const std = @import("std.zig"); const StringHashMap = std.StringHashMap; const mem = std.mem; const Allocator = mem.Allocator; const testing = std.testing; /// BufMap copies keys and values before they go into the map, and /// frees them when they get removed. pub const BufMap = struct { hash_map: BufMapHashMap, const BufMapHashMap = StringHashMap([]const u8); /// Create a BufMap backed by a specific allocator. /// That allocator will be used for both backing allocations /// and string deduplication. pub fn init(allocator: *Allocator) BufMap { var self = BufMap{ .hash_map = BufMapHashMap.init(allocator) }; return self; } /// Free the backing storage of the map, as well as all /// of the stored keys and values. pub fn deinit(self: *BufMap) void { var it = self.hash_map.iterator(); while (it.next()) |entry| { self.free(entry.key_ptr.*); self.free(entry.value_ptr.*); } self.hash_map.deinit(); } /// Same as `put` but the key and value become owned by the BufMap rather /// than being copied. /// If `putMove` fails, the ownership of key and value does not transfer. pub fn putMove(self: *BufMap, key: []u8, value: []u8) !void { const get_or_put = try self.hash_map.getOrPut(key); if (get_or_put.found_existing) { self.free(get_or_put.key_ptr.*); self.free(get_or_put.value_ptr.*); get_or_put.key_ptr.* = key; } get_or_put.value_ptr.* = value; } /// `key` and `value` are copied into the BufMap. pub fn put(self: *BufMap, key: []const u8, value: []const u8) !void { const value_copy = try self.copy(value); errdefer self.free(value_copy); const get_or_put = try self.hash_map.getOrPut(key); if (get_or_put.found_existing) { self.free(get_or_put.value_ptr.*); } else { get_or_put.key_ptr.* = self.copy(key) catch |err| { _ = self.hash_map.remove(key); return err; }; } get_or_put.value_ptr.* = value_copy; } /// Find the address of the value associated with a key. /// The returned pointer is invalidated if the map resizes. pub fn getPtr(self: BufMap, key: []const u8) ?*[]const u8 { return self.hash_map.getPtr(key); } /// Return the map's copy of the value associated with /// a key. The returned string is invalidated if this /// key is removed from the map. pub fn get(self: BufMap, key: []const u8) ?[]const u8 { return self.hash_map.get(key); } /// Removes the item from the map and frees its value. /// This invalidates the value returned by get() for this key. pub fn remove(self: *BufMap, key: []const u8) void { const kv = self.hash_map.fetchRemove(key) orelse return; self.free(kv.key); self.free(kv.value); } /// Returns the number of KV pairs stored in the map. pub fn count(self: BufMap) usize { return self.hash_map.count(); } /// Returns an iterator over entries in the map. pub fn iterator(self: *const BufMap) BufMapHashMap.Iterator { return self.hash_map.iterator(); } fn free(self: BufMap, value: []const u8) void { self.hash_map.allocator.free(value); } fn copy(self: BufMap, value: []const u8) ![]u8 { return self.hash_map.allocator.dupe(u8, value); } }; test "BufMap" { const allocator = std.testing.allocator; var bufmap = BufMap.init(allocator); defer bufmap.deinit(); try bufmap.put("x", "1"); try testing.expect(mem.eql(u8, bufmap.get("x").?, "1")); try testing.expect(1 == bufmap.count()); try bufmap.put("x", "2"); try testing.expect(mem.eql(u8, bufmap.get("x").?, "2")); try testing.expect(1 == bufmap.count()); try bufmap.put("x", "3"); try testing.expect(mem.eql(u8, bufmap.get("x").?, "3")); try testing.expect(1 == bufmap.count()); bufmap.remove("x"); try testing.expect(0 == bufmap.count()); try bufmap.putMove(try allocator.dupe(u8, "k"), try allocator.dupe(u8, "v1")); try bufmap.putMove(try allocator.dupe(u8, "k"), try allocator.dupe(u8, "v2")); }