const std = @import("../std.zig"); const builtin = @import("builtin"); const Allocator = std.mem.Allocator; const mem = std.mem; const os = std.os; const maxInt = std.math.maxInt; const assert = std.debug.assert; pub const vtable = Allocator.VTable{ .alloc = alloc, .resize = resize, .free = free, }; fn alloc(_: *anyopaque, n: usize, log2_align: u8, ra: usize) ?[*]u8 { _ = ra; _ = log2_align; assert(n > 0); if (n > maxInt(usize) - (mem.page_size - 1)) return null; const aligned_len = mem.alignForward(n, mem.page_size); if (builtin.os.tag == .windows) { const w = os.windows; const addr = w.VirtualAlloc( null, aligned_len, w.MEM_COMMIT | w.MEM_RESERVE, w.PAGE_READWRITE, ) catch return null; return @ptrCast([*]align(mem.page_size) u8, @alignCast(mem.page_size, addr)); } const hint = @atomicLoad(@TypeOf(std.heap.next_mmap_addr_hint), &std.heap.next_mmap_addr_hint, .Unordered); const slice = os.mmap( hint, aligned_len, os.PROT.READ | os.PROT.WRITE, os.MAP.PRIVATE | os.MAP.ANONYMOUS, -1, 0, ) catch return null; assert(mem.isAligned(@ptrToInt(slice.ptr), mem.page_size)); const new_hint = @alignCast(mem.page_size, slice.ptr + aligned_len); _ = @cmpxchgStrong(@TypeOf(std.heap.next_mmap_addr_hint), &std.heap.next_mmap_addr_hint, hint, new_hint, .Monotonic, .Monotonic); return slice.ptr; } fn resize( _: *anyopaque, buf_unaligned: []u8, log2_buf_align: u8, new_size: usize, return_address: usize, ) bool { _ = log2_buf_align; _ = return_address; const new_size_aligned = mem.alignForward(new_size, mem.page_size); if (builtin.os.tag == .windows) { const w = os.windows; if (new_size <= buf_unaligned.len) { const base_addr = @ptrToInt(buf_unaligned.ptr); const old_addr_end = base_addr + buf_unaligned.len; const new_addr_end = mem.alignForward(base_addr + new_size, mem.page_size); if (old_addr_end > new_addr_end) { // For shrinking that is not releasing, we will only // decommit the pages not needed anymore. w.VirtualFree( @intToPtr(*anyopaque, new_addr_end), old_addr_end - new_addr_end, w.MEM_DECOMMIT, ); } return true; } const old_size_aligned = mem.alignForward(buf_unaligned.len, mem.page_size); if (new_size_aligned <= old_size_aligned) { return true; } return false; } const buf_aligned_len = mem.alignForward(buf_unaligned.len, mem.page_size); if (new_size_aligned == buf_aligned_len) return true; if (new_size_aligned < buf_aligned_len) { const ptr = @alignCast(mem.page_size, buf_unaligned.ptr + new_size_aligned); // TODO: if the next_mmap_addr_hint is within the unmapped range, update it os.munmap(ptr[0 .. buf_aligned_len - new_size_aligned]); return true; } // TODO: call mremap // TODO: if the next_mmap_addr_hint is within the remapped range, update it return false; } fn free(_: *anyopaque, slice: []u8, log2_buf_align: u8, return_address: usize) void { _ = log2_buf_align; _ = return_address; if (builtin.os.tag == .windows) { os.windows.VirtualFree(slice.ptr, 0, os.windows.MEM_RELEASE); } else { const buf_aligned_len = mem.alignForward(slice.len, mem.page_size); const ptr = @alignCast(mem.page_size, slice.ptr); os.munmap(ptr[0..buf_aligned_len]); } }