const std = @import("./std.zig"); const builtin = @import("builtin"); const assert = std.debug.assert; const testing = std.testing; const mem = std.mem; /// Returns how many bytes the UTF-8 representation would require /// for the given codepoint. pub fn utf8CodepointSequenceLength(c: u21) !u3 { if (c < 0x80) return @as(u3, 1); if (c < 0x800) return @as(u3, 2); if (c < 0x10000) return @as(u3, 3); if (c < 0x110000) return @as(u3, 4); return error.CodepointTooLarge; } /// Given the first byte of a UTF-8 codepoint, /// returns a number 1-4 indicating the total length of the codepoint in bytes. /// If this byte does not match the form of a UTF-8 start byte, returns Utf8InvalidStartByte. pub fn utf8ByteSequenceLength(first_byte: u8) !u3 { return switch (@clz(u8, ~first_byte)) { 0 => 1, 2 => 2, 3 => 3, 4 => 4, else => error.Utf8InvalidStartByte, }; } /// Encodes the given codepoint into a UTF-8 byte sequence. /// c: the codepoint. /// out: the out buffer to write to. Must have a len >= utf8CodepointSequenceLength(c). /// Errors: if c cannot be encoded in UTF-8. /// Returns: the number of bytes written to out. pub fn utf8Encode(c: u21, out: []u8) !u3 { const length = try utf8CodepointSequenceLength(c); assert(out.len >= length); switch (length) { // The pattern for each is the same // - Increasing the initial shift by 6 each time // - Each time after the first shorten the shifted // value to a max of 0b111111 (63) 1 => out[0] = @intCast(u8, c), // Can just do 0 + codepoint for initial range 2 => { out[0] = @intCast(u8, 0b11000000 | (c >> 6)); out[1] = @intCast(u8, 0b10000000 | (c & 0b111111)); }, 3 => { if (0xd800 <= c and c <= 0xdfff) return error.Utf8CannotEncodeSurrogateHalf; out[0] = @intCast(u8, 0b11100000 | (c >> 12)); out[1] = @intCast(u8, 0b10000000 | ((c >> 6) & 0b111111)); out[2] = @intCast(u8, 0b10000000 | (c & 0b111111)); }, 4 => { out[0] = @intCast(u8, 0b11110000 | (c >> 18)); out[1] = @intCast(u8, 0b10000000 | ((c >> 12) & 0b111111)); out[2] = @intCast(u8, 0b10000000 | ((c >> 6) & 0b111111)); out[3] = @intCast(u8, 0b10000000 | (c & 0b111111)); }, else => unreachable, } return length; } const Utf8DecodeError = Utf8Decode2Error || Utf8Decode3Error || Utf8Decode4Error; /// Decodes the UTF-8 codepoint encoded in the given slice of bytes. /// bytes.len must be equal to utf8ByteSequenceLength(bytes[0]) catch unreachable. /// If you already know the length at comptime, you can call one of /// utf8Decode2,utf8Decode3,utf8Decode4 directly instead of this function. pub fn utf8Decode(bytes: []const u8) Utf8DecodeError!u21 { return switch (bytes.len) { 1 => @as(u21, bytes[0]), 2 => utf8Decode2(bytes), 3 => utf8Decode3(bytes), 4 => utf8Decode4(bytes), else => unreachable, }; } const Utf8Decode2Error = error{ Utf8ExpectedContinuation, Utf8OverlongEncoding, }; pub fn utf8Decode2(bytes: []const u8) Utf8Decode2Error!u21 { assert(bytes.len == 2); assert(bytes[0] & 0b11100000 == 0b11000000); var value: u21 = bytes[0] & 0b00011111; if (bytes[1] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation; value <<= 6; value |= bytes[1] & 0b00111111; if (value < 0x80) return error.Utf8OverlongEncoding; return value; } const Utf8Decode3Error = error{ Utf8ExpectedContinuation, Utf8OverlongEncoding, Utf8EncodesSurrogateHalf, }; pub fn utf8Decode3(bytes: []const u8) Utf8Decode3Error!u21 { assert(bytes.len == 3); assert(bytes[0] & 0b11110000 == 0b11100000); var value: u21 = bytes[0] & 0b00001111; if (bytes[1] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation; value <<= 6; value |= bytes[1] & 0b00111111; if (bytes[2] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation; value <<= 6; value |= bytes[2] & 0b00111111; if (value < 0x800) return error.Utf8OverlongEncoding; if (0xd800 <= value and value <= 0xdfff) return error.Utf8EncodesSurrogateHalf; return value; } const Utf8Decode4Error = error{ Utf8ExpectedContinuation, Utf8OverlongEncoding, Utf8CodepointTooLarge, }; pub fn utf8Decode4(bytes: []const u8) Utf8Decode4Error!u21 { assert(bytes.len == 4); assert(bytes[0] & 0b11111000 == 0b11110000); var value: u21 = bytes[0] & 0b00000111; if (bytes[1] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation; value <<= 6; value |= bytes[1] & 0b00111111; if (bytes[2] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation; value <<= 6; value |= bytes[2] & 0b00111111; if (bytes[3] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation; value <<= 6; value |= bytes[3] & 0b00111111; if (value < 0x10000) return error.Utf8OverlongEncoding; if (value > 0x10FFFF) return error.Utf8CodepointTooLarge; return value; } pub fn utf8ValidateSlice(s: []const u8) bool { var i: usize = 0; while (i < s.len) { if (utf8ByteSequenceLength(s[i])) |cp_len| { if (i + cp_len > s.len) { return false; } if (utf8Decode(s[i .. i + cp_len])) |_| {} else |_| { return false; } i += cp_len; } else |err| { return false; } } return true; } /// Utf8View iterates the code points of a utf-8 encoded string. /// /// ``` /// var utf8 = (try std.unicode.Utf8View.init("hi there")).iterator(); /// while (utf8.nextCodepointSlice()) |codepoint| { /// std.debug.warn("got codepoint {}\n", .{codepoint}); /// } /// ``` pub const Utf8View = struct { bytes: []const u8, pub fn init(s: []const u8) !Utf8View { if (!utf8ValidateSlice(s)) { return error.InvalidUtf8; } return initUnchecked(s); } pub fn initUnchecked(s: []const u8) Utf8View { return Utf8View{ .bytes = s }; } /// TODO: https://github.com/ziglang/zig/issues/425 pub fn initComptime(comptime s: []const u8) Utf8View { if (comptime init(s)) |r| { return r; } else |err| switch (err) { error.InvalidUtf8 => { @compileError("invalid utf8"); unreachable; }, } } pub fn iterator(s: Utf8View) Utf8Iterator { return Utf8Iterator{ .bytes = s.bytes, .i = 0, }; } }; pub const Utf8Iterator = struct { bytes: []const u8, i: usize, pub fn nextCodepointSlice(it: *Utf8Iterator) ?[]const u8 { if (it.i >= it.bytes.len) { return null; } const cp_len = utf8ByteSequenceLength(it.bytes[it.i]) catch unreachable; it.i += cp_len; return it.bytes[it.i - cp_len .. it.i]; } pub fn nextCodepoint(it: *Utf8Iterator) ?u21 { const slice = it.nextCodepointSlice() orelse return null; switch (slice.len) { 1 => return @as(u21, slice[0]), 2 => return utf8Decode2(slice) catch unreachable, 3 => return utf8Decode3(slice) catch unreachable, 4 => return utf8Decode4(slice) catch unreachable, else => unreachable, } } }; pub const Utf16LeIterator = struct { bytes: []const u8, i: usize, pub fn init(s: []const u16) Utf16LeIterator { return Utf16LeIterator{ .bytes = mem.sliceAsBytes(s), .i = 0, }; } pub fn nextCodepoint(it: *Utf16LeIterator) !?u21 { assert(it.i <= it.bytes.len); if (it.i == it.bytes.len) return null; const c0: u21 = mem.readIntLittle(u16, it.bytes[it.i..][0..2]); if (c0 & ~@as(u21, 0x03ff) == 0xd800) { // surrogate pair it.i += 2; if (it.i >= it.bytes.len) return error.DanglingSurrogateHalf; const c1: u21 = mem.readIntLittle(u16, it.bytes[it.i..][0..2]); if (c1 & ~@as(u21, 0x03ff) != 0xdc00) return error.ExpectedSecondSurrogateHalf; it.i += 2; return 0x10000 + (((c0 & 0x03ff) << 10) | (c1 & 0x03ff)); } else if (c0 & ~@as(u21, 0x03ff) == 0xdc00) { return error.UnexpectedSecondSurrogateHalf; } else { it.i += 2; return c0; } } }; test "utf8 encode" { comptime testUtf8Encode() catch unreachable; try testUtf8Encode(); } fn testUtf8Encode() !void { // A few taken from wikipedia a few taken elsewhere var array: [4]u8 = undefined; testing.expect((try utf8Encode(try utf8Decode("€"), array[0..])) == 3); testing.expect(array[0] == 0b11100010); testing.expect(array[1] == 0b10000010); testing.expect(array[2] == 0b10101100); testing.expect((try utf8Encode(try utf8Decode("$"), array[0..])) == 1); testing.expect(array[0] == 0b00100100); testing.expect((try utf8Encode(try utf8Decode("¢"), array[0..])) == 2); testing.expect(array[0] == 0b11000010); testing.expect(array[1] == 0b10100010); testing.expect((try utf8Encode(try utf8Decode("𐍈"), array[0..])) == 4); testing.expect(array[0] == 0b11110000); testing.expect(array[1] == 0b10010000); testing.expect(array[2] == 0b10001101); testing.expect(array[3] == 0b10001000); } test "utf8 encode error" { comptime testUtf8EncodeError(); testUtf8EncodeError(); } fn testUtf8EncodeError() void { var array: [4]u8 = undefined; testErrorEncode(0xd800, array[0..], error.Utf8CannotEncodeSurrogateHalf); testErrorEncode(0xdfff, array[0..], error.Utf8CannotEncodeSurrogateHalf); testErrorEncode(0x110000, array[0..], error.CodepointTooLarge); testErrorEncode(0x1fffff, array[0..], error.CodepointTooLarge); } fn testErrorEncode(codePoint: u21, array: []u8, expectedErr: anyerror) void { testing.expectError(expectedErr, utf8Encode(codePoint, array)); } test "utf8 iterator on ascii" { comptime testUtf8IteratorOnAscii(); testUtf8IteratorOnAscii(); } fn testUtf8IteratorOnAscii() void { const s = Utf8View.initComptime("abc"); var it1 = s.iterator(); testing.expect(std.mem.eql(u8, "a", it1.nextCodepointSlice().?)); testing.expect(std.mem.eql(u8, "b", it1.nextCodepointSlice().?)); testing.expect(std.mem.eql(u8, "c", it1.nextCodepointSlice().?)); testing.expect(it1.nextCodepointSlice() == null); var it2 = s.iterator(); testing.expect(it2.nextCodepoint().? == 'a'); testing.expect(it2.nextCodepoint().? == 'b'); testing.expect(it2.nextCodepoint().? == 'c'); testing.expect(it2.nextCodepoint() == null); } test "utf8 view bad" { comptime testUtf8ViewBad(); testUtf8ViewBad(); } fn testUtf8ViewBad() void { // Compile-time error. // const s3 = Utf8View.initComptime("\xfe\xf2"); testing.expectError(error.InvalidUtf8, Utf8View.init("hel\xadlo")); } test "utf8 view ok" { comptime testUtf8ViewOk(); testUtf8ViewOk(); } fn testUtf8ViewOk() void { const s = Utf8View.initComptime("東京市"); var it1 = s.iterator(); testing.expect(std.mem.eql(u8, "東", it1.nextCodepointSlice().?)); testing.expect(std.mem.eql(u8, "京", it1.nextCodepointSlice().?)); testing.expect(std.mem.eql(u8, "市", it1.nextCodepointSlice().?)); testing.expect(it1.nextCodepointSlice() == null); var it2 = s.iterator(); testing.expect(it2.nextCodepoint().? == 0x6771); testing.expect(it2.nextCodepoint().? == 0x4eac); testing.expect(it2.nextCodepoint().? == 0x5e02); testing.expect(it2.nextCodepoint() == null); } test "bad utf8 slice" { comptime testBadUtf8Slice(); testBadUtf8Slice(); } fn testBadUtf8Slice() void { testing.expect(utf8ValidateSlice("abc")); testing.expect(!utf8ValidateSlice("abc\xc0")); testing.expect(!utf8ValidateSlice("abc\xc0abc")); testing.expect(utf8ValidateSlice("abc\xdf\xbf")); } test "valid utf8" { comptime testValidUtf8(); testValidUtf8(); } fn testValidUtf8() void { testValid("\x00", 0x0); testValid("\x20", 0x20); testValid("\x7f", 0x7f); testValid("\xc2\x80", 0x80); testValid("\xdf\xbf", 0x7ff); testValid("\xe0\xa0\x80", 0x800); testValid("\xe1\x80\x80", 0x1000); testValid("\xef\xbf\xbf", 0xffff); testValid("\xf0\x90\x80\x80", 0x10000); testValid("\xf1\x80\x80\x80", 0x40000); testValid("\xf3\xbf\xbf\xbf", 0xfffff); testValid("\xf4\x8f\xbf\xbf", 0x10ffff); } test "invalid utf8 continuation bytes" { comptime testInvalidUtf8ContinuationBytes(); testInvalidUtf8ContinuationBytes(); } fn testInvalidUtf8ContinuationBytes() void { // unexpected continuation testError("\x80", error.Utf8InvalidStartByte); testError("\xbf", error.Utf8InvalidStartByte); // too many leading 1's testError("\xf8", error.Utf8InvalidStartByte); testError("\xff", error.Utf8InvalidStartByte); // expected continuation for 2 byte sequences testError("\xc2", error.UnexpectedEof); testError("\xc2\x00", error.Utf8ExpectedContinuation); testError("\xc2\xc0", error.Utf8ExpectedContinuation); // expected continuation for 3 byte sequences testError("\xe0", error.UnexpectedEof); testError("\xe0\x00", error.UnexpectedEof); testError("\xe0\xc0", error.UnexpectedEof); testError("\xe0\xa0", error.UnexpectedEof); testError("\xe0\xa0\x00", error.Utf8ExpectedContinuation); testError("\xe0\xa0\xc0", error.Utf8ExpectedContinuation); // expected continuation for 4 byte sequences testError("\xf0", error.UnexpectedEof); testError("\xf0\x00", error.UnexpectedEof); testError("\xf0\xc0", error.UnexpectedEof); testError("\xf0\x90\x00", error.UnexpectedEof); testError("\xf0\x90\xc0", error.UnexpectedEof); testError("\xf0\x90\x80\x00", error.Utf8ExpectedContinuation); testError("\xf0\x90\x80\xc0", error.Utf8ExpectedContinuation); } test "overlong utf8 codepoint" { comptime testOverlongUtf8Codepoint(); testOverlongUtf8Codepoint(); } fn testOverlongUtf8Codepoint() void { testError("\xc0\x80", error.Utf8OverlongEncoding); testError("\xc1\xbf", error.Utf8OverlongEncoding); testError("\xe0\x80\x80", error.Utf8OverlongEncoding); testError("\xe0\x9f\xbf", error.Utf8OverlongEncoding); testError("\xf0\x80\x80\x80", error.Utf8OverlongEncoding); testError("\xf0\x8f\xbf\xbf", error.Utf8OverlongEncoding); } test "misc invalid utf8" { comptime testMiscInvalidUtf8(); testMiscInvalidUtf8(); } fn testMiscInvalidUtf8() void { // codepoint out of bounds testError("\xf4\x90\x80\x80", error.Utf8CodepointTooLarge); testError("\xf7\xbf\xbf\xbf", error.Utf8CodepointTooLarge); // surrogate halves testValid("\xed\x9f\xbf", 0xd7ff); testError("\xed\xa0\x80", error.Utf8EncodesSurrogateHalf); testError("\xed\xbf\xbf", error.Utf8EncodesSurrogateHalf); testValid("\xee\x80\x80", 0xe000); } fn testError(bytes: []const u8, expected_err: anyerror) void { testing.expectError(expected_err, testDecode(bytes)); } fn testValid(bytes: []const u8, expected_codepoint: u21) void { testing.expect((testDecode(bytes) catch unreachable) == expected_codepoint); } fn testDecode(bytes: []const u8) !u21 { const length = try utf8ByteSequenceLength(bytes[0]); if (bytes.len < length) return error.UnexpectedEof; testing.expect(bytes.len == length); return utf8Decode(bytes); } /// Caller must free returned memory. pub fn utf16leToUtf8Alloc(allocator: *mem.Allocator, utf16le: []const u16) ![]u8 { var result = std.ArrayList(u8).init(allocator); // optimistically guess that it will all be ascii. try result.ensureCapacity(utf16le.len); var out_index: usize = 0; var it = Utf16LeIterator.init(utf16le); while (try it.nextCodepoint()) |codepoint| { const utf8_len = utf8CodepointSequenceLength(codepoint) catch unreachable; try result.resize(result.items.len + utf8_len); assert((utf8Encode(codepoint, result.items[out_index..]) catch unreachable) == utf8_len); out_index += utf8_len; } return result.toOwnedSlice(); } /// Asserts that the output buffer is big enough. /// Returns end byte index into utf8. pub fn utf16leToUtf8(utf8: []u8, utf16le: []const u16) !usize { var end_index: usize = 0; var it = Utf16LeIterator.init(utf16le); while (try it.nextCodepoint()) |codepoint| { end_index += try utf8Encode(codepoint, utf8[end_index..]); } return end_index; } test "utf16leToUtf8" { var utf16le: [2]u16 = undefined; const utf16le_as_bytes = mem.sliceAsBytes(utf16le[0..]); { mem.writeIntSliceLittle(u16, utf16le_as_bytes[0..], 'A'); mem.writeIntSliceLittle(u16, utf16le_as_bytes[2..], 'a'); const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le); defer std.testing.allocator.free(utf8); testing.expect(mem.eql(u8, utf8, "Aa")); } { mem.writeIntSliceLittle(u16, utf16le_as_bytes[0..], 0x80); mem.writeIntSliceLittle(u16, utf16le_as_bytes[2..], 0xffff); const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le); defer std.testing.allocator.free(utf8); testing.expect(mem.eql(u8, utf8, "\xc2\x80" ++ "\xef\xbf\xbf")); } { // the values just outside the surrogate half range mem.writeIntSliceLittle(u16, utf16le_as_bytes[0..], 0xd7ff); mem.writeIntSliceLittle(u16, utf16le_as_bytes[2..], 0xe000); const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le); defer std.testing.allocator.free(utf8); testing.expect(mem.eql(u8, utf8, "\xed\x9f\xbf" ++ "\xee\x80\x80")); } { // smallest surrogate pair mem.writeIntSliceLittle(u16, utf16le_as_bytes[0..], 0xd800); mem.writeIntSliceLittle(u16, utf16le_as_bytes[2..], 0xdc00); const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le); defer std.testing.allocator.free(utf8); testing.expect(mem.eql(u8, utf8, "\xf0\x90\x80\x80")); } { // largest surrogate pair mem.writeIntSliceLittle(u16, utf16le_as_bytes[0..], 0xdbff); mem.writeIntSliceLittle(u16, utf16le_as_bytes[2..], 0xdfff); const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le); defer std.testing.allocator.free(utf8); testing.expect(mem.eql(u8, utf8, "\xf4\x8f\xbf\xbf")); } { mem.writeIntSliceLittle(u16, utf16le_as_bytes[0..], 0xdbff); mem.writeIntSliceLittle(u16, utf16le_as_bytes[2..], 0xdc00); const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le); defer std.testing.allocator.free(utf8); testing.expect(mem.eql(u8, utf8, "\xf4\x8f\xb0\x80")); } } pub fn utf8ToUtf16LeWithNull(allocator: *mem.Allocator, utf8: []const u8) ![:0]u16 { var result = std.ArrayList(u16).init(allocator); // optimistically guess that it will not require surrogate pairs try result.ensureCapacity(utf8.len + 1); const view = try Utf8View.init(utf8); var it = view.iterator(); while (it.nextCodepoint()) |codepoint| { if (codepoint < 0x10000) { const short = @intCast(u16, codepoint); try result.append(mem.nativeToLittle(u16, short)); } else { const high = @intCast(u16, (codepoint - 0x10000) >> 10) + 0xD800; const low = @intCast(u16, codepoint & 0x3FF) + 0xDC00; var out: [2]u16 = undefined; out[0] = mem.nativeToLittle(u16, high); out[1] = mem.nativeToLittle(u16, low); try result.appendSlice(out[0..]); } } const len = result.items.len; try result.append(0); return result.toOwnedSlice()[0..len :0]; } /// Returns index of next character. If exact fit, returned index equals output slice length. /// Assumes there is enough space for the output. pub fn utf8ToUtf16Le(utf16le: []u16, utf8: []const u8) !usize { var dest_i: usize = 0; var src_i: usize = 0; while (src_i < utf8.len) { const n = utf8ByteSequenceLength(utf8[src_i]) catch return error.InvalidUtf8; const next_src_i = src_i + n; const codepoint = utf8Decode(utf8[src_i..next_src_i]) catch return error.InvalidUtf8; if (codepoint < 0x10000) { const short = @intCast(u16, codepoint); utf16le[dest_i] = mem.nativeToLittle(u16, short); dest_i += 1; } else { const high = @intCast(u16, (codepoint - 0x10000) >> 10) + 0xD800; const low = @intCast(u16, codepoint & 0x3FF) + 0xDC00; utf16le[dest_i] = mem.nativeToLittle(u16, high); utf16le[dest_i + 1] = mem.nativeToLittle(u16, low); dest_i += 2; } src_i = next_src_i; } return dest_i; } test "utf8ToUtf16Le" { var utf16le: [2]u16 = [_]u16{0} ** 2; { const length = try utf8ToUtf16Le(utf16le[0..], "𐐷"); testing.expectEqual(@as(usize, 2), length); testing.expectEqualSlices(u8, "\x01\xd8\x37\xdc", mem.sliceAsBytes(utf16le[0..])); } { const length = try utf8ToUtf16Le(utf16le[0..], "\u{10FFFF}"); testing.expectEqual(@as(usize, 2), length); testing.expectEqualSlices(u8, "\xff\xdb\xff\xdf", mem.sliceAsBytes(utf16le[0..])); } } test "utf8ToUtf16LeWithNull" { { const utf16 = try utf8ToUtf16LeWithNull(testing.allocator, "𐐷"); defer testing.allocator.free(utf16); testing.expectEqualSlices(u8, "\x01\xd8\x37\xdc", mem.sliceAsBytes(utf16[0..])); testing.expect(utf16[2] == 0); } { const utf16 = try utf8ToUtf16LeWithNull(testing.allocator, "\u{10FFFF}"); defer testing.allocator.free(utf16); testing.expectEqualSlices(u8, "\xff\xdb\xff\xdf", mem.sliceAsBytes(utf16[0..])); testing.expect(utf16[2] == 0); } } /// Converts a UTF-8 string literal into a UTF-16LE string literal. pub fn utf8ToUtf16LeStringLiteral(comptime utf8: []const u8) *const [calcUtf16LeLen(utf8):0]u16 { comptime { const len: usize = calcUtf16LeLen(utf8); var utf16le: [len:0]u16 = [_:0]u16{0} ** len; const utf16le_len = utf8ToUtf16Le(&utf16le, utf8[0..]) catch |err| @compileError(err); assert(len == utf16le_len); return &utf16le; } } /// Returns length of a supplied UTF-8 string literal. Asserts that the data is valid UTF-8. fn calcUtf16LeLen(utf8: []const u8) usize { var src_i: usize = 0; var dest_len: usize = 0; while (src_i < utf8.len) { const n = utf8ByteSequenceLength(utf8[src_i]) catch unreachable; const next_src_i = src_i + n; const codepoint = utf8Decode(utf8[src_i..next_src_i]) catch unreachable; if (codepoint < 0x10000) { dest_len += 1; } else { dest_len += 2; } src_i = next_src_i; } return dest_len; } test "utf8ToUtf16LeStringLiteral" { // https://github.com/ziglang/zig/issues/5127 if (std.Target.current.cpu.arch == .mips) return error.SkipZigTest; { const bytes = [_:0]u16{0x41}; const utf16 = utf8ToUtf16LeStringLiteral("A"); testing.expectEqualSlices(u16, &bytes, utf16); testing.expect(utf16[1] == 0); } { const bytes = [_:0]u16{ 0xD801, 0xDC37 }; const utf16 = utf8ToUtf16LeStringLiteral("𐐷"); testing.expectEqualSlices(u16, &bytes, utf16); testing.expect(utf16[2] == 0); } { const bytes = [_:0]u16{0x02FF}; const utf16 = utf8ToUtf16LeStringLiteral("\u{02FF}"); testing.expectEqualSlices(u16, &bytes, utf16); testing.expect(utf16[1] == 0); } { const bytes = [_:0]u16{0x7FF}; const utf16 = utf8ToUtf16LeStringLiteral("\u{7FF}"); testing.expectEqualSlices(u16, &bytes, utf16); testing.expect(utf16[1] == 0); } { const bytes = [_:0]u16{0x801}; const utf16 = utf8ToUtf16LeStringLiteral("\u{801}"); testing.expectEqualSlices(u16, &bytes, utf16); testing.expect(utf16[1] == 0); } { const bytes = [_:0]u16{ 0xDBFF, 0xDFFF }; const utf16 = utf8ToUtf16LeStringLiteral("\u{10FFFF}"); testing.expectEqualSlices(u16, &bytes, utf16); testing.expect(utf16[2] == 0); } }