const std = @import("../std.zig"); const testing = std.testing; const math = std.math; pub const abs = @import("complex/abs.zig").abs; pub const acosh = @import("complex/acosh.zig").acosh; pub const acos = @import("complex/acos.zig").acos; pub const arg = @import("complex/arg.zig").arg; pub const asinh = @import("complex/asinh.zig").asinh; pub const asin = @import("complex/asin.zig").asin; pub const atanh = @import("complex/atanh.zig").atanh; pub const atan = @import("complex/atan.zig").atan; pub const conj = @import("complex/conj.zig").conj; pub const cosh = @import("complex/cosh.zig").cosh; pub const cos = @import("complex/cos.zig").cos; pub const exp = @import("complex/exp.zig").exp; pub const log = @import("complex/log.zig").log; pub const pow = @import("complex/pow.zig").pow; pub const proj = @import("complex/proj.zig").proj; pub const sinh = @import("complex/sinh.zig").sinh; pub const sin = @import("complex/sin.zig").sin; pub const sqrt = @import("complex/sqrt.zig").sqrt; pub const tanh = @import("complex/tanh.zig").tanh; pub const tan = @import("complex/tan.zig").tan; /// A complex number consisting of a real an imaginary part. T must be a floating-point value. pub fn Complex(comptime T: type) type { return struct { const Self = @This(); /// Real part. re: T, /// Imaginary part. im: T, /// Create a new Complex number from the given real and imaginary parts. pub fn init(re: T, im: T) Self { return Self{ .re = re, .im = im, }; } /// Returns the sum of two complex numbers. pub fn add(self: Self, other: Self) Self { return Self{ .re = self.re + other.re, .im = self.im + other.im, }; } /// Returns the subtraction of two complex numbers. pub fn sub(self: Self, other: Self) Self { return Self{ .re = self.re - other.re, .im = self.im - other.im, }; } /// Returns the product of two complex numbers. pub fn mul(self: Self, other: Self) Self { return Self{ .re = self.re * other.re - self.im * other.im, .im = self.im * other.re + self.re * other.im, }; } /// Returns the quotient of two complex numbers. pub fn div(self: Self, other: Self) Self { const re_num = self.re * other.re + self.im * other.im; const im_num = self.im * other.re - self.re * other.im; const den = other.re * other.re + other.im * other.im; return Self{ .re = re_num / den, .im = im_num / den, }; } /// Returns the complex conjugate of a number. pub fn conjugate(self: Self) Self { return Self{ .re = self.re, .im = -self.im, }; } /// Returns the negation of a complex number. pub fn neg(self: Self) Self { return Self{ .re = -self.re, .im = -self.im, }; } /// Returns the product of complex number and i=sqrt(-1) pub fn mulbyi(self: Self) Self { return Self{ .re = -self.im, .im = self.re, }; } /// Returns the reciprocal of a complex number. pub fn reciprocal(self: Self) Self { const m = self.re * self.re + self.im * self.im; return Self{ .re = self.re / m, .im = -self.im / m, }; } /// Returns the magnitude of a complex number. pub fn magnitude(self: Self) T { return @sqrt(self.re * self.re + self.im * self.im); } }; } const epsilon = 0.0001; test "add" { const a = Complex(f32).init(5, 3); const b = Complex(f32).init(2, 7); const c = a.add(b); try testing.expect(c.re == 7 and c.im == 10); } test "sub" { const a = Complex(f32).init(5, 3); const b = Complex(f32).init(2, 7); const c = a.sub(b); try testing.expect(c.re == 3 and c.im == -4); } test "mul" { const a = Complex(f32).init(5, 3); const b = Complex(f32).init(2, 7); const c = a.mul(b); try testing.expect(c.re == -11 and c.im == 41); } test "div" { const a = Complex(f32).init(5, 3); const b = Complex(f32).init(2, 7); const c = a.div(b); try testing.expect(math.approxEqAbs(f32, c.re, @as(f32, 31) / 53, epsilon) and math.approxEqAbs(f32, c.im, @as(f32, -29) / 53, epsilon)); } test "conjugate" { const a = Complex(f32).init(5, 3); const c = a.conjugate(); try testing.expect(c.re == 5 and c.im == -3); } test "neg" { const a = Complex(f32).init(5, 3); const c = a.neg(); try testing.expect(c.re == -5 and c.im == -3); } test "mulbyi" { const a = Complex(f32).init(5, 3); const c = a.mulbyi(); try testing.expect(c.re == -3 and c.im == 5); } test "reciprocal" { const a = Complex(f32).init(5, 3); const c = a.reciprocal(); try testing.expect(math.approxEqAbs(f32, c.re, @as(f32, 5) / 34, epsilon) and math.approxEqAbs(f32, c.im, @as(f32, -3) / 34, epsilon)); } test "magnitude" { const a = Complex(f32).init(5, 3); const c = a.magnitude(); try testing.expect(math.approxEqAbs(f32, c, 5.83095, epsilon)); } test { _ = @import("complex/abs.zig"); _ = @import("complex/acosh.zig"); _ = @import("complex/acos.zig"); _ = @import("complex/arg.zig"); _ = @import("complex/asinh.zig"); _ = @import("complex/asin.zig"); _ = @import("complex/atanh.zig"); _ = @import("complex/atan.zig"); _ = @import("complex/conj.zig"); _ = @import("complex/cosh.zig"); _ = @import("complex/cos.zig"); _ = @import("complex/exp.zig"); _ = @import("complex/log.zig"); _ = @import("complex/pow.zig"); _ = @import("complex/proj.zig"); _ = @import("complex/sinh.zig"); _ = @import("complex/sin.zig"); _ = @import("complex/sqrt.zig"); _ = @import("complex/tanh.zig"); _ = @import("complex/tan.zig"); }