const std = @import("std.zig"); const debug = std.debug; const assert = debug.assert; const testing = std.testing; const mem = std.mem; const Allocator = mem.Allocator; /// A singly-linked list is headed by a single forward pointer. The elements /// are singly linked for minimum space and pointer manipulation overhead at /// the expense of O(n) removal for arbitrary elements. New elements can be /// added to the list after an existing element or at the head of the list. /// A singly-linked list may only be traversed in the forward direction. /// Singly-linked lists are ideal for applications with large datasets and /// few or no removals or for implementing a LIFO queue. pub fn SinglyLinkedList(comptime T: type) type { return struct { const Self = @This(); /// Node inside the linked list wrapping the actual data. pub const Node = struct { next: ?*Node = null, data: T, pub const Data = T; pub fn init(data: T) Node { return Node{ .data = data, }; } /// Insert a new node after the current one. /// /// Arguments: /// new_node: Pointer to the new node to insert. pub fn insertAfter(node: *Node, new_node: *Node) void { new_node.next = node.next; node.next = new_node; } /// Remove a node from the list. /// /// Arguments: /// node: Pointer to the node to be removed. /// Returns: /// node removed pub fn removeNext(node: *Node) ?*Node { const next_node = node.next orelse return null; node.next = next_node.next; return next_node; } /// Iterate over the singly-linked list from this node, until the final node is found. /// This operation is O(N). pub fn findLast(node: *Node) *Node { var it = node; while (true) { it = it.next orelse return it; } } /// Iterate over each next node, returning the count of all nodes except the starting one. /// This operation is O(N). pub fn countChildren(node: *const Node) usize { var count: usize = 0; var it: ?*const Node = node; while (it) |n| : (it = n.next) { count += 1; } return count; } }; first: ?*Node = null, /// Insert a new node at the head. /// /// Arguments: /// new_node: Pointer to the new node to insert. pub fn prepend(list: *Self, new_node: *Node) void { new_node.next = list.first; list.first = new_node; } /// Remove a node from the list. /// /// Arguments: /// node: Pointer to the node to be removed. pub fn remove(list: *Self, node: *Node) void { if (list.first == node) { list.first = node.next; } else { var current_elm = list.first.?; while (current_elm.next != node) { current_elm = current_elm.next.?; } current_elm.next = node.next; } } /// Remove and return the first node in the list. /// /// Returns: /// A pointer to the first node in the list. pub fn popFirst(list: *Self) ?*Node { const first = list.first orelse return null; list.first = first.next; return first; } /// Iterate over all nodes, returning the count. /// This operation is O(N). pub fn len(list: Self) usize { if (list.first) |n| { return 1 + n.countChildren(); } else { return 0; } } }; } test "basic SinglyLinkedList test" { const L = SinglyLinkedList(u32); var list = L{}; var one = L.Node{ .data = 1 }; var two = L.Node{ .data = 2 }; var three = L.Node{ .data = 3 }; var four = L.Node{ .data = 4 }; var five = L.Node{ .data = 5 }; list.prepend(&two); // {2} two.insertAfter(&five); // {2, 5} list.prepend(&one); // {1, 2, 5} two.insertAfter(&three); // {1, 2, 3, 5} three.insertAfter(&four); // {1, 2, 3, 4, 5} // Traverse forwards. { var it = list.first; var index: u32 = 1; while (it) |node| : (it = node.next) { testing.expect(node.data == index); index += 1; } } _ = list.popFirst(); // {2, 3, 4, 5} _ = list.remove(&five); // {2, 3, 4} _ = two.removeNext(); // {2, 4} testing.expect(list.first.?.data == 2); testing.expect(list.first.?.next.?.data == 4); testing.expect(list.first.?.next.?.next == null); } /// A tail queue is headed by a pair of pointers, one to the head of the /// list and the other to the tail of the list. The elements are doubly /// linked so that an arbitrary element can be removed without a need to /// traverse the list. New elements can be added to the list before or /// after an existing element, at the head of the list, or at the end of /// the list. A tail queue may be traversed in either direction. pub fn TailQueue(comptime T: type) type { return struct { const Self = @This(); /// Node inside the linked list wrapping the actual data. pub const Node = struct { prev: ?*Node = null, next: ?*Node = null, data: T, pub fn init(data: T) Node { return Node{ .data = data, }; } }; first: ?*Node, last: ?*Node, len: usize, /// Initialize a linked list. /// /// Returns: /// An empty linked list. pub fn init() Self { return Self{ .first = null, .last = null, .len = 0, }; } /// Insert a new node after an existing one. /// /// Arguments: /// node: Pointer to a node in the list. /// new_node: Pointer to the new node to insert. pub fn insertAfter(list: *Self, node: *Node, new_node: *Node) void { new_node.prev = node; if (node.next) |next_node| { // Intermediate node. new_node.next = next_node; next_node.prev = new_node; } else { // Last element of the list. new_node.next = null; list.last = new_node; } node.next = new_node; list.len += 1; } /// Insert a new node before an existing one. /// /// Arguments: /// node: Pointer to a node in the list. /// new_node: Pointer to the new node to insert. pub fn insertBefore(list: *Self, node: *Node, new_node: *Node) void { new_node.next = node; if (node.prev) |prev_node| { // Intermediate node. new_node.prev = prev_node; prev_node.next = new_node; } else { // First element of the list. new_node.prev = null; list.first = new_node; } node.prev = new_node; list.len += 1; } /// Concatenate list2 onto the end of list1, removing all entries from the former. /// /// Arguments: /// list1: the list to concatenate onto /// list2: the list to be concatenated pub fn concatByMoving(list1: *Self, list2: *Self) void { const l2_first = list2.first orelse return; if (list1.last) |l1_last| { l1_last.next = list2.first; l2_first.prev = list1.last; list1.len += list2.len; } else { // list1 was empty list1.first = list2.first; list1.len = list2.len; } list1.last = list2.last; list2.first = null; list2.last = null; list2.len = 0; } /// Insert a new node at the end of the list. /// /// Arguments: /// new_node: Pointer to the new node to insert. pub fn append(list: *Self, new_node: *Node) void { if (list.last) |last| { // Insert after last. list.insertAfter(last, new_node); } else { // Empty list. list.prepend(new_node); } } /// Insert a new node at the beginning of the list. /// /// Arguments: /// new_node: Pointer to the new node to insert. pub fn prepend(list: *Self, new_node: *Node) void { if (list.first) |first| { // Insert before first. list.insertBefore(first, new_node); } else { // Empty list. list.first = new_node; list.last = new_node; new_node.prev = null; new_node.next = null; list.len = 1; } } /// Remove a node from the list. /// /// Arguments: /// node: Pointer to the node to be removed. pub fn remove(list: *Self, node: *Node) void { if (node.prev) |prev_node| { // Intermediate node. prev_node.next = node.next; } else { // First element of the list. list.first = node.next; } if (node.next) |next_node| { // Intermediate node. next_node.prev = node.prev; } else { // Last element of the list. list.last = node.prev; } list.len -= 1; assert(list.len == 0 or (list.first != null and list.last != null)); } /// Remove and return the last node in the list. /// /// Returns: /// A pointer to the last node in the list. pub fn pop(list: *Self) ?*Node { const last = list.last orelse return null; list.remove(last); return last; } /// Remove and return the first node in the list. /// /// Returns: /// A pointer to the first node in the list. pub fn popFirst(list: *Self) ?*Node { const first = list.first orelse return null; list.remove(first); return first; } /// Allocate a new node. /// /// Arguments: /// allocator: Dynamic memory allocator. /// /// Returns: /// A pointer to the new node. pub fn allocateNode(list: *Self, allocator: *Allocator) !*Node { return allocator.create(Node); } /// Deallocate a node. /// /// Arguments: /// node: Pointer to the node to deallocate. /// allocator: Dynamic memory allocator. pub fn destroyNode(list: *Self, node: *Node, allocator: *Allocator) void { allocator.destroy(node); } /// Allocate and initialize a node and its data. /// /// Arguments: /// data: The data to put inside the node. /// allocator: Dynamic memory allocator. /// /// Returns: /// A pointer to the new node. pub fn createNode(list: *Self, data: T, allocator: *Allocator) !*Node { var node = try list.allocateNode(allocator); node.* = Node.init(data); return node; } }; } test "basic TailQueue test" { const allocator = testing.allocator; var list = TailQueue(u32).init(); var one = try list.createNode(1, allocator); var two = try list.createNode(2, allocator); var three = try list.createNode(3, allocator); var four = try list.createNode(4, allocator); var five = try list.createNode(5, allocator); defer { list.destroyNode(one, allocator); list.destroyNode(two, allocator); list.destroyNode(three, allocator); list.destroyNode(four, allocator); list.destroyNode(five, allocator); } list.append(two); // {2} list.append(five); // {2, 5} list.prepend(one); // {1, 2, 5} list.insertBefore(five, four); // {1, 2, 4, 5} list.insertAfter(two, three); // {1, 2, 3, 4, 5} // Traverse forwards. { var it = list.first; var index: u32 = 1; while (it) |node| : (it = node.next) { testing.expect(node.data == index); index += 1; } } // Traverse backwards. { var it = list.last; var index: u32 = 1; while (it) |node| : (it = node.prev) { testing.expect(node.data == (6 - index)); index += 1; } } var first = list.popFirst(); // {2, 3, 4, 5} var last = list.pop(); // {2, 3, 4} list.remove(three); // {2, 4} testing.expect(list.first.?.data == 2); testing.expect(list.last.?.data == 4); testing.expect(list.len == 2); } test "TailQueue concatenation" { const allocator = testing.allocator; var list1 = TailQueue(u32).init(); var list2 = TailQueue(u32).init(); var one = try list1.createNode(1, allocator); defer list1.destroyNode(one, allocator); var two = try list1.createNode(2, allocator); defer list1.destroyNode(two, allocator); var three = try list1.createNode(3, allocator); defer list1.destroyNode(three, allocator); var four = try list1.createNode(4, allocator); defer list1.destroyNode(four, allocator); var five = try list1.createNode(5, allocator); defer list1.destroyNode(five, allocator); list1.append(one); list1.append(two); list2.append(three); list2.append(four); list2.append(five); list1.concatByMoving(&list2); testing.expect(list1.last == five); testing.expect(list1.len == 5); testing.expect(list2.first == null); testing.expect(list2.last == null); testing.expect(list2.len == 0); // Traverse forwards. { var it = list1.first; var index: u32 = 1; while (it) |node| : (it = node.next) { testing.expect(node.data == index); index += 1; } } // Traverse backwards. { var it = list1.last; var index: u32 = 1; while (it) |node| : (it = node.prev) { testing.expect(node.data == (6 - index)); index += 1; } } // Swap them back, this verifies that concating to an empty list works. list2.concatByMoving(&list1); // Traverse forwards. { var it = list2.first; var index: u32 = 1; while (it) |node| : (it = node.next) { testing.expect(node.data == index); index += 1; } } // Traverse backwards. { var it = list2.last; var index: u32 = 1; while (it) |node| : (it = node.prev) { testing.expect(node.data == (6 - index)); index += 1; } } }