const std = @import("../std.zig"); const builtin = @import("builtin"); const AtomicOrder = builtin.AtomicOrder; const AtomicRmwOp = builtin.AtomicRmwOp; const assert = std.debug.assert; const expect = std.testing.expect; /// Many producer, many consumer, non-allocating, thread-safe. /// Uses a mutex to protect access. pub fn Queue(comptime T: type) type { return struct { head: ?*Node, tail: ?*Node, mutex: std.Mutex, pub const Self = @This(); pub const Node = std.TailQueue(T).Node; pub fn init() Self { return Self{ .head = null, .tail = null, .mutex = std.Mutex.init(), }; } pub fn put(self: *Self, node: *Node) void { node.next = null; const held = self.mutex.acquire(); defer held.release(); node.prev = self.tail; self.tail = node; if (node.prev) |prev_tail| { prev_tail.next = node; } else { assert(self.head == null); self.head = node; } } pub fn get(self: *Self) ?*Node { const held = self.mutex.acquire(); defer held.release(); const head = self.head orelse return null; self.head = head.next; if (head.next) |new_head| { new_head.prev = null; } else { self.tail = null; } // This way, a get() and a remove() are thread-safe with each other. head.prev = null; head.next = null; return head; } pub fn unget(self: *Self, node: *Node) void { node.prev = null; const held = self.mutex.acquire(); defer held.release(); const opt_head = self.head; self.head = node; if (opt_head) |head| { head.next = node; } else { assert(self.tail == null); self.tail = node; } } /// Thread-safe with get() and remove(). Returns whether node was actually removed. pub fn remove(self: *Self, node: *Node) bool { const held = self.mutex.acquire(); defer held.release(); if (node.prev == null and node.next == null and self.head != node) { return false; } if (node.prev) |prev| { prev.next = node.next; } else { self.head = node.next; } if (node.next) |next| { next.prev = node.prev; } else { self.tail = node.prev; } node.prev = null; node.next = null; return true; } pub fn isEmpty(self: *Self) bool { const held = self.mutex.acquire(); defer held.release(); return self.head == null; } pub fn dump(self: *Self) void { var stderr_file = std.io.getStdErr() catch return; const stderr = &stderr_file.outStream().stream; const Error = @typeInfo(@typeOf(stderr)).Pointer.child.Error; self.dumpToStream(Error, stderr) catch return; } pub fn dumpToStream(self: *Self, comptime Error: type, stream: *std.io.OutStream(Error)) Error!void { const S = struct { fn dumpRecursive(s: *std.io.OutStream(Error), optional_node: ?*Node, indent: usize) Error!void { try s.writeByteNTimes(' ', indent); if (optional_node) |node| { try s.print("0x{x}={}\n", @ptrToInt(node), node.data); try dumpRecursive(s, node.next, indent + 1); } else { try s.print("(null)\n"); } } }; const held = self.mutex.acquire(); defer held.release(); try stream.print("head: "); try S.dumpRecursive(stream, self.head, 0); try stream.print("tail: "); try S.dumpRecursive(stream, self.tail, 0); } }; } const Context = struct { allocator: *std.mem.Allocator, queue: *Queue(i32), put_sum: isize, get_sum: isize, get_count: usize, puts_done: u8, // TODO make this a bool }; // TODO add lazy evaluated build options and then put puts_per_thread behind // some option such as: "AggressiveMultithreadedFuzzTest". In the AppVeyor // CI we would use a less aggressive setting since at 1 core, while we still // want this test to pass, we need a smaller value since there is so much thrashing // we would also use a less aggressive setting when running in valgrind const puts_per_thread = 500; const put_thread_count = 3; test "std.atomic.Queue" { var plenty_of_memory = try std.heap.direct_allocator.alloc(u8, 300 * 1024); defer std.heap.direct_allocator.free(plenty_of_memory); var fixed_buffer_allocator = std.heap.ThreadSafeFixedBufferAllocator.init(plenty_of_memory); var a = &fixed_buffer_allocator.allocator; var queue = Queue(i32).init(); var context = Context{ .allocator = a, .queue = &queue, .put_sum = 0, .get_sum = 0, .puts_done = 0, .get_count = 0, }; if (builtin.single_threaded) { expect(context.queue.isEmpty()); { var i: usize = 0; while (i < put_thread_count) : (i += 1) { expect(startPuts(&context) == 0); } } expect(!context.queue.isEmpty()); context.puts_done = 1; { var i: usize = 0; while (i < put_thread_count) : (i += 1) { expect(startGets(&context) == 0); } } expect(context.queue.isEmpty()); } else { expect(context.queue.isEmpty()); var putters: [put_thread_count]*std.Thread = undefined; for (putters) |*t| { t.* = try std.Thread.spawn(&context, startPuts); } var getters: [put_thread_count]*std.Thread = undefined; for (getters) |*t| { t.* = try std.Thread.spawn(&context, startGets); } for (putters) |t| t.wait(); _ = @atomicRmw(u8, &context.puts_done, builtin.AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst); for (getters) |t| t.wait(); expect(context.queue.isEmpty()); } if (context.put_sum != context.get_sum) { std.debug.panic("failure\nput_sum:{} != get_sum:{}", context.put_sum, context.get_sum); } if (context.get_count != puts_per_thread * put_thread_count) { std.debug.panic( "failure\nget_count:{} != puts_per_thread:{} * put_thread_count:{}", context.get_count, u32(puts_per_thread), u32(put_thread_count), ); } } fn startPuts(ctx: *Context) u8 { var put_count: usize = puts_per_thread; var r = std.rand.DefaultPrng.init(0xdeadbeef); while (put_count != 0) : (put_count -= 1) { std.time.sleep(1); // let the os scheduler be our fuzz const x = @bitCast(i32, r.random.scalar(u32)); const node = ctx.allocator.create(Queue(i32).Node) catch unreachable; node.* = Queue(i32).Node{ .prev = undefined, .next = undefined, .data = x, }; ctx.queue.put(node); _ = @atomicRmw(isize, &ctx.put_sum, builtin.AtomicRmwOp.Add, x, AtomicOrder.SeqCst); } return 0; } fn startGets(ctx: *Context) u8 { while (true) { const last = @atomicLoad(u8, &ctx.puts_done, builtin.AtomicOrder.SeqCst) == 1; while (ctx.queue.get()) |node| { std.time.sleep(1); // let the os scheduler be our fuzz _ = @atomicRmw(isize, &ctx.get_sum, builtin.AtomicRmwOp.Add, node.data, builtin.AtomicOrder.SeqCst); _ = @atomicRmw(usize, &ctx.get_count, builtin.AtomicRmwOp.Add, 1, builtin.AtomicOrder.SeqCst); } if (last) return 0; } } test "std.atomic.Queue single-threaded" { var queue = Queue(i32).init(); expect(queue.isEmpty()); var node_0 = Queue(i32).Node{ .data = 0, .next = undefined, .prev = undefined, }; queue.put(&node_0); expect(!queue.isEmpty()); var node_1 = Queue(i32).Node{ .data = 1, .next = undefined, .prev = undefined, }; queue.put(&node_1); expect(!queue.isEmpty()); expect(queue.get().?.data == 0); expect(!queue.isEmpty()); var node_2 = Queue(i32).Node{ .data = 2, .next = undefined, .prev = undefined, }; queue.put(&node_2); expect(!queue.isEmpty()); var node_3 = Queue(i32).Node{ .data = 3, .next = undefined, .prev = undefined, }; queue.put(&node_3); expect(!queue.isEmpty()); expect(queue.get().?.data == 1); expect(!queue.isEmpty()); expect(queue.get().?.data == 2); expect(!queue.isEmpty()); var node_4 = Queue(i32).Node{ .data = 4, .next = undefined, .prev = undefined, }; queue.put(&node_4); expect(!queue.isEmpty()); expect(queue.get().?.data == 3); node_3.next = null; expect(!queue.isEmpty()); expect(queue.get().?.data == 4); expect(queue.isEmpty()); expect(queue.get() == null); expect(queue.isEmpty()); } test "std.atomic.Queue dump" { const mem = std.mem; const SliceOutStream = std.io.SliceOutStream; var buffer: [1024]u8 = undefined; var expected_buffer: [1024]u8 = undefined; var sos = SliceOutStream.init(buffer[0..]); var queue = Queue(i32).init(); // Test empty stream sos.reset(); try queue.dumpToStream(SliceOutStream.Error, &sos.stream); expect(mem.eql(u8, buffer[0..sos.pos], \\head: (null) \\tail: (null) \\ )); // Test a stream with one element var node_0 = Queue(i32).Node{ .data = 1, .next = undefined, .prev = undefined, }; queue.put(&node_0); sos.reset(); try queue.dumpToStream(SliceOutStream.Error, &sos.stream); var expected = try std.fmt.bufPrint(expected_buffer[0..], \\head: 0x{x}=1 \\ (null) \\tail: 0x{x}=1 \\ (null) \\ , @ptrToInt(queue.head), @ptrToInt(queue.tail)); expect(mem.eql(u8, buffer[0..sos.pos], expected)); // Test a stream with two elements var node_1 = Queue(i32).Node{ .data = 2, .next = undefined, .prev = undefined, }; queue.put(&node_1); sos.reset(); try queue.dumpToStream(SliceOutStream.Error, &sos.stream); expected = try std.fmt.bufPrint(expected_buffer[0..], \\head: 0x{x}=1 \\ 0x{x}=2 \\ (null) \\tail: 0x{x}=2 \\ (null) \\ , @ptrToInt(queue.head), @ptrToInt(queue.head.?.next), @ptrToInt(queue.tail)); expect(mem.eql(u8, buffer[0..sos.pos], expected)); }