvent(); } fn dispatch(self: *Loop) void { while (self.available_eventfd_resume_nodes.pop()) |resume_stack_node| { const next_tick_node = self.next_tick_queue.get() orelse { self.available_eventfd_resume_nodes.push(resume_stack_node); return; }; const eventfd_node = &resume_stack_node.data; eventfd_node.base.handle = next_tick_node.data; switch (builtin.os.tag) { .macosx, .freebsd, .netbsd, .dragonfly => { const kevent_array = @as(*const [1]os.Kevent, &eventfd_node.kevent); const empty_kevs = &[0]os.Kevent{}; _ = os.kevent(self.os_data.kqfd, kevent_array, empty_kevs, null) catch { self.next_tick_queue.unget(next_tick_node); self.available_eventfd_resume_nodes.push(resume_stack_node); return; }; }, .linux => { // the pending count is already accounted for const epoll_events = os.EPOLLONESHOT | os.linux.EPOLLIN | os.linux.EPOLLOUT | os.linux.EPOLLET; self.linuxModFd( eventfd_node.eventfd, eventfd_node.epoll_op, epoll_events, &eventfd_node.base, ) catch { self.next_tick_queue.unget(next_tick_node); self.available_eventfd_resume_nodes.push(resume_stack_node); return; }; }, .windows => { windows.PostQueuedCompletionStatus( self.os_data.io_port, undefined, undefined, &eventfd_node.base.overlapped, ) catch { self.next_tick_queue.unget(next_tick_node); self.available_eventfd_resume_nodes.push(resume_stack_node); return; }; }, else => @compileError("unsupported OS"), } } } /// Bring your own linked list node. This means it can't fail. pub fn onNextTick(self: *Loop, node: *NextTickNode) void { self.beginOneEvent(); // finished in dispatch() self.next_tick_queue.put(node); self.dispatch(); } pub fn cancelOnNextTick(self: *Loop, node: *NextTickNode) void { if (self.next_tick_queue.remove(node)) { self.finishOneEvent(); } } pub fn run(self: *Loop) void { self.finishOneEvent(); // the reference we start with self.workerRun(); if (!builtin.single_threaded) { switch (builtin.os.tag) { .linux, .macosx, .freebsd, .netbsd, .dragonfly, => self.fs_thread.wait(), else => {}, } } for (self.extra_threads) |extra_thread| { extra_thread.wait(); } } /// Yielding lets the event loop run, starting any unstarted async operations. /// Note that async operations automatically start when a function yields for any other reason, /// for example, when async I/O is performed. This function is intended to be used only when /// CPU bound tasks would be waiting in the event loop but never get started because no async I/O /// is performed. pub fn yield(self: *Loop) void { suspend { var my_tick_node = NextTickNode{ .prev = undefined, .next = undefined, .data = @frame(), }; self.onNextTick(&my_tick_node); } } /// If the build is multi-threaded and there is an event loop, then it calls `yield`. Otherwise, /// does nothing. pub fn startCpuBoundOperation() void { if (builtin.single_threaded) { return; } else if (instance) |event_loop| { event_loop.yield(); } } /// call finishOneEvent when done pub fn beginOneEvent(self: *Loop) void { _ = @atomicRmw(usize, &self.pending_event_count, .Add, 1, .SeqCst); } pub fn finishOneEvent(self: *Loop) void { nosuspend { const prev = @atomicRmw(usize, &self.pending_event_count, .Sub, 1, .SeqCst); if (prev != 1) return; // cause all the threads to stop self.posixFsRequest(&self.fs_end_request); switch (builtin.os.tag) { .linux => { // writing to the eventfd will only wake up one thread, thus multiple writes // are needed to wakeup all the threads var i: usize = 0; while (i < self.extra_threads.len + 1) : (i += 1) { // writing 8 bytes to an eventfd cannot fail const amt = os.write(self.os_data.final_eventfd, &wakeup_bytes) catch unreachable; assert(amt == wakeup_bytes.len); } return; }, .macosx, .freebsd, .netbsd, .dragonfly => { const final_kevent = @as(*const [1]os.Kevent, &self.os_data.final_kevent); const empty_kevs = &[0]os.Kevent{}; // cannot fail because we already added it and this just enables it _ = os.kevent(self.os_data.kqfd, final_kevent, empty_kevs, null) catch unreachable; return; }, .windows => { var i: usize = 0; while (i < self.extra_threads.len + 1) : (i += 1) { while (true) { const overlapped = &self.final_resume_node.overlapped; windows.PostQueuedCompletionStatus(self.os_data.io_port, undefined, undefined, overlapped) catch continue; break; } } return; }, else => @compileError("unsupported OS"), } } } /// ------- I/0 APIs ------- pub fn accept( self: *Loop, /// This argument is a socket that has been created with `socket`, bound to a local address /// with `bind`, and is listening for connections after a `listen`. sockfd: os.fd_t, /// This argument is a pointer to a sockaddr structure. This structure is filled in with the /// address of the peer socket, as known to the communications layer. The exact format of the /// address returned addr is determined by the socket's address family (see `socket` and the /// respective protocol man pages). addr: *os.sockaddr, /// This argument is a value-result argument: the caller must initialize it to contain the /// size (in bytes) of the structure pointed to by addr; on return it will contain the actual size /// of the peer address. /// /// The returned address is truncated if the buffer provided is too small; in this case, `addr_size` /// will return a value greater than was supplied to the call. addr_size: *os.socklen_t, /// The following values can be bitwise ORed in flags to obtain different behavior: /// * `SOCK_CLOEXEC` - Set the close-on-exec (`FD_CLOEXEC`) flag on the new file descriptor. See the /// description of the `O_CLOEXEC` flag in `open` for reasons why this may be useful. flags: u32, ) os.AcceptError!os.fd_t { while (true) { return os.accept(sockfd, addr, addr_size, flags | os.SOCK_NONBLOCK) catch |err| switch (err) { error.WouldBlock => { self.waitUntilFdReadable(sockfd); continue; }, else => return err, }; } } pub fn connect(self: *Loop, sockfd: os.socket_t, sock_addr: *const os.sockaddr, len: os.socklen_t) os.ConnectError!void { os.connect(sockfd, sock_addr, len) catch |err| switch (err) { error.WouldBlock => { self.waitUntilFdWritable(sockfd); return os.getsockoptError(sockfd); }, else => return err, }; } /// Performs an async `os.open` using a separate thread. pub fn openZ(self: *Loop, file_path: [*:0]const u8, flags: u32, mode: os.mode_t) os.OpenError!os.fd_t { var req_node = Request.Node{ .data = .{ .msg = .{ .open = .{ .path = file_path, .flags = flags, .mode = mode, .result = undefined, }, }, .finish = .{ .TickNode = .{ .data = @frame() } }, }, }; suspend { self.posixFsRequest(&req_node); } return req_node.data.msg.open.result; } /// Performs an async `os.opent` using a separate thread. pub fn openatZ(self: *Loop, fd: os.fd_t, file_path: [*:0]const u8, flags: u32, mode: os.mode_t) os.OpenError!os.fd_t { var req_node = Request.Node{ .data = .{ .msg = .{ .openat = .{ .fd = fd, .path = file_path, .flags = flags, .mode = mode, .result = undefined, }, }, .finish = .{ .TickNode = .{ .data = @frame() } }, }, }; suspend { self.posixFsRequest(&req_node); } return req_node.data.msg.openat.result; } /// Performs an async `os.close` using a separate thread. pub fn close(self: *Loop, fd: os.fd_t) void { var req_node = Request.Node{ .data = .{ .msg = .{ .close = .{ .fd = fd } }, .finish = .{ .TickNode = .{ .data = @frame() } }, }, }; suspend { self.posixFsRequest(&req_node); } } /// Performs an async `os.read` using a separate thread. /// `fd` must block and not return EAGAIN. pub fn read(self: *Loop, fd: os.fd_t, buf: []u8) os.ReadError!usize { var req_node = Request.Node{ .data = .{ .msg = .{ .read = .{ .fd = fd, .buf = buf, .result = undefined, }, }, .finish = .{ .TickNode = .{ .data = @frame() } }, }, }; suspend { self.posixFsRequest(&req_node); } return req_node.data.msg.read.result; } /// Performs an async `os.readv` using a separate thread. /// `fd` must block and not return EAGAIN. pub fn readv(self: *Loop, fd: os.fd_t, iov: []const os.iovec) os.ReadError!usize { var req_node = Request.Node{ .data = .{ .msg = .{ .readv = .{ .fd = fd, .iov = iov, .result = undefined, }, }, .finish = .{ .TickNode = .{ .data = @frame() } }, }, }; suspend { self.posixFsRequest(&req_node); } return req_node.data.msg.readv.result; } /// Performs an async `os.pread` using a separate thread. /// `fd` must block and not return EAGAIN. pub fn pread(self: *Loop, fd: os.fd_t, buf: []u8, offset: u64) os.PReadError!usize { var req_node = Request.Node{ .data = .{ .msg = .{ .pread = .{ .fd = fd, .buf = buf, .offset = offset, .result = undefined, }, }, .finish = .{ .TickNode = .{ .data = @frame() } }, }, }; suspend { self.posixFsRequest(&req_node); } return req_node.data.msg.pread.result; } /// Performs an async `os.preadv` using a separate thread. /// `fd` must block and not return EAGAIN. pub fn preadv(self: *Loop, fd: os.fd_t, iov: []const os.iovec, offset: u64) os.ReadError!usize { var req_node = Request.Node{ .data = .{ .msg = .{ .preadv = .{ .fd = fd, .iov = iov, .offset = offset, .result = undefined, }, }, .finish = .{ .TickNode = .{ .data = @frame() } }, }, }; suspend { self.posixFsRequest(&req_node); } return req_node.data.msg.preadv.result; } /// Performs an async `os.write` using a separate thread. /// `fd` must block and not return EAGAIN. pub fn write(self: *Loop, fd: os.fd_t, bytes: []const u8) os.WriteError!usize { var req_node = Request.Node{ .data = .{ .msg = .{ .write = .{ .fd = fd, .bytes = bytes, .result = undefined, }, }, .finish = .{ .TickNode = .{ .data = @frame() } }, }, }; suspend { self.posixFsRequest(&req_node); } return req_node.data.msg.write.result; } /// Performs an async `os.writev` using a separate thread. /// `fd` must block and not return EAGAIN. pub fn writev(self: *Loop, fd: os.fd_t, iov: []const os.iovec_const) os.WriteError!usize { var req_node = Request.Node{ .data = .{ .msg = .{ .writev = .{ .fd = fd, .iov = iov, .result = undefined, }, }, .finish = .{ .TickNode = .{ .data = @frame() } }, }, }; suspend { self.posixFsRequest(&req_node); } return req_node.data.msg.writev.result; } /// Performs an async `os.pwritev` using a separate thread. /// `fd` must block and not return EAGAIN. pub fn pwritev(self: *Loop, fd: os.fd_t, iov: []const os.iovec_const, offset: u64) os.WriteError!usize { var req_node = Request.Node{ .data = .{ .msg = .{ .pwritev = .{ .fd = fd, .iov = iov, .offset = offset, .result = undefined, }, }, .finish = .{ .TickNode = .{ .data = @frame() } }, }, }; suspend { self.posixFsRequest(&req_node); } return req_node.data.msg.pwritev.result; } /// Performs an async `os.faccessatZ` using a separate thread. /// `fd` must block and not return EAGAIN. pub fn faccessatZ( self: *Loop, dirfd: os.fd_t, path_z: [*:0]const u8, mode: u32, flags: u32, ) os.AccessError!void { var req_node = Request.Node{ .data = .{ .msg = .{ .faccessat = .{ .dirfd = dirfd, .path = path_z, .mode = mode, .flags = flags, .result = undefined, }, }, .finish = .{ .TickNode = .{ .data = @frame() } }, }, }; suspend { self.posixFsRequest(&req_node); } return req_node.data.msg.faccessat.result; } fn workerRun(self: *Loop) void { while (true) { while (true) { const next_tick_node = self.next_tick_queue.get() orelse break; self.dispatch(); resume next_tick_node.data; self.finishOneEvent(); } switch (builtin.os.tag) { .linux => { // only process 1 event so we don't steal from other threads var events: [1]os.linux.epoll_event = undefined; const count = os.epoll_wait(self.os_data.epollfd, events[0..], -1); for (events[0..count]) |ev| { const resume_node = @intToPtr(*ResumeNode, ev.data.ptr); const handle = resume_node.handle; const resume_node_id = resume_node.id; switch (resume_node_id) { .Basic => {}, .Stop => return, .EventFd => { const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node); event_fd_node.epoll_op = os.EPOLL_CTL_MOD; const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node); self.available_eventfd_resume_nodes.push(stack_node); }, } resume handle; if (resume_node_id == ResumeNode.Id.EventFd) { self.finishOneEvent(); } } }, .macosx, .freebsd, .netbsd, .dragonfly => { var eventlist: [1]os.Kevent = undefined; const empty_kevs = &[0]os.Kevent{}; const count = os.kevent(self.os_data.kqfd, empty_kevs, eventlist[0..], null) catch unreachable; for (eventlist[0..count]) |ev| { const resume_node = @intToPtr(*ResumeNode, ev.udata); const handle = resume_node.handle; const resume_node_id = resume_node.id; switch (resume_node_id) { .Basic => { const basic_node = @fieldParentPtr(ResumeNode.Basic, "base", resume_node); basic_node.kev = ev; }, .Stop => return, .EventFd => { const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node); const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node); self.available_eventfd_resume_nodes.push(stack_node); }, } resume handle; if (resume_node_id == ResumeNode.Id.EventFd) { self.finishOneEvent(); } } }, .windows => { var completion_key: usize = undefined; const overlapped = while (true) { var nbytes: windows.DWORD = undefined; var overlapped: ?*windows.OVERLAPPED = undefined; switch (windows.GetQueuedCompletionStatus(self.os_data.io_port, &nbytes, &completion_key, &overlapped, windows.INFINITE)) { .Aborted => return, .Normal => {}, .EOF => {}, .Cancelled => continue, } if (overlapped) |o| break o; } else unreachable; // TODO else unreachable should not be necessary const resume_node = @fieldParentPtr(ResumeNode, "overlapped", overlapped); const handle = resume_node.handle; const resume_node_id = resume_node.id; switch (resume_node_id) { .Basic => {}, .Stop => return, .EventFd => { const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node); const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node); self.available_eventfd_resume_nodes.push(stack_node); }, } resume handle; self.finishOneEvent(); }, else => @compileError("unsupported OS"), } } } fn posixFsRequest(self: *Loop, request_node: *Request.Node) void { self.beginOneEvent(); // finished in posixFsRun after processing the msg self.fs_queue.put(request_node); self.fs_thread_wakeup.set(); } fn posixFsCancel(self: *Loop, request_node: *Request.Node) void { if (self.fs_queue.remove(request_node)) { self.finishOneEvent(); } } fn posixFsRun(self: *Loop) void { nosuspend while (true) { self.fs_thread_wakeup.reset(); while (self.fs_queue.get()) |node| { switch (node.data.msg) { .end => return, .read => |*msg| { msg.result = os.read(msg.fd, msg.buf); }, .readv => |*msg| { msg.result = os.readv(msg.fd, msg.iov); }, .write => |*msg| { msg.result = os.write(msg.fd, msg.bytes); }, .writev => |*msg| { msg.result = os.writev(msg.fd, msg.iov); }, .pwritev => |*msg| { msg.result = os.pwritev(msg.fd, msg.iov, msg.offset); }, .pread => |*msg| { msg.result = os.pread(msg.fd, msg.buf, msg.offset); }, .preadv => |*msg| { msg.result = os.preadv(msg.fd, msg.iov, msg.offset); }, .open => |*msg| { if (is_windows) unreachable; // TODO msg.result = os.openZ(msg.path, msg.flags, msg.mode); }, .openat => |*msg| { if (is_windows) unreachable; // TODO msg.result = os.openatZ(msg.fd, msg.path, msg.flags, msg.mode); }, .faccessat => |*msg| { msg.result = os.faccessatZ(msg.dirfd, msg.path, msg.mode, msg.flags); }, .close => |*msg| os.close(msg.fd), } switch (node.data.finish) { .TickNode => |*tick_node| self.onNextTick(tick_node), .NoAction => {}, } self.finishOneEvent(); } self.fs_thread_wakeup.wait(); }; } const OsData = switch (builtin.os.tag) { .linux => LinuxOsData, .macosx, .freebsd, .netbsd, .dragonfly => KEventData, .windows => struct { io_port: windows.HANDLE, extra_thread_count: usize, }, else => struct {}, }; const KEventData = struct { kqfd: i32, final_kevent: os.Kevent, }; const LinuxOsData = struct { epollfd: i32, final_eventfd: i32, final_eventfd_event: os.linux.epoll_event, }; pub const Request = struct { msg: Msg, finish: Finish, pub const Node = std.atomic.Queue(Request).Node; pub const Finish = union(enum) { TickNode: Loop.NextTickNode, NoAction, }; pub const Msg = union(enum) { read: Read, readv: ReadV, write: Write, writev: WriteV, pwritev: PWriteV, pread: PRead, preadv: PReadV, open: Open, openat: OpenAt, close: Close, faccessat: FAccessAt, /// special - means the fs thread should exit end, pub const Read = struct { fd: os.fd_t, buf: []u8, result: Error!usize, pub const Error = os.ReadError; }; pub const ReadV = struct { fd: os.fd_t, iov: []const os.iovec, result: Error!usize, pub const Error = os.ReadError; }; pub const Write = struct { fd: os.fd_t, bytes: []const u8, result: Error!usize, pub const Error = os.WriteError; }; pub const WriteV = struct { fd: os.fd_t, iov: []const os.iovec_const, result: Error!usize, pub const Error = os.WriteError; }; pub const PWriteV = struct { fd: os.fd_t, iov: []const os.iovec_const, offset: usize, result: Error!usize, pub const Error = os.PWriteError; }; pub const PRead = struct { fd: os.fd_t, buf: []u8, offset: usize, result: Error!usize, pub const Error = os.PReadError; }; pub const PReadV = struct { fd: os.fd_t, iov: []const os.iovec, offset: usize, result: Error!usize, pub const Error = os.PReadError; }; pub const Open = struct { path: [*:0]const u8, flags: u32, mode: os.mode_t, result: Error!os.fd_t, pub const Error = os.OpenError; }; pub const OpenAt = struct { fd: os.fd_t, path: [*:0]const u8, flags: u32, mode: os.mode_t, result: Error!os.fd_t, pub const Error = os.OpenError; }; pub const Close = struct { fd: os.fd_t, }; pub const FAccessAt = struct { dirfd: os.fd_t, path: [*:0]const u8, mode: u32, flags: u32, result: Error!void, pub const Error = os.AccessError; }; }; }; }; test "std.event.Loop - basic" { // https://github.com/ziglang/zig/issues/1908 if (builtin.single_threaded) return error.SkipZigTest; var loop: Loop = undefined; try loop.initMultiThreaded(); defer loop.deinit(); loop.run(); } fn testEventLoop() i32 { return 1234; } fn testEventLoop2(h: anyframe->i32, did_it: *bool) void { const value = await h; testing.expect(value == 1234); did_it.* = true; }