const std = @import("../std.zig"); const assert = std.debug.assert; const mem = std.mem; const Allocator = std.mem.Allocator; /// This allocator takes an existing allocator, wraps it, and provides an interface /// where you can allocate without freeing, and then free it all together. pub const ArenaAllocator = struct { allocator: Allocator, child_allocator: *Allocator, state: State, /// Inner state of ArenaAllocator. Can be stored rather than the entire ArenaAllocator /// as a memory-saving optimization. pub const State = struct { buffer_list: std.SinglyLinkedList([]u8) = @as(std.SinglyLinkedList([]u8), .{}), end_index: usize = 0, pub fn promote(self: State, child_allocator: *Allocator) ArenaAllocator { return .{ .allocator = Allocator{ .reallocFn = realloc, .shrinkFn = shrink, }, .child_allocator = child_allocator, .state = self, }; } }; const BufNode = std.SinglyLinkedList([]u8).Node; pub fn init(child_allocator: *Allocator) ArenaAllocator { return (State{}).promote(child_allocator); } pub fn deinit(self: ArenaAllocator) void { var it = self.state.buffer_list.first; while (it) |node| { // this has to occur before the free because the free frees node const next_it = node.next; self.child_allocator.free(node.data); it = next_it; } } fn createNode(self: *ArenaAllocator, prev_len: usize, minimum_size: usize) !*BufNode { const actual_min_size = minimum_size + @sizeOf(BufNode); const big_enough_len = prev_len + actual_min_size; const len = big_enough_len + big_enough_len / 2; const buf = try self.child_allocator.alignedAlloc(u8, @alignOf(BufNode), len); const buf_node_slice = mem.bytesAsSlice(BufNode, buf[0..@sizeOf(BufNode)]); const buf_node = &buf_node_slice[0]; buf_node.* = BufNode{ .data = buf, .next = null, }; self.state.buffer_list.prepend(buf_node); self.state.end_index = 0; return buf_node; } fn alloc(allocator: *Allocator, n: usize, alignment: u29) ![]u8 { const self = @fieldParentPtr(ArenaAllocator, "allocator", allocator); var cur_node = if (self.state.buffer_list.first) |first_node| first_node else try self.createNode(0, n + alignment); while (true) { const cur_buf = cur_node.data[@sizeOf(BufNode)..]; const addr = @ptrToInt(cur_buf.ptr) + self.state.end_index; const adjusted_addr = mem.alignForward(addr, alignment); const adjusted_index = self.state.end_index + (adjusted_addr - addr); const new_end_index = adjusted_index + n; if (new_end_index > cur_buf.len) { cur_node = try self.createNode(cur_buf.len, n + alignment); continue; } const result = cur_buf[adjusted_index..new_end_index]; self.state.end_index = new_end_index; return result; } } fn realloc(allocator: *Allocator, old_mem: []u8, old_align: u29, new_size: usize, new_align: u29) ![]u8 { if (new_size <= old_mem.len and new_align <= new_size) { // We can't do anything with the memory, so tell the client to keep it. return error.OutOfMemory; } else { const result = try alloc(allocator, new_size, new_align); @memcpy(result.ptr, old_mem.ptr, std.math.min(old_mem.len, result.len)); return result; } } fn shrink(allocator: *Allocator, old_mem: []u8, old_align: u29, new_size: usize, new_align: u29) []u8 { return old_mem[0..new_size]; } };