const std = @import("index.zig"); const debug = std.debug; const assert = debug.assert; const math = std.math; const builtin = @import("builtin"); pub const Allocator = struct { const Error = error {OutOfMemory}; /// Allocate byte_count bytes and return them in a slice, with the /// slice's pointer aligned at least to alignment bytes. /// The returned newly allocated memory is undefined. allocFn: fn (self: &Allocator, byte_count: usize, alignment: u29) Error![]u8, /// If `new_byte_count > old_mem.len`: /// * `old_mem.len` is the same as what was returned from allocFn or reallocFn. /// * alignment >= alignment of old_mem.ptr /// /// If `new_byte_count <= old_mem.len`: /// * this function must return successfully. /// * alignment <= alignment of old_mem.ptr /// /// The returned newly allocated memory is undefined. reallocFn: fn (self: &Allocator, old_mem: []u8, new_byte_count: usize, alignment: u29) Error![]u8, /// Guaranteed: `old_mem.len` is the same as what was returned from `allocFn` or `reallocFn` freeFn: fn (self: &Allocator, old_mem: []u8) void, fn create(self: &Allocator, comptime T: type) !&T { const slice = try self.alloc(T, 1); return &slice[0]; } fn destroy(self: &Allocator, ptr: var) void { self.free(ptr[0..1]); } fn alloc(self: &Allocator, comptime T: type, n: usize) ![]T { return self.alignedAlloc(T, @alignOf(T), n); } fn alignedAlloc(self: &Allocator, comptime T: type, comptime alignment: u29, n: usize) ![]align(alignment) T { const byte_count = math.mul(usize, @sizeOf(T), n) catch return Error.OutOfMemory; const byte_slice = try self.allocFn(self, byte_count, alignment); assert(byte_slice.len == byte_count); // This loop should get optimized out in ReleaseFast mode for (byte_slice) |*byte| { *byte = undefined; } return ([]align(alignment) T)(@alignCast(alignment, byte_slice)); } fn realloc(self: &Allocator, comptime T: type, old_mem: []T, n: usize) ![]T { return self.alignedRealloc(T, @alignOf(T), @alignCast(@alignOf(T), old_mem), n); } fn alignedRealloc(self: &Allocator, comptime T: type, comptime alignment: u29, old_mem: []align(alignment) T, n: usize) ![]align(alignment) T { if (old_mem.len == 0) { return self.alloc(T, n); } const old_byte_slice = ([]u8)(old_mem); const byte_count = math.mul(usize, @sizeOf(T), n) catch return Error.OutOfMemory; const byte_slice = try self.reallocFn(self, old_byte_slice, byte_count, alignment); assert(byte_slice.len == byte_count); if (n > old_mem.len) { // This loop should get optimized out in ReleaseFast mode for (byte_slice[old_byte_slice.len..]) |*byte| { *byte = undefined; } } return ([]T)(@alignCast(alignment, byte_slice)); } /// Reallocate, but `n` must be less than or equal to `old_mem.len`. /// Unlike `realloc`, this function cannot fail. /// Shrinking to 0 is the same as calling `free`. fn shrink(self: &Allocator, comptime T: type, old_mem: []T, n: usize) []T { return self.alignedShrink(T, @alignOf(T), @alignCast(@alignOf(T), old_mem), n); } fn alignedShrink(self: &Allocator, comptime T: type, comptime alignment: u29, old_mem: []align(alignment) T, n: usize) []align(alignment) T { if (n == 0) { self.free(old_mem); return old_mem[0..0]; } assert(n <= old_mem.len); // Here we skip the overflow checking on the multiplication because // n <= old_mem.len and the multiplication didn't overflow for that operation. const byte_count = @sizeOf(T) * n; const byte_slice = self.reallocFn(self, ([]u8)(old_mem), byte_count, alignment) catch unreachable; assert(byte_slice.len == byte_count); return ([]align(alignment) T)(@alignCast(alignment, byte_slice)); } fn free(self: &Allocator, memory: var) void { const bytes = ([]const u8)(memory); if (bytes.len == 0) return; const non_const_ptr = @intToPtr(&u8, @ptrToInt(bytes.ptr)); self.freeFn(self, non_const_ptr[0..bytes.len]); } }; /// Copy all of source into dest at position 0. /// dest.len must be >= source.len. pub fn copy(comptime T: type, dest: []T, source: []const T) void { // TODO instead of manually doing this check for the whole array // and turning off runtime safety, the compiler should detect loops like // this and automatically omit safety checks for loops @setRuntimeSafety(false); assert(dest.len >= source.len); for (source) |s, i| dest[i] = s; } pub fn set(comptime T: type, dest: []T, value: T) void { for (dest) |*d| *d = value; } /// Returns true if lhs < rhs, false otherwise pub fn lessThan(comptime T: type, lhs: []const T, rhs: []const T) bool { const n = math.min(lhs.len, rhs.len); var i: usize = 0; while (i < n) : (i += 1) { if (lhs[i] == rhs[i]) continue; return lhs[i] < rhs[i]; } return lhs.len < rhs.len; } test "mem.lessThan" { assert(lessThan(u8, "abcd", "bee")); assert(!lessThan(u8, "abc", "abc")); assert(lessThan(u8, "abc", "abc0")); assert(!lessThan(u8, "", "")); assert(lessThan(u8, "", "a")); } /// Compares two slices and returns whether they are equal. pub fn eql(comptime T: type, a: []const T, b: []const T) bool { if (a.len != b.len) return false; for (a) |item, index| { if (b[index] != item) return false; } return true; } /// Copies ::m to newly allocated memory. Caller is responsible to free it. pub fn dupe(allocator: &Allocator, comptime T: type, m: []const T) ![]T { const new_buf = try allocator.alloc(T, m.len); copy(T, new_buf, m); return new_buf; } /// Remove values from the beginning and end of a slice. pub fn trim(comptime T: type, slice: []const T, values_to_strip: []const T) []const T { var begin: usize = 0; var end: usize = slice.len; while (begin < end and indexOfScalar(T, values_to_strip, slice[begin]) != null) : (begin += 1) {} while (end > begin and indexOfScalar(T, values_to_strip, slice[end - 1]) != null) : (end -= 1) {} return slice[begin..end]; } test "mem.trim" { assert(eql(u8, trim(u8, " foo\n ", " \n"), "foo")); assert(eql(u8, trim(u8, "foo", " \n"), "foo")); } /// Linear search for the index of a scalar value inside a slice. pub fn indexOfScalar(comptime T: type, slice: []const T, value: T) ?usize { return indexOfScalarPos(T, slice, 0, value); } pub fn indexOfScalarPos(comptime T: type, slice: []const T, start_index: usize, value: T) ?usize { var i: usize = start_index; while (i < slice.len) : (i += 1) { if (slice[i] == value) return i; } return null; } pub fn indexOfAny(comptime T: type, slice: []const T, values: []const T) ?usize { return indexOfAnyPos(T, slice, 0, values); } pub fn indexOfAnyPos(comptime T: type, slice: []const T, start_index: usize, values: []const T) ?usize { var i: usize = start_index; while (i < slice.len) : (i += 1) { for (values) |value| { if (slice[i] == value) return i; } } return null; } pub fn indexOf(comptime T: type, haystack: []const T, needle: []const T) ?usize { return indexOfPos(T, haystack, 0, needle); } // TODO boyer-moore algorithm pub fn indexOfPos(comptime T: type, haystack: []const T, start_index: usize, needle: []const T) ?usize { if (needle.len > haystack.len) return null; var i: usize = start_index; const end = haystack.len - needle.len; while (i <= end) : (i += 1) { if (eql(T, haystack[i .. i + needle.len], needle)) return i; } return null; } test "mem.indexOf" { assert(??indexOf(u8, "one two three four", "four") == 14); assert(indexOf(u8, "one two three four", "gour") == null); assert(??indexOf(u8, "foo", "foo") == 0); assert(indexOf(u8, "foo", "fool") == null); } /// Reads an integer from memory with size equal to bytes.len. /// T specifies the return type, which must be large enough to store /// the result. /// See also ::readIntBE or ::readIntLE. pub fn readInt(bytes: []const u8, comptime T: type, endian: builtin.Endian) T { if (T.bit_count == 8) { return bytes[0]; } var result: T = 0; switch (endian) { builtin.Endian.Big => { for (bytes) |b| { result = (result << 8) | b; } }, builtin.Endian.Little => { const ShiftType = math.Log2Int(T); for (bytes) |b, index| { result = result | (T(b) << ShiftType(index * 8)); } }, } return result; } /// Reads a big-endian int of type T from bytes. /// bytes.len must be exactly @sizeOf(T). pub fn readIntBE(comptime T: type, bytes: []const u8) T { if (T.is_signed) { return @bitCast(T, readIntBE(@IntType(false, T.bit_count), bytes)); } assert(bytes.len == @sizeOf(T)); var result: T = 0; {comptime var i = 0; inline while (i < @sizeOf(T)) : (i += 1) { result = (result << 8) | T(bytes[i]); }} return result; } /// Reads a little-endian int of type T from bytes. /// bytes.len must be exactly @sizeOf(T). pub fn readIntLE(comptime T: type, bytes: []const u8) T { if (T.is_signed) { return @bitCast(T, readIntLE(@IntType(false, T.bit_count), bytes)); } assert(bytes.len == @sizeOf(T)); var result: T = 0; {comptime var i = 0; inline while (i < @sizeOf(T)) : (i += 1) { result |= T(bytes[i]) << i * 8; }} return result; } /// Writes an integer to memory with size equal to bytes.len. Pads with zeroes /// to fill the entire buffer provided. /// value must be an integer. pub fn writeInt(buf: []u8, value: var, endian: builtin.Endian) void { const uint = @IntType(false, @typeOf(value).bit_count); var bits = @truncate(uint, value); switch (endian) { builtin.Endian.Big => { var index: usize = buf.len; while (index != 0) { index -= 1; buf[index] = @truncate(u8, bits); bits >>= 8; } }, builtin.Endian.Little => { for (buf) |*b| { *b = @truncate(u8, bits); bits >>= 8; } }, } assert(bits == 0); } pub fn hash_slice_u8(k: []const u8) u32 { // FNV 32-bit hash var h: u32 = 2166136261; for (k) |b| { h = (h ^ b) *% 16777619; } return h; } pub fn eql_slice_u8(a: []const u8, b: []const u8) bool { return eql(u8, a, b); } /// Returns an iterator that iterates over the slices of `buffer` that are not /// any of the bytes in `split_bytes`. /// split(" abc def ghi ", " ") /// Will return slices for "abc", "def", "ghi", null, in that order. pub fn split(buffer: []const u8, split_bytes: []const u8) SplitIterator { return SplitIterator { .index = 0, .buffer = buffer, .split_bytes = split_bytes, }; } test "mem.split" { var it = split(" abc def ghi ", " "); assert(eql(u8, ??it.next(), "abc")); assert(eql(u8, ??it.next(), "def")); assert(eql(u8, ??it.next(), "ghi")); assert(it.next() == null); } pub fn startsWith(comptime T: type, haystack: []const T, needle: []const T) bool { return if (needle.len > haystack.len) false else eql(T, haystack[0 .. needle.len], needle); } const SplitIterator = struct { buffer: []const u8, split_bytes: []const u8, index: usize, pub fn next(self: &SplitIterator) ?[]const u8 { // move to beginning of token while (self.index < self.buffer.len and self.isSplitByte(self.buffer[self.index])) : (self.index += 1) {} const start = self.index; if (start == self.buffer.len) { return null; } // move to end of token while (self.index < self.buffer.len and !self.isSplitByte(self.buffer[self.index])) : (self.index += 1) {} const end = self.index; return self.buffer[start..end]; } /// Returns a slice of the remaining bytes. Does not affect iterator state. pub fn rest(self: &const SplitIterator) []const u8 { // move to beginning of token var index: usize = self.index; while (index < self.buffer.len and self.isSplitByte(self.buffer[index])) : (index += 1) {} return self.buffer[index..]; } fn isSplitByte(self: &const SplitIterator, byte: u8) bool { for (self.split_bytes) |split_byte| { if (byte == split_byte) { return true; } } return false; } }; /// Naively combines a series of strings with a separator. /// Allocates memory for the result, which must be freed by the caller. pub fn join(allocator: &Allocator, sep: u8, strings: ...) ![]u8 { comptime assert(strings.len >= 1); var total_strings_len: usize = strings.len; // 1 sep per string { comptime var string_i = 0; inline while (string_i < strings.len) : (string_i += 1) { const arg = ([]const u8)(strings[string_i]); total_strings_len += arg.len; } } const buf = try allocator.alloc(u8, total_strings_len); errdefer allocator.free(buf); var buf_index: usize = 0; comptime var string_i = 0; inline while (true) { const arg = ([]const u8)(strings[string_i]); string_i += 1; copy(u8, buf[buf_index..], arg); buf_index += arg.len; if (string_i >= strings.len) break; if (buf[buf_index - 1] != sep) { buf[buf_index] = sep; buf_index += 1; } } return buf[0..buf_index]; } test "mem.join" { assert(eql(u8, try join(debug.global_allocator, ',', "a", "b", "c"), "a,b,c")); assert(eql(u8, try join(debug.global_allocator, ',', "a"), "a")); } test "testStringEquality" { assert(eql(u8, "abcd", "abcd")); assert(!eql(u8, "abcdef", "abZdef")); assert(!eql(u8, "abcdefg", "abcdef")); } test "testReadInt" { testReadIntImpl(); comptime testReadIntImpl(); } fn testReadIntImpl() void { { const bytes = []u8{ 0x12, 0x34, 0x56, 0x78 }; assert(readInt(bytes, u32, builtin.Endian.Big) == 0x12345678); assert(readIntBE(u32, bytes) == 0x12345678); assert(readIntBE(i32, bytes) == 0x12345678); assert(readInt(bytes, u32, builtin.Endian.Little) == 0x78563412); assert(readIntLE(u32, bytes) == 0x78563412); assert(readIntLE(i32, bytes) == 0x78563412); } { const buf = []u8{0x00, 0x00, 0x12, 0x34}; const answer = readInt(buf, u64, builtin.Endian.Big); assert(answer == 0x00001234); } { const buf = []u8{0x12, 0x34, 0x00, 0x00}; const answer = readInt(buf, u64, builtin.Endian.Little); assert(answer == 0x00003412); } { const bytes = []u8{0xff, 0xfe}; assert(readIntBE(u16, bytes) == 0xfffe); assert(readIntBE(i16, bytes) == -0x0002); assert(readIntLE(u16, bytes) == 0xfeff); assert(readIntLE(i16, bytes) == -0x0101); } } test "testWriteInt" { testWriteIntImpl(); comptime testWriteIntImpl(); } fn testWriteIntImpl() void { var bytes: [4]u8 = undefined; writeInt(bytes[0..], u32(0x12345678), builtin.Endian.Big); assert(eql(u8, bytes, []u8{ 0x12, 0x34, 0x56, 0x78 })); writeInt(bytes[0..], u32(0x78563412), builtin.Endian.Little); assert(eql(u8, bytes, []u8{ 0x12, 0x34, 0x56, 0x78 })); writeInt(bytes[0..], u16(0x1234), builtin.Endian.Big); assert(eql(u8, bytes, []u8{ 0x00, 0x00, 0x12, 0x34 })); writeInt(bytes[0..], u16(0x1234), builtin.Endian.Little); assert(eql(u8, bytes, []u8{ 0x34, 0x12, 0x00, 0x00 })); } pub fn min(comptime T: type, slice: []const T) T { var best = slice[0]; for (slice[1..]) |item| { best = math.min(best, item); } return best; } test "mem.min" { assert(min(u8, "abcdefg") == 'a'); } pub fn max(comptime T: type, slice: []const T) T { var best = slice[0]; for (slice[1..]) |item| { best = math.max(best, item); } return best; } test "mem.max" { assert(max(u8, "abcdefg") == 'g'); } pub fn swap(comptime T: type, a: &T, b: &T) void { const tmp = *a; *a = *b; *b = tmp; } /// In-place order reversal of a slice pub fn reverse(comptime T: type, items: []T) void { var i: usize = 0; const end = items.len / 2; while (i < end) : (i += 1) { swap(T, &items[i], &items[items.len - i - 1]); } } test "std.mem.reverse" { var arr = []i32{ 5, 3, 1, 2, 4 }; reverse(i32, arr[0..]); assert(eql(i32, arr, []i32{ 4, 2, 1, 3, 5 })); } /// In-place rotation of the values in an array ([0 1 2 3] becomes [1 2 3 0] if we rotate by 1) /// Assumes 0 <= amount <= items.len pub fn rotate(comptime T: type, items: []T, amount: usize) void { reverse(T, items[0..amount]); reverse(T, items[amount..]); reverse(T, items); } test "std.mem.rotate" { var arr = []i32{ 5, 3, 1, 2, 4 }; rotate(i32, arr[0..], 2); assert(eql(i32, arr, []i32{ 1, 2, 4, 5, 3 })); }