const std = @import("std"); const builtin = @import("builtin"); const arch = builtin.cpu.arch; const common = @import("common.zig"); const normalize = common.normalize; const wideMultiply = common.wideMultiply; pub const panic = common.panic; comptime { @export(__divxf3, .{ .name = "__divxf3", .linkage = common.linkage, .visibility = common.visibility }); } pub fn __divxf3(a: f80, b: f80) callconv(.C) f80 { const T = f80; const Z = std.meta.Int(.unsigned, @bitSizeOf(T)); const significandBits = std.math.floatMantissaBits(T); const fractionalBits = std.math.floatFractionalBits(T); const exponentBits = std.math.floatExponentBits(T); const signBit = (@as(Z, 1) << (significandBits + exponentBits)); const maxExponent = ((1 << exponentBits) - 1); const exponentBias = (maxExponent >> 1); const integerBit = (@as(Z, 1) << fractionalBits); const quietBit = integerBit >> 1; const significandMask = (@as(Z, 1) << significandBits) - 1; const absMask = signBit - 1; const qnanRep = @as(Z, @bitCast(std.math.nan(T))) | quietBit; const infRep: Z = @bitCast(std.math.inf(T)); const aExponent: u32 = @truncate((@as(Z, @bitCast(a)) >> significandBits) & maxExponent); const bExponent: u32 = @truncate((@as(Z, @bitCast(b)) >> significandBits) & maxExponent); const quotientSign: Z = (@as(Z, @bitCast(a)) ^ @as(Z, @bitCast(b))) & signBit; var aSignificand: Z = @as(Z, @bitCast(a)) & significandMask; var bSignificand: Z = @as(Z, @bitCast(b)) & significandMask; var scale: i32 = 0; // Detect if a or b is zero, denormal, infinity, or NaN. if (aExponent -% 1 >= maxExponent - 1 or bExponent -% 1 >= maxExponent - 1) { const aAbs: Z = @as(Z, @bitCast(a)) & absMask; const bAbs: Z = @as(Z, @bitCast(b)) & absMask; // NaN / anything = qNaN if (aAbs > infRep) return @bitCast(@as(Z, @bitCast(a)) | quietBit); // anything / NaN = qNaN if (bAbs > infRep) return @bitCast(@as(Z, @bitCast(b)) | quietBit); if (aAbs == infRep) { // infinity / infinity = NaN if (bAbs == infRep) { return @bitCast(qnanRep); } // infinity / anything else = +/- infinity else { return @bitCast(aAbs | quotientSign); } } // anything else / infinity = +/- 0 if (bAbs == infRep) return @bitCast(quotientSign); if (aAbs == 0) { // zero / zero = NaN if (bAbs == 0) { return @bitCast(qnanRep); } // zero / anything else = +/- zero else { return @bitCast(quotientSign); } } // anything else / zero = +/- infinity if (bAbs == 0) return @bitCast(infRep | quotientSign); // one or both of a or b is denormal, the other (if applicable) is a // normal number. Renormalize one or both of a and b, and set scale to // include the necessary exponent adjustment. if (aAbs < integerBit) scale +%= normalize(T, &aSignificand); if (bAbs < integerBit) scale -%= normalize(T, &bSignificand); } var quotientExponent: i32 = @as(i32, @bitCast(aExponent -% bExponent)) +% scale; // Align the significand of b as a Q63 fixed-point number in the range // [1, 2.0) and get a Q64 approximate reciprocal using a small minimax // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This // is accurate to about 3.5 binary digits. const q63b: u64 = @intCast(bSignificand); var recip64 = @as(u64, 0x7504f333F9DE6484) -% q63b; // 0x7504f333F9DE6484 / 2^64 + 1 = 3/4 + 1/sqrt(2) // Now refine the reciprocal estimate using a Newton-Raphson iteration: // // x1 = x0 * (2 - x0 * b) // // This doubles the number of correct binary digits in the approximation // with each iteration. var correction64: u64 = undefined; correction64 = @truncate(~(@as(u128, recip64) *% q63b >> 64) +% 1); recip64 = @truncate(@as(u128, recip64) *% correction64 >> 63); correction64 = @truncate(~(@as(u128, recip64) *% q63b >> 64) +% 1); recip64 = @truncate(@as(u128, recip64) *% correction64 >> 63); correction64 = @truncate(~(@as(u128, recip64) *% q63b >> 64) +% 1); recip64 = @truncate(@as(u128, recip64) *% correction64 >> 63); correction64 = @truncate(~(@as(u128, recip64) *% q63b >> 64) +% 1); recip64 = @truncate(@as(u128, recip64) *% correction64 >> 63); correction64 = @truncate(~(@as(u128, recip64) *% q63b >> 64) +% 1); recip64 = @truncate(@as(u128, recip64) *% correction64 >> 63); // The reciprocal may have overflowed to zero if the upper half of b is // exactly 1.0. This would sabatoge the full-width final stage of the // computation that follows, so we adjust the reciprocal down by one bit. recip64 -%= 1; // We need to perform one more iteration to get us to 112 binary digits; // The last iteration needs to happen with extra precision. // NOTE: This operation is equivalent to __multi3, which is not implemented // in some architechures var reciprocal: u128 = undefined; var correction: u128 = undefined; var dummy: u128 = undefined; wideMultiply(u128, recip64, q63b, &dummy, &correction); correction = -%correction; const cHi: u64 = @truncate(correction >> 64); const cLo: u64 = @truncate(correction); var r64cH: u128 = undefined; var r64cL: u128 = undefined; wideMultiply(u128, recip64, cHi, &dummy, &r64cH); wideMultiply(u128, recip64, cLo, &dummy, &r64cL); reciprocal = r64cH + (r64cL >> 64); // Adjust the final 128-bit reciprocal estimate downward to ensure that it // is strictly smaller than the infinitely precise exact reciprocal. Because // the computation of the Newton-Raphson step is truncating at every step, // this adjustment is small; most of the work is already done. reciprocal -%= 2; // The numerical reciprocal is accurate to within 2^-112, lies in the // interval [0.5, 1.0), and is strictly smaller than the true reciprocal // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b // in Q127 with the following properties: // // 1. q < a/b // 2. q is in the interval [0.5, 2.0) // 3. The error in q is bounded away from 2^-63 (actually, we have // many bits to spare, but this is all we need). // We need a 128 x 128 multiply high to compute q. var quotient128: u128 = undefined; var quotientLo: u128 = undefined; wideMultiply(u128, aSignificand << 2, reciprocal, "ient128, "ientLo); // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0). // Right shift the quotient if it falls in the [1,2) range and adjust the // exponent accordingly. const quotient: u64 = if (quotient128 < (integerBit << 1)) b: { quotientExponent -= 1; break :b @intCast(quotient128); } else @intCast(quotient128 >> 1); // We are going to compute a residual of the form // // r = a - q*b // // We know from the construction of q that r satisfies: // // 0 <= r < ulp(q)*b // // If r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we // already have the correct result. The exact halfway case cannot occur. const residual: u64 = -%(quotient *% q63b); const writtenExponent = quotientExponent + exponentBias; if (writtenExponent >= maxExponent) { // If we have overflowed the exponent, return infinity. return @bitCast(infRep | quotientSign); } else if (writtenExponent < 1) { if (writtenExponent == 0) { // Check whether the rounded result is normal. if (residual > (bSignificand >> 1)) { // round if (quotient == (integerBit - 1)) // If the rounded result is normal, return it return @bitCast(@as(Z, @bitCast(std.math.floatMin(T))) | quotientSign); } } // Flush denormals to zero. In the future, it would be nice to add // code to round them correctly. return @bitCast(quotientSign); } else { const round = @intFromBool(residual > (bSignificand >> 1)); // Insert the exponent var absResult = quotient | (@as(Z, @intCast(writtenExponent)) << significandBits); // Round absResult +%= round; // Insert the sign and return return @bitCast(absResult | quotientSign | integerBit); } } test { _ = @import("divxf3_test.zig"); }