const std = @import("std.zig"); const builtin = @import("builtin"); const assert = std.debug.assert; const net = @This(); const mem = std.mem; const os = std.os; const fs = std.fs; const io = std.io; const native_endian = builtin.target.cpu.arch.endian(); // Windows 10 added support for unix sockets in build 17063, redstone 4 is the // first release to support them. pub const has_unix_sockets = @hasDecl(os.sockaddr, "un") and (builtin.target.os.tag != .windows or builtin.os.version_range.windows.isAtLeast(.win10_rs4) orelse false); pub const Address = extern union { any: os.sockaddr, in: Ip4Address, in6: Ip6Address, un: if (has_unix_sockets) os.sockaddr.un else void, /// Parse the given IP address string into an Address value. /// It is recommended to use `resolveIp` instead, to handle /// IPv6 link-local unix addresses. pub fn parseIp(name: []const u8, port: u16) !Address { if (parseIp4(name, port)) |ip4| return ip4 else |err| switch (err) { error.Overflow, error.InvalidEnd, error.InvalidCharacter, error.Incomplete, error.NonCanonical, => {}, } if (parseIp6(name, port)) |ip6| return ip6 else |err| switch (err) { error.Overflow, error.InvalidEnd, error.InvalidCharacter, error.Incomplete, error.InvalidIpv4Mapping, => {}, } return error.InvalidIPAddressFormat; } pub fn resolveIp(name: []const u8, port: u16) !Address { if (parseIp4(name, port)) |ip4| return ip4 else |err| switch (err) { error.Overflow, error.InvalidEnd, error.InvalidCharacter, error.Incomplete, error.NonCanonical, => {}, } if (resolveIp6(name, port)) |ip6| return ip6 else |err| switch (err) { error.Overflow, error.InvalidEnd, error.InvalidCharacter, error.Incomplete, error.InvalidIpv4Mapping, => {}, else => return err, } return error.InvalidIPAddressFormat; } pub fn parseExpectingFamily(name: []const u8, family: os.sa_family_t, port: u16) !Address { switch (family) { os.AF.INET => return parseIp4(name, port), os.AF.INET6 => return parseIp6(name, port), os.AF.UNSPEC => return parseIp(name, port), else => unreachable, } } pub fn parseIp6(buf: []const u8, port: u16) !Address { return Address{ .in6 = try Ip6Address.parse(buf, port) }; } pub fn resolveIp6(buf: []const u8, port: u16) !Address { return Address{ .in6 = try Ip6Address.resolve(buf, port) }; } pub fn parseIp4(buf: []const u8, port: u16) !Address { return Address{ .in = try Ip4Address.parse(buf, port) }; } pub fn initIp4(addr: [4]u8, port: u16) Address { return Address{ .in = Ip4Address.init(addr, port) }; } pub fn initIp6(addr: [16]u8, port: u16, flowinfo: u32, scope_id: u32) Address { return Address{ .in6 = Ip6Address.init(addr, port, flowinfo, scope_id) }; } pub fn initUnix(path: []const u8) !Address { var sock_addr = os.sockaddr.un{ .family = os.AF.UNIX, .path = undefined, }; // Add 1 to ensure a terminating 0 is present in the path array for maximum portability. if (path.len + 1 > sock_addr.path.len) return error.NameTooLong; @memset(&sock_addr.path, 0); @memcpy(sock_addr.path[0..path.len], path); return Address{ .un = sock_addr }; } /// Returns the port in native endian. /// Asserts that the address is ip4 or ip6. pub fn getPort(self: Address) u16 { return switch (self.any.family) { os.AF.INET => self.in.getPort(), os.AF.INET6 => self.in6.getPort(), else => unreachable, }; } /// `port` is native-endian. /// Asserts that the address is ip4 or ip6. pub fn setPort(self: *Address, port: u16) void { switch (self.any.family) { os.AF.INET => self.in.setPort(port), os.AF.INET6 => self.in6.setPort(port), else => unreachable, } } /// Asserts that `addr` is an IP address. /// This function will read past the end of the pointer, with a size depending /// on the address family. pub fn initPosix(addr: *align(4) const os.sockaddr) Address { switch (addr.family) { os.AF.INET => return Address{ .in = Ip4Address{ .sa = @as(*const os.sockaddr.in, @ptrCast(addr)).* } }, os.AF.INET6 => return Address{ .in6 = Ip6Address{ .sa = @as(*const os.sockaddr.in6, @ptrCast(addr)).* } }, else => unreachable, } } pub fn format( self: Address, comptime fmt: []const u8, options: std.fmt.FormatOptions, out_stream: anytype, ) !void { if (fmt.len != 0) std.fmt.invalidFmtError(fmt, self); switch (self.any.family) { os.AF.INET => try self.in.format(fmt, options, out_stream), os.AF.INET6 => try self.in6.format(fmt, options, out_stream), os.AF.UNIX => { if (!has_unix_sockets) { unreachable; } try std.fmt.format(out_stream, "{s}", .{std.mem.sliceTo(&self.un.path, 0)}); }, else => unreachable, } } pub fn eql(a: Address, b: Address) bool { const a_bytes = @as([*]const u8, @ptrCast(&a.any))[0..a.getOsSockLen()]; const b_bytes = @as([*]const u8, @ptrCast(&b.any))[0..b.getOsSockLen()]; return mem.eql(u8, a_bytes, b_bytes); } pub fn getOsSockLen(self: Address) os.socklen_t { switch (self.any.family) { os.AF.INET => return self.in.getOsSockLen(), os.AF.INET6 => return self.in6.getOsSockLen(), os.AF.UNIX => { if (!has_unix_sockets) { unreachable; } // Using the full length of the structure here is more portable than returning // the number of bytes actually used by the currently stored path. // This also is correct regardless if we are passing a socket address to the kernel // (e.g. in bind, connect, sendto) since we ensure the path is 0 terminated in // initUnix() or if we are receiving a socket address from the kernel and must // provide the full buffer size (e.g. getsockname, getpeername, recvfrom, accept). // // To access the path, std.mem.sliceTo(&address.un.path, 0) should be used. return @as(os.socklen_t, @intCast(@sizeOf(os.sockaddr.un))); }, else => unreachable, } } }; pub const Ip4Address = extern struct { sa: os.sockaddr.in, pub fn parse(buf: []const u8, port: u16) !Ip4Address { var result = Ip4Address{ .sa = .{ .port = mem.nativeToBig(u16, port), .addr = undefined, }, }; const out_ptr = mem.asBytes(&result.sa.addr); var x: u8 = 0; var index: u8 = 0; var saw_any_digits = false; var has_zero_prefix = false; for (buf) |c| { if (c == '.') { if (!saw_any_digits) { return error.InvalidCharacter; } if (index == 3) { return error.InvalidEnd; } out_ptr[index] = x; index += 1; x = 0; saw_any_digits = false; has_zero_prefix = false; } else if (c >= '0' and c <= '9') { if (c == '0' and !saw_any_digits) { has_zero_prefix = true; } else if (has_zero_prefix) { return error.NonCanonical; } saw_any_digits = true; x = try std.math.mul(u8, x, 10); x = try std.math.add(u8, x, c - '0'); } else { return error.InvalidCharacter; } } if (index == 3 and saw_any_digits) { out_ptr[index] = x; return result; } return error.Incomplete; } pub fn resolveIp(name: []const u8, port: u16) !Ip4Address { if (parse(name, port)) |ip4| return ip4 else |err| switch (err) { error.Overflow, error.InvalidEnd, error.InvalidCharacter, error.Incomplete, => {}, } return error.InvalidIPAddressFormat; } pub fn init(addr: [4]u8, port: u16) Ip4Address { return Ip4Address{ .sa = os.sockaddr.in{ .port = mem.nativeToBig(u16, port), .addr = @as(*align(1) const u32, @ptrCast(&addr)).*, }, }; } /// Returns the port in native endian. /// Asserts that the address is ip4 or ip6. pub fn getPort(self: Ip4Address) u16 { return mem.bigToNative(u16, self.sa.port); } /// `port` is native-endian. /// Asserts that the address is ip4 or ip6. pub fn setPort(self: *Ip4Address, port: u16) void { self.sa.port = mem.nativeToBig(u16, port); } pub fn format( self: Ip4Address, comptime fmt: []const u8, options: std.fmt.FormatOptions, out_stream: anytype, ) !void { if (fmt.len != 0) std.fmt.invalidFmtError(fmt, self); _ = options; const bytes = @as(*const [4]u8, @ptrCast(&self.sa.addr)); try std.fmt.format(out_stream, "{}.{}.{}.{}:{}", .{ bytes[0], bytes[1], bytes[2], bytes[3], self.getPort(), }); } pub fn getOsSockLen(self: Ip4Address) os.socklen_t { _ = self; return @sizeOf(os.sockaddr.in); } }; pub const Ip6Address = extern struct { sa: os.sockaddr.in6, /// Parse a given IPv6 address string into an Address. /// Assumes the Scope ID of the address is fully numeric. /// For non-numeric addresses, see `resolveIp6`. pub fn parse(buf: []const u8, port: u16) !Ip6Address { var result = Ip6Address{ .sa = os.sockaddr.in6{ .scope_id = 0, .port = mem.nativeToBig(u16, port), .flowinfo = 0, .addr = undefined, }, }; var ip_slice: *[16]u8 = result.sa.addr[0..]; var tail: [16]u8 = undefined; var x: u16 = 0; var saw_any_digits = false; var index: u8 = 0; var scope_id = false; var abbrv = false; for (buf, 0..) |c, i| { if (scope_id) { if (c >= '0' and c <= '9') { const digit = c - '0'; { const ov = @mulWithOverflow(result.sa.scope_id, 10); if (ov[1] != 0) return error.Overflow; result.sa.scope_id = ov[0]; } { const ov = @addWithOverflow(result.sa.scope_id, digit); if (ov[1] != 0) return error.Overflow; result.sa.scope_id = ov[0]; } } else { return error.InvalidCharacter; } } else if (c == ':') { if (!saw_any_digits) { if (abbrv) return error.InvalidCharacter; // ':::' if (i != 0) abbrv = true; @memset(ip_slice[index..], 0); ip_slice = tail[0..]; index = 0; continue; } if (index == 14) { return error.InvalidEnd; } ip_slice[index] = @as(u8, @truncate(x >> 8)); index += 1; ip_slice[index] = @as(u8, @truncate(x)); index += 1; x = 0; saw_any_digits = false; } else if (c == '%') { if (!saw_any_digits) { return error.InvalidCharacter; } scope_id = true; saw_any_digits = false; } else if (c == '.') { if (!abbrv or ip_slice[0] != 0xff or ip_slice[1] != 0xff) { // must start with '::ffff:' return error.InvalidIpv4Mapping; } const start_index = mem.lastIndexOfScalar(u8, buf[0..i], ':').? + 1; const addr = (Ip4Address.parse(buf[start_index..], 0) catch { return error.InvalidIpv4Mapping; }).sa.addr; ip_slice = result.sa.addr[0..]; ip_slice[10] = 0xff; ip_slice[11] = 0xff; const ptr = mem.sliceAsBytes(@as(*const [1]u32, &addr)[0..]); ip_slice[12] = ptr[0]; ip_slice[13] = ptr[1]; ip_slice[14] = ptr[2]; ip_slice[15] = ptr[3]; return result; } else { const digit = try std.fmt.charToDigit(c, 16); { const ov = @mulWithOverflow(x, 16); if (ov[1] != 0) return error.Overflow; x = ov[0]; } { const ov = @addWithOverflow(x, digit); if (ov[1] != 0) return error.Overflow; x = ov[0]; } saw_any_digits = true; } } if (!saw_any_digits and !abbrv) { return error.Incomplete; } if (index == 14) { ip_slice[14] = @as(u8, @truncate(x >> 8)); ip_slice[15] = @as(u8, @truncate(x)); return result; } else { ip_slice[index] = @as(u8, @truncate(x >> 8)); index += 1; ip_slice[index] = @as(u8, @truncate(x)); index += 1; @memcpy(result.sa.addr[16 - index ..][0..index], ip_slice[0..index]); return result; } } pub fn resolve(buf: []const u8, port: u16) !Ip6Address { // TODO: Unify the implementations of resolveIp6 and parseIp6. var result = Ip6Address{ .sa = os.sockaddr.in6{ .scope_id = 0, .port = mem.nativeToBig(u16, port), .flowinfo = 0, .addr = undefined, }, }; var ip_slice: *[16]u8 = result.sa.addr[0..]; var tail: [16]u8 = undefined; var x: u16 = 0; var saw_any_digits = false; var index: u8 = 0; var abbrv = false; var scope_id = false; var scope_id_value: [os.IFNAMESIZE - 1]u8 = undefined; var scope_id_index: usize = 0; for (buf, 0..) |c, i| { if (scope_id) { // Handling of percent-encoding should be for an URI library. if ((c >= '0' and c <= '9') or (c >= 'A' and c <= 'Z') or (c >= 'a' and c <= 'z') or (c == '-') or (c == '.') or (c == '_') or (c == '~')) { if (scope_id_index >= scope_id_value.len) { return error.Overflow; } scope_id_value[scope_id_index] = c; scope_id_index += 1; } else { return error.InvalidCharacter; } } else if (c == ':') { if (!saw_any_digits) { if (abbrv) return error.InvalidCharacter; // ':::' if (i != 0) abbrv = true; @memset(ip_slice[index..], 0); ip_slice = tail[0..]; index = 0; continue; } if (index == 14) { return error.InvalidEnd; } ip_slice[index] = @as(u8, @truncate(x >> 8)); index += 1; ip_slice[index] = @as(u8, @truncate(x)); index += 1; x = 0; saw_any_digits = false; } else if (c == '%') { if (!saw_any_digits) { return error.InvalidCharacter; } scope_id = true; saw_any_digits = false; } else if (c == '.') { if (!abbrv or ip_slice[0] != 0xff or ip_slice[1] != 0xff) { // must start with '::ffff:' return error.InvalidIpv4Mapping; } const start_index = mem.lastIndexOfScalar(u8, buf[0..i], ':').? + 1; const addr = (Ip4Address.parse(buf[start_index..], 0) catch { return error.InvalidIpv4Mapping; }).sa.addr; ip_slice = result.sa.addr[0..]; ip_slice[10] = 0xff; ip_slice[11] = 0xff; const ptr = mem.sliceAsBytes(@as(*const [1]u32, &addr)[0..]); ip_slice[12] = ptr[0]; ip_slice[13] = ptr[1]; ip_slice[14] = ptr[2]; ip_slice[15] = ptr[3]; return result; } else { const digit = try std.fmt.charToDigit(c, 16); { const ov = @mulWithOverflow(x, 16); if (ov[1] != 0) return error.Overflow; x = ov[0]; } { const ov = @addWithOverflow(x, digit); if (ov[1] != 0) return error.Overflow; x = ov[0]; } saw_any_digits = true; } } if (!saw_any_digits and !abbrv) { return error.Incomplete; } if (scope_id and scope_id_index == 0) { return error.Incomplete; } var resolved_scope_id: u32 = 0; if (scope_id_index > 0) { const scope_id_str = scope_id_value[0..scope_id_index]; resolved_scope_id = std.fmt.parseInt(u32, scope_id_str, 10) catch |err| blk: { if (err != error.InvalidCharacter) return err; break :blk try if_nametoindex(scope_id_str); }; } result.sa.scope_id = resolved_scope_id; if (index == 14) { ip_slice[14] = @as(u8, @truncate(x >> 8)); ip_slice[15] = @as(u8, @truncate(x)); return result; } else { ip_slice[index] = @as(u8, @truncate(x >> 8)); index += 1; ip_slice[index] = @as(u8, @truncate(x)); index += 1; @memcpy(result.sa.addr[16 - index ..][0..index], ip_slice[0..index]); return result; } } pub fn init(addr: [16]u8, port: u16, flowinfo: u32, scope_id: u32) Ip6Address { return Ip6Address{ .sa = os.sockaddr.in6{ .addr = addr, .port = mem.nativeToBig(u16, port), .flowinfo = flowinfo, .scope_id = scope_id, }, }; } /// Returns the port in native endian. /// Asserts that the address is ip4 or ip6. pub fn getPort(self: Ip6Address) u16 { return mem.bigToNative(u16, self.sa.port); } /// `port` is native-endian. /// Asserts that the address is ip4 or ip6. pub fn setPort(self: *Ip6Address, port: u16) void { self.sa.port = mem.nativeToBig(u16, port); } pub fn format( self: Ip6Address, comptime fmt: []const u8, options: std.fmt.FormatOptions, out_stream: anytype, ) !void { if (fmt.len != 0) std.fmt.invalidFmtError(fmt, self); _ = options; const port = mem.bigToNative(u16, self.sa.port); if (mem.eql(u8, self.sa.addr[0..12], &[_]u8{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff })) { try std.fmt.format(out_stream, "[::ffff:{}.{}.{}.{}]:{}", .{ self.sa.addr[12], self.sa.addr[13], self.sa.addr[14], self.sa.addr[15], port, }); return; } const big_endian_parts = @as(*align(1) const [8]u16, @ptrCast(&self.sa.addr)); const native_endian_parts = switch (native_endian) { .Big => big_endian_parts.*, .Little => blk: { var buf: [8]u16 = undefined; for (big_endian_parts, 0..) |part, i| { buf[i] = mem.bigToNative(u16, part); } break :blk buf; }, }; try out_stream.writeAll("["); var i: usize = 0; var abbrv = false; while (i < native_endian_parts.len) : (i += 1) { if (native_endian_parts[i] == 0) { if (!abbrv) { try out_stream.writeAll(if (i == 0) "::" else ":"); abbrv = true; } continue; } try std.fmt.format(out_stream, "{x}", .{native_endian_parts[i]}); if (i != native_endian_parts.len - 1) { try out_stream.writeAll(":"); } } try std.fmt.format(out_stream, "]:{}", .{port}); } pub fn getOsSockLen(self: Ip6Address) os.socklen_t { _ = self; return @sizeOf(os.sockaddr.in6); } }; pub fn connectUnixSocket(path: []const u8) !Stream { const opt_non_block = if (std.io.is_async) os.SOCK.NONBLOCK else 0; const sockfd = try os.socket( os.AF.UNIX, os.SOCK.STREAM | os.SOCK.CLOEXEC | opt_non_block, 0, ); errdefer os.closeSocket(sockfd); var addr = try std.net.Address.initUnix(path); if (std.io.is_async) { const loop = std.event.Loop.instance orelse return error.WouldBlock; try loop.connect(sockfd, &addr.any, addr.getOsSockLen()); } else { try os.connect(sockfd, &addr.any, addr.getOsSockLen()); } return Stream{ .handle = sockfd, }; } fn if_nametoindex(name: []const u8) !u32 { if (builtin.target.os.tag == .linux) { var ifr: os.ifreq = undefined; var sockfd = try os.socket(os.AF.UNIX, os.SOCK.DGRAM | os.SOCK.CLOEXEC, 0); defer os.closeSocket(sockfd); @memcpy(ifr.ifrn.name[0..name.len], name); ifr.ifrn.name[name.len] = 0; // TODO investigate if this needs to be integrated with evented I/O. try os.ioctl_SIOCGIFINDEX(sockfd, &ifr); return @as(u32, @bitCast(ifr.ifru.ivalue)); } if (comptime builtin.target.os.tag.isDarwin()) { if (name.len >= os.IFNAMESIZE) return error.NameTooLong; var if_name: [os.IFNAMESIZE:0]u8 = undefined; @memcpy(if_name[0..name.len], name); if_name[name.len] = 0; const if_slice = if_name[0..name.len :0]; const index = os.system.if_nametoindex(if_slice); if (index == 0) return error.InterfaceNotFound; return @as(u32, @bitCast(index)); } @compileError("std.net.if_nametoindex unimplemented for this OS"); } pub const AddressList = struct { arena: std.heap.ArenaAllocator, addrs: []Address, canon_name: ?[]u8, pub fn deinit(self: *AddressList) void { // Here we copy the arena allocator into stack memory, because // otherwise it would destroy itself while it was still working. var arena = self.arena; arena.deinit(); // self is destroyed } }; pub const TcpConnectToHostError = GetAddressListError || TcpConnectToAddressError; /// All memory allocated with `allocator` will be freed before this function returns. pub fn tcpConnectToHost(allocator: mem.Allocator, name: []const u8, port: u16) TcpConnectToHostError!Stream { const list = try getAddressList(allocator, name, port); defer list.deinit(); if (list.addrs.len == 0) return error.UnknownHostName; for (list.addrs) |addr| { return tcpConnectToAddress(addr) catch |err| switch (err) { error.ConnectionRefused => { continue; }, else => return err, }; } return std.os.ConnectError.ConnectionRefused; } pub const TcpConnectToAddressError = std.os.SocketError || std.os.ConnectError; pub fn tcpConnectToAddress(address: Address) TcpConnectToAddressError!Stream { const nonblock = if (std.io.is_async) os.SOCK.NONBLOCK else 0; const sock_flags = os.SOCK.STREAM | nonblock | (if (builtin.target.os.tag == .windows) 0 else os.SOCK.CLOEXEC); const sockfd = try os.socket(address.any.family, sock_flags, os.IPPROTO.TCP); errdefer os.closeSocket(sockfd); if (std.io.is_async) { const loop = std.event.Loop.instance orelse return error.WouldBlock; try loop.connect(sockfd, &address.any, address.getOsSockLen()); } else { try os.connect(sockfd, &address.any, address.getOsSockLen()); } return Stream{ .handle = sockfd }; } const GetAddressListError = std.mem.Allocator.Error || std.fs.File.OpenError || std.fs.File.ReadError || std.os.SocketError || std.os.BindError || std.os.SetSockOptError || error{ // TODO: break this up into error sets from the various underlying functions TemporaryNameServerFailure, NameServerFailure, AddressFamilyNotSupported, UnknownHostName, ServiceUnavailable, Unexpected, HostLacksNetworkAddresses, InvalidCharacter, InvalidEnd, NonCanonical, Overflow, Incomplete, InvalidIpv4Mapping, InvalidIPAddressFormat, InterfaceNotFound, FileSystem, }; /// Call `AddressList.deinit` on the result. pub fn getAddressList(allocator: mem.Allocator, name: []const u8, port: u16) GetAddressListError!*AddressList { const result = blk: { var arena = std.heap.ArenaAllocator.init(allocator); errdefer arena.deinit(); const result = try arena.allocator().create(AddressList); result.* = AddressList{ .arena = arena, .addrs = undefined, .canon_name = null, }; break :blk result; }; const arena = result.arena.allocator(); errdefer result.deinit(); if (builtin.target.os.tag == .windows) { const name_c = try allocator.dupeZ(u8, name); defer allocator.free(name_c); const port_c = try std.fmt.allocPrintZ(allocator, "{}", .{port}); defer allocator.free(port_c); const ws2_32 = os.windows.ws2_32; const hints = os.addrinfo{ .flags = ws2_32.AI.NUMERICSERV, .family = os.AF.UNSPEC, .socktype = os.SOCK.STREAM, .protocol = os.IPPROTO.TCP, .canonname = null, .addr = null, .addrlen = 0, .next = null, }; var res: ?*os.addrinfo = null; var first = true; while (true) { const rc = ws2_32.getaddrinfo(name_c.ptr, port_c.ptr, &hints, &res); switch (@as(os.windows.ws2_32.WinsockError, @enumFromInt(@as(u16, @intCast(rc))))) { @as(os.windows.ws2_32.WinsockError, @enumFromInt(0)) => break, .WSATRY_AGAIN => return error.TemporaryNameServerFailure, .WSANO_RECOVERY => return error.NameServerFailure, .WSAEAFNOSUPPORT => return error.AddressFamilyNotSupported, .WSA_NOT_ENOUGH_MEMORY => return error.OutOfMemory, .WSAHOST_NOT_FOUND => return error.UnknownHostName, .WSATYPE_NOT_FOUND => return error.ServiceUnavailable, .WSAEINVAL => unreachable, .WSAESOCKTNOSUPPORT => unreachable, .WSANOTINITIALISED => { if (!first) return error.Unexpected; first = false; try os.windows.callWSAStartup(); continue; }, else => |err| return os.windows.unexpectedWSAError(err), } } defer ws2_32.freeaddrinfo(res); const addr_count = blk: { var count: usize = 0; var it = res; while (it) |info| : (it = info.next) { if (info.addr != null) { count += 1; } } break :blk count; }; result.addrs = try arena.alloc(Address, addr_count); var it = res; var i: usize = 0; while (it) |info| : (it = info.next) { const addr = info.addr orelse continue; result.addrs[i] = Address.initPosix(@alignCast(addr)); if (info.canonname) |n| { if (result.canon_name == null) { result.canon_name = try arena.dupe(u8, mem.sliceTo(n, 0)); } } i += 1; } return result; } if (builtin.link_libc) { const name_c = try allocator.dupeZ(u8, name); defer allocator.free(name_c); const port_c = try std.fmt.allocPrintZ(allocator, "{}", .{port}); defer allocator.free(port_c); const sys = if (builtin.target.os.tag == .windows) os.windows.ws2_32 else os.system; const hints = os.addrinfo{ .flags = sys.AI.NUMERICSERV, .family = os.AF.UNSPEC, .socktype = os.SOCK.STREAM, .protocol = os.IPPROTO.TCP, .canonname = null, .addr = null, .addrlen = 0, .next = null, }; var res: ?*os.addrinfo = null; switch (sys.getaddrinfo(name_c.ptr, port_c.ptr, &hints, &res)) { @as(sys.EAI, @enumFromInt(0)) => {}, .ADDRFAMILY => return error.HostLacksNetworkAddresses, .AGAIN => return error.TemporaryNameServerFailure, .BADFLAGS => unreachable, // Invalid hints .FAIL => return error.NameServerFailure, .FAMILY => return error.AddressFamilyNotSupported, .MEMORY => return error.OutOfMemory, .NODATA => return error.HostLacksNetworkAddresses, .NONAME => return error.UnknownHostName, .SERVICE => return error.ServiceUnavailable, .SOCKTYPE => unreachable, // Invalid socket type requested in hints .SYSTEM => switch (os.errno(-1)) { else => |e| return os.unexpectedErrno(e), }, else => unreachable, } defer if (res) |some| sys.freeaddrinfo(some); const addr_count = blk: { var count: usize = 0; var it = res; while (it) |info| : (it = info.next) { if (info.addr != null) { count += 1; } } break :blk count; }; result.addrs = try arena.alloc(Address, addr_count); var it = res; var i: usize = 0; while (it) |info| : (it = info.next) { const addr = info.addr orelse continue; result.addrs[i] = Address.initPosix(@alignCast(addr)); if (info.canonname) |n| { if (result.canon_name == null) { result.canon_name = try arena.dupe(u8, mem.sliceTo(n, 0)); } } i += 1; } return result; } if (builtin.target.os.tag == .linux) { const flags = std.c.AI.NUMERICSERV; const family = os.AF.UNSPEC; var lookup_addrs = std.ArrayList(LookupAddr).init(allocator); defer lookup_addrs.deinit(); var canon = std.ArrayList(u8).init(arena); defer canon.deinit(); try linuxLookupName(&lookup_addrs, &canon, name, family, flags, port); result.addrs = try arena.alloc(Address, lookup_addrs.items.len); if (canon.items.len != 0) { result.canon_name = try canon.toOwnedSlice(); } for (lookup_addrs.items, 0..) |lookup_addr, i| { result.addrs[i] = lookup_addr.addr; assert(result.addrs[i].getPort() == port); } return result; } @compileError("std.net.getAddressList unimplemented for this OS"); } const LookupAddr = struct { addr: Address, sortkey: i32 = 0, }; const DAS_USABLE = 0x40000000; const DAS_MATCHINGSCOPE = 0x20000000; const DAS_MATCHINGLABEL = 0x10000000; const DAS_PREC_SHIFT = 20; const DAS_SCOPE_SHIFT = 16; const DAS_PREFIX_SHIFT = 8; const DAS_ORDER_SHIFT = 0; fn linuxLookupName( addrs: *std.ArrayList(LookupAddr), canon: *std.ArrayList(u8), opt_name: ?[]const u8, family: os.sa_family_t, flags: u32, port: u16, ) !void { if (opt_name) |name| { // reject empty name and check len so it fits into temp bufs canon.items.len = 0; try canon.appendSlice(name); if (Address.parseExpectingFamily(name, family, port)) |addr| { try addrs.append(LookupAddr{ .addr = addr }); } else |name_err| if ((flags & std.c.AI.NUMERICHOST) != 0) { return name_err; } else { try linuxLookupNameFromHosts(addrs, canon, name, family, port); if (addrs.items.len == 0) { // RFC 6761 Section 6.3.3 // Name resolution APIs and libraries SHOULD recognize localhost // names as special and SHOULD always return the IP loopback address // for address queries and negative responses for all other query // types. // Check for equal to "localhost(.)" or ends in ".localhost(.)" const localhost = if (name[name.len - 1] == '.') "localhost." else "localhost"; if (mem.endsWith(u8, name, localhost) and (name.len == localhost.len or name[name.len - localhost.len] == '.')) { try addrs.append(LookupAddr{ .addr = .{ .in = Ip4Address.parse("127.0.0.1", port) catch unreachable } }); try addrs.append(LookupAddr{ .addr = .{ .in6 = Ip6Address.parse("::1", port) catch unreachable } }); return; } try linuxLookupNameFromDnsSearch(addrs, canon, name, family, port); } } } else { try canon.resize(0); try linuxLookupNameFromNull(addrs, family, flags, port); } if (addrs.items.len == 0) return error.UnknownHostName; // No further processing is needed if there are fewer than 2 // results or if there are only IPv4 results. if (addrs.items.len == 1 or family == os.AF.INET) return; const all_ip4 = for (addrs.items) |addr| { if (addr.addr.any.family != os.AF.INET) break false; } else true; if (all_ip4) return; // The following implements a subset of RFC 3484/6724 destination // address selection by generating a single 31-bit sort key for // each address. Rules 3, 4, and 7 are omitted for having // excessive runtime and code size cost and dubious benefit. // So far the label/precedence table cannot be customized. // This implementation is ported from musl libc. // A more idiomatic "ziggy" implementation would be welcome. for (addrs.items, 0..) |*addr, i| { var key: i32 = 0; var sa6: os.sockaddr.in6 = undefined; @memset(@as([*]u8, @ptrCast(&sa6))[0..@sizeOf(os.sockaddr.in6)], 0); var da6 = os.sockaddr.in6{ .family = os.AF.INET6, .scope_id = addr.addr.in6.sa.scope_id, .port = 65535, .flowinfo = 0, .addr = [1]u8{0} ** 16, }; var sa4: os.sockaddr.in = undefined; @memset(@as([*]u8, @ptrCast(&sa4))[0..@sizeOf(os.sockaddr.in)], 0); var da4 = os.sockaddr.in{ .family = os.AF.INET, .port = 65535, .addr = 0, .zero = [1]u8{0} ** 8, }; var sa: *align(4) os.sockaddr = undefined; var da: *align(4) os.sockaddr = undefined; var salen: os.socklen_t = undefined; var dalen: os.socklen_t = undefined; if (addr.addr.any.family == os.AF.INET6) { da6.addr = addr.addr.in6.sa.addr; da = @ptrCast(&da6); dalen = @sizeOf(os.sockaddr.in6); sa = @ptrCast(&sa6); salen = @sizeOf(os.sockaddr.in6); } else { sa6.addr[0..12].* = "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff".*; da6.addr[0..12].* = "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff".*; mem.writeIntNative(u32, da6.addr[12..], addr.addr.in.sa.addr); da4.addr = addr.addr.in.sa.addr; da = @ptrCast(&da4); dalen = @sizeOf(os.sockaddr.in); sa = @ptrCast(&sa4); salen = @sizeOf(os.sockaddr.in); } const dpolicy = policyOf(da6.addr); const dscope: i32 = scopeOf(da6.addr); const dlabel = dpolicy.label; const dprec: i32 = dpolicy.prec; const MAXADDRS = 3; var prefixlen: i32 = 0; const sock_flags = os.SOCK.DGRAM | os.SOCK.CLOEXEC; if (os.socket(addr.addr.any.family, sock_flags, os.IPPROTO.UDP)) |fd| syscalls: { defer os.closeSocket(fd); os.connect(fd, da, dalen) catch break :syscalls; key |= DAS_USABLE; os.getsockname(fd, sa, &salen) catch break :syscalls; if (addr.addr.any.family == os.AF.INET) { // TODO sa6.addr[12..16] should return *[4]u8, making this cast unnecessary. mem.writeIntNative(u32, @as(*[4]u8, @ptrCast(&sa6.addr[12])), sa4.addr); } if (dscope == @as(i32, scopeOf(sa6.addr))) key |= DAS_MATCHINGSCOPE; if (dlabel == labelOf(sa6.addr)) key |= DAS_MATCHINGLABEL; prefixlen = prefixMatch(sa6.addr, da6.addr); } else |_| {} key |= dprec << DAS_PREC_SHIFT; key |= (15 - dscope) << DAS_SCOPE_SHIFT; key |= prefixlen << DAS_PREFIX_SHIFT; key |= (MAXADDRS - @as(i32, @intCast(i))) << DAS_ORDER_SHIFT; addr.sortkey = key; } mem.sort(LookupAddr, addrs.items, {}, addrCmpLessThan); } const Policy = struct { addr: [16]u8, len: u8, mask: u8, prec: u8, label: u8, }; const defined_policies = [_]Policy{ Policy{ .addr = "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01".*, .len = 15, .mask = 0xff, .prec = 50, .label = 0, }, Policy{ .addr = "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\x00\x00\x00\x00".*, .len = 11, .mask = 0xff, .prec = 35, .label = 4, }, Policy{ .addr = "\x20\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00".*, .len = 1, .mask = 0xff, .prec = 30, .label = 2, }, Policy{ .addr = "\x20\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00".*, .len = 3, .mask = 0xff, .prec = 5, .label = 5, }, Policy{ .addr = "\xfc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00".*, .len = 0, .mask = 0xfe, .prec = 3, .label = 13, }, // These are deprecated and/or returned to the address // pool, so despite the RFC, treating them as special // is probably wrong. // { "", 11, 0xff, 1, 3 }, // { "\xfe\xc0", 1, 0xc0, 1, 11 }, // { "\x3f\xfe", 1, 0xff, 1, 12 }, // Last rule must match all addresses to stop loop. Policy{ .addr = "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00".*, .len = 0, .mask = 0, .prec = 40, .label = 1, }, }; fn policyOf(a: [16]u8) *const Policy { for (&defined_policies) |*policy| { if (!mem.eql(u8, a[0..policy.len], policy.addr[0..policy.len])) continue; if ((a[policy.len] & policy.mask) != policy.addr[policy.len]) continue; return policy; } unreachable; } fn scopeOf(a: [16]u8) u8 { if (IN6_IS_ADDR_MULTICAST(a)) return a[1] & 15; if (IN6_IS_ADDR_LINKLOCAL(a)) return 2; if (IN6_IS_ADDR_LOOPBACK(a)) return 2; if (IN6_IS_ADDR_SITELOCAL(a)) return 5; return 14; } fn prefixMatch(s: [16]u8, d: [16]u8) u8 { // TODO: This FIXME inherited from porting from musl libc. // I don't want this to go into zig std lib 1.0.0. // FIXME: The common prefix length should be limited to no greater // than the nominal length of the prefix portion of the source // address. However the definition of the source prefix length is // not clear and thus this limiting is not yet implemented. var i: u8 = 0; while (i < 128 and ((s[i / 8] ^ d[i / 8]) & (@as(u8, 128) >> @as(u3, @intCast(i % 8)))) == 0) : (i += 1) {} return i; } fn labelOf(a: [16]u8) u8 { return policyOf(a).label; } fn IN6_IS_ADDR_MULTICAST(a: [16]u8) bool { return a[0] == 0xff; } fn IN6_IS_ADDR_LINKLOCAL(a: [16]u8) bool { return a[0] == 0xfe and (a[1] & 0xc0) == 0x80; } fn IN6_IS_ADDR_LOOPBACK(a: [16]u8) bool { return a[0] == 0 and a[1] == 0 and a[2] == 0 and a[12] == 0 and a[13] == 0 and a[14] == 0 and a[15] == 1; } fn IN6_IS_ADDR_SITELOCAL(a: [16]u8) bool { return a[0] == 0xfe and (a[1] & 0xc0) == 0xc0; } // Parameters `b` and `a` swapped to make this descending. fn addrCmpLessThan(context: void, b: LookupAddr, a: LookupAddr) bool { _ = context; return a.sortkey < b.sortkey; } fn linuxLookupNameFromNull( addrs: *std.ArrayList(LookupAddr), family: os.sa_family_t, flags: u32, port: u16, ) !void { if ((flags & std.c.AI.PASSIVE) != 0) { if (family != os.AF.INET6) { (try addrs.addOne()).* = LookupAddr{ .addr = Address.initIp4([1]u8{0} ** 4, port), }; } if (family != os.AF.INET) { (try addrs.addOne()).* = LookupAddr{ .addr = Address.initIp6([1]u8{0} ** 16, port, 0, 0), }; } } else { if (family != os.AF.INET6) { (try addrs.addOne()).* = LookupAddr{ .addr = Address.initIp4([4]u8{ 127, 0, 0, 1 }, port), }; } if (family != os.AF.INET) { (try addrs.addOne()).* = LookupAddr{ .addr = Address.initIp6(([1]u8{0} ** 15) ++ [1]u8{1}, port, 0, 0), }; } } } fn linuxLookupNameFromHosts( addrs: *std.ArrayList(LookupAddr), canon: *std.ArrayList(u8), name: []const u8, family: os.sa_family_t, port: u16, ) !void { const file = fs.openFileAbsoluteZ("/etc/hosts", .{}) catch |err| switch (err) { error.FileNotFound, error.NotDir, error.AccessDenied, => return, else => |e| return e, }; defer file.close(); var buffered_reader = std.io.bufferedReader(file.reader()); const reader = buffered_reader.reader(); var line_buf: [512]u8 = undefined; while (reader.readUntilDelimiterOrEof(&line_buf, '\n') catch |err| switch (err) { error.StreamTooLong => blk: { // Skip to the delimiter in the reader, to fix parsing try reader.skipUntilDelimiterOrEof('\n'); // Use the truncated line. A truncated comment or hostname will be handled correctly. break :blk &line_buf; }, else => |e| return e, }) |line| { var split_it = mem.splitScalar(u8, line, '#'); const no_comment_line = split_it.first(); var line_it = mem.tokenizeAny(u8, no_comment_line, " \t"); const ip_text = line_it.next() orelse continue; var first_name_text: ?[]const u8 = null; while (line_it.next()) |name_text| { if (first_name_text == null) first_name_text = name_text; if (mem.eql(u8, name_text, name)) { break; } } else continue; const addr = Address.parseExpectingFamily(ip_text, family, port) catch |err| switch (err) { error.Overflow, error.InvalidEnd, error.InvalidCharacter, error.Incomplete, error.InvalidIPAddressFormat, error.InvalidIpv4Mapping, error.NonCanonical, => continue, }; try addrs.append(LookupAddr{ .addr = addr }); // first name is canonical name const name_text = first_name_text.?; if (isValidHostName(name_text)) { canon.items.len = 0; try canon.appendSlice(name_text); } } } pub fn isValidHostName(hostname: []const u8) bool { if (hostname.len >= 254) return false; if (!std.unicode.utf8ValidateSlice(hostname)) return false; for (hostname) |byte| { if (!std.ascii.isASCII(byte) or byte == '.' or byte == '-' or std.ascii.isAlphanumeric(byte)) { continue; } return false; } return true; } fn linuxLookupNameFromDnsSearch( addrs: *std.ArrayList(LookupAddr), canon: *std.ArrayList(u8), name: []const u8, family: os.sa_family_t, port: u16, ) !void { var rc: ResolvConf = undefined; try getResolvConf(addrs.allocator, &rc); defer rc.deinit(); // Count dots, suppress search when >=ndots or name ends in // a dot, which is an explicit request for global scope. var dots: usize = 0; for (name) |byte| { if (byte == '.') dots += 1; } const search = if (dots >= rc.ndots or mem.endsWith(u8, name, ".")) "" else rc.search.items; var canon_name = name; // Strip final dot for canon, fail if multiple trailing dots. if (mem.endsWith(u8, canon_name, ".")) canon_name.len -= 1; if (mem.endsWith(u8, canon_name, ".")) return error.UnknownHostName; // Name with search domain appended is setup in canon[]. This both // provides the desired default canonical name (if the requested // name is not a CNAME record) and serves as a buffer for passing // the full requested name to name_from_dns. try canon.resize(canon_name.len); @memcpy(canon.items, canon_name); try canon.append('.'); var tok_it = mem.tokenizeAny(u8, search, " \t"); while (tok_it.next()) |tok| { canon.shrinkRetainingCapacity(canon_name.len + 1); try canon.appendSlice(tok); try linuxLookupNameFromDns(addrs, canon, canon.items, family, rc, port); if (addrs.items.len != 0) return; } canon.shrinkRetainingCapacity(canon_name.len); return linuxLookupNameFromDns(addrs, canon, name, family, rc, port); } const dpc_ctx = struct { addrs: *std.ArrayList(LookupAddr), canon: *std.ArrayList(u8), port: u16, }; fn linuxLookupNameFromDns( addrs: *std.ArrayList(LookupAddr), canon: *std.ArrayList(u8), name: []const u8, family: os.sa_family_t, rc: ResolvConf, port: u16, ) !void { var ctx = dpc_ctx{ .addrs = addrs, .canon = canon, .port = port, }; const AfRr = struct { af: os.sa_family_t, rr: u8, }; const afrrs = [_]AfRr{ AfRr{ .af = os.AF.INET6, .rr = os.RR.A }, AfRr{ .af = os.AF.INET, .rr = os.RR.AAAA }, }; var qbuf: [2][280]u8 = undefined; var abuf: [2][512]u8 = undefined; var qp: [2][]const u8 = undefined; const apbuf = [2][]u8{ &abuf[0], &abuf[1] }; var nq: usize = 0; for (afrrs) |afrr| { if (family != afrr.af) { const len = os.res_mkquery(0, name, 1, afrr.rr, &[_]u8{}, null, &qbuf[nq]); qp[nq] = qbuf[nq][0..len]; nq += 1; } } var ap = [2][]u8{ apbuf[0], apbuf[1] }; ap[0].len = 0; ap[1].len = 0; try resMSendRc(qp[0..nq], ap[0..nq], apbuf[0..nq], rc); var i: usize = 0; while (i < nq) : (i += 1) { dnsParse(ap[i], ctx, dnsParseCallback) catch {}; } if (addrs.items.len != 0) return; if (ap[0].len < 4 or (ap[0][3] & 15) == 2) return error.TemporaryNameServerFailure; if ((ap[0][3] & 15) == 0) return error.UnknownHostName; if ((ap[0][3] & 15) == 3) return; return error.NameServerFailure; } const ResolvConf = struct { attempts: u32, ndots: u32, timeout: u32, search: std.ArrayList(u8), ns: std.ArrayList(LookupAddr), fn deinit(rc: *ResolvConf) void { rc.ns.deinit(); rc.search.deinit(); rc.* = undefined; } }; /// Ignores lines longer than 512 bytes. /// TODO: https://github.com/ziglang/zig/issues/2765 and https://github.com/ziglang/zig/issues/2761 fn getResolvConf(allocator: mem.Allocator, rc: *ResolvConf) !void { rc.* = ResolvConf{ .ns = std.ArrayList(LookupAddr).init(allocator), .search = std.ArrayList(u8).init(allocator), .ndots = 1, .timeout = 5, .attempts = 2, }; errdefer rc.deinit(); const file = fs.openFileAbsoluteZ("/etc/resolv.conf", .{}) catch |err| switch (err) { error.FileNotFound, error.NotDir, error.AccessDenied, => return linuxLookupNameFromNumericUnspec(&rc.ns, "127.0.0.1", 53), else => |e| return e, }; defer file.close(); var buf_reader = std.io.bufferedReader(file.reader()); const stream = buf_reader.reader(); var line_buf: [512]u8 = undefined; while (stream.readUntilDelimiterOrEof(&line_buf, '\n') catch |err| switch (err) { error.StreamTooLong => blk: { // Skip to the delimiter in the stream, to fix parsing try stream.skipUntilDelimiterOrEof('\n'); // Give an empty line to the while loop, which will be skipped. break :blk line_buf[0..0]; }, else => |e| return e, }) |line| { const no_comment_line = no_comment_line: { var split = mem.splitScalar(u8, line, '#'); break :no_comment_line split.first(); }; var line_it = mem.tokenizeAny(u8, no_comment_line, " \t"); const token = line_it.next() orelse continue; if (mem.eql(u8, token, "options")) { while (line_it.next()) |sub_tok| { var colon_it = mem.splitScalar(u8, sub_tok, ':'); const name = colon_it.first(); const value_txt = colon_it.next() orelse continue; const value = std.fmt.parseInt(u8, value_txt, 10) catch |err| switch (err) { // TODO https://github.com/ziglang/zig/issues/11812 error.Overflow => @as(u8, 255), error.InvalidCharacter => continue, }; if (mem.eql(u8, name, "ndots")) { rc.ndots = @min(value, 15); } else if (mem.eql(u8, name, "attempts")) { rc.attempts = @min(value, 10); } else if (mem.eql(u8, name, "timeout")) { rc.timeout = @min(value, 60); } } } else if (mem.eql(u8, token, "nameserver")) { const ip_txt = line_it.next() orelse continue; try linuxLookupNameFromNumericUnspec(&rc.ns, ip_txt, 53); } else if (mem.eql(u8, token, "domain") or mem.eql(u8, token, "search")) { rc.search.items.len = 0; try rc.search.appendSlice(line_it.rest()); } } if (rc.ns.items.len == 0) { return linuxLookupNameFromNumericUnspec(&rc.ns, "127.0.0.1", 53); } } fn linuxLookupNameFromNumericUnspec( addrs: *std.ArrayList(LookupAddr), name: []const u8, port: u16, ) !void { const addr = try Address.resolveIp(name, port); (try addrs.addOne()).* = LookupAddr{ .addr = addr }; } fn resMSendRc( queries: []const []const u8, answers: [][]u8, answer_bufs: []const []u8, rc: ResolvConf, ) !void { const timeout = 1000 * rc.timeout; const attempts = rc.attempts; var sl: os.socklen_t = @sizeOf(os.sockaddr.in); var family: os.sa_family_t = os.AF.INET; var ns_list = std.ArrayList(Address).init(rc.ns.allocator); defer ns_list.deinit(); try ns_list.resize(rc.ns.items.len); const ns = ns_list.items; for (rc.ns.items, 0..) |iplit, i| { ns[i] = iplit.addr; assert(ns[i].getPort() == 53); if (iplit.addr.any.family != os.AF.INET) { family = os.AF.INET6; } } const flags = os.SOCK.DGRAM | os.SOCK.CLOEXEC | os.SOCK.NONBLOCK; const fd = os.socket(family, flags, 0) catch |err| switch (err) { error.AddressFamilyNotSupported => blk: { // Handle case where system lacks IPv6 support if (family == os.AF.INET6) { family = os.AF.INET; break :blk try os.socket(os.AF.INET, flags, 0); } return err; }, else => |e| return e, }; defer os.closeSocket(fd); // Past this point, there are no errors. Each individual query will // yield either no reply (indicated by zero length) or an answer // packet which is up to the caller to interpret. // Convert any IPv4 addresses in a mixed environment to v4-mapped if (family == os.AF.INET6) { try os.setsockopt( fd, os.SOL.IPV6, os.linux.IPV6.V6ONLY, &mem.toBytes(@as(c_int, 0)), ); for (0..ns.len) |i| { if (ns[i].any.family != os.AF.INET) continue; mem.writeIntNative(u32, ns[i].in6.sa.addr[12..], ns[i].in.sa.addr); ns[i].in6.sa.addr[0..12].* = "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff".*; ns[i].any.family = os.AF.INET6; ns[i].in6.sa.flowinfo = 0; ns[i].in6.sa.scope_id = 0; } sl = @sizeOf(os.sockaddr.in6); } // Get local address and open/bind a socket var sa: Address = undefined; @memset(@as([*]u8, @ptrCast(&sa))[0..@sizeOf(Address)], 0); sa.any.family = family; try os.bind(fd, &sa.any, sl); var pfd = [1]os.pollfd{os.pollfd{ .fd = fd, .events = os.POLL.IN, .revents = undefined, }}; const retry_interval = timeout / attempts; var next: u32 = 0; var t2: u64 = @as(u64, @bitCast(std.time.milliTimestamp())); var t0 = t2; var t1 = t2 - retry_interval; var servfail_retry: usize = undefined; outer: while (t2 - t0 < timeout) : (t2 = @as(u64, @bitCast(std.time.milliTimestamp()))) { if (t2 - t1 >= retry_interval) { // Query all configured nameservers in parallel var i: usize = 0; while (i < queries.len) : (i += 1) { if (answers[i].len == 0) { var j: usize = 0; while (j < ns.len) : (j += 1) { if (std.io.is_async) { _ = std.event.Loop.instance.?.sendto(fd, queries[i], os.MSG.NOSIGNAL, &ns[j].any, sl) catch undefined; } else { _ = os.sendto(fd, queries[i], os.MSG.NOSIGNAL, &ns[j].any, sl) catch undefined; } } } } t1 = t2; servfail_retry = 2 * queries.len; } // Wait for a response, or until time to retry const clamped_timeout = @min(@as(u31, std.math.maxInt(u31)), t1 + retry_interval - t2); const nevents = os.poll(&pfd, clamped_timeout) catch 0; if (nevents == 0) continue; while (true) { var sl_copy = sl; const rlen = if (std.io.is_async) std.event.Loop.instance.?.recvfrom(fd, answer_bufs[next], 0, &sa.any, &sl_copy) catch break else os.recvfrom(fd, answer_bufs[next], 0, &sa.any, &sl_copy) catch break; // Ignore non-identifiable packets if (rlen < 4) continue; // Ignore replies from addresses we didn't send to var j: usize = 0; while (j < ns.len and !ns[j].eql(sa)) : (j += 1) {} if (j == ns.len) continue; // Find which query this answer goes with, if any var i: usize = next; while (i < queries.len and (answer_bufs[next][0] != queries[i][0] or answer_bufs[next][1] != queries[i][1])) : (i += 1) {} if (i == queries.len) continue; if (answers[i].len != 0) continue; // Only accept positive or negative responses; // retry immediately on server failure, and ignore // all other codes such as refusal. switch (answer_bufs[next][3] & 15) { 0, 3 => {}, 2 => if (servfail_retry != 0) { servfail_retry -= 1; if (std.io.is_async) { _ = std.event.Loop.instance.?.sendto(fd, queries[i], os.MSG.NOSIGNAL, &ns[j].any, sl) catch undefined; } else { _ = os.sendto(fd, queries[i], os.MSG.NOSIGNAL, &ns[j].any, sl) catch undefined; } }, else => continue, } // Store answer in the right slot, or update next // available temp slot if it's already in place. answers[i].len = rlen; if (i == next) { while (next < queries.len and answers[next].len != 0) : (next += 1) {} } else { @memcpy(answer_bufs[i][0..rlen], answer_bufs[next][0..rlen]); } if (next == queries.len) break :outer; } } } fn dnsParse( r: []const u8, ctx: anytype, comptime callback: anytype, ) !void { // This implementation is ported from musl libc. // A more idiomatic "ziggy" implementation would be welcome. if (r.len < 12) return error.InvalidDnsPacket; if ((r[3] & 15) != 0) return; var p = r.ptr + 12; var qdcount = r[4] * @as(usize, 256) + r[5]; var ancount = r[6] * @as(usize, 256) + r[7]; if (qdcount + ancount > 64) return error.InvalidDnsPacket; while (qdcount != 0) { qdcount -= 1; while (@intFromPtr(p) - @intFromPtr(r.ptr) < r.len and p[0] -% 1 < 127) p += 1; if (p[0] > 193 or (p[0] == 193 and p[1] > 254) or @intFromPtr(p) > @intFromPtr(r.ptr) + r.len - 6) return error.InvalidDnsPacket; p += @as(usize, 5) + @intFromBool(p[0] != 0); } while (ancount != 0) { ancount -= 1; while (@intFromPtr(p) - @intFromPtr(r.ptr) < r.len and p[0] -% 1 < 127) p += 1; if (p[0] > 193 or (p[0] == 193 and p[1] > 254) or @intFromPtr(p) > @intFromPtr(r.ptr) + r.len - 6) return error.InvalidDnsPacket; p += @as(usize, 1) + @intFromBool(p[0] != 0); const len = p[8] * @as(usize, 256) + p[9]; if (@intFromPtr(p) + len > @intFromPtr(r.ptr) + r.len) return error.InvalidDnsPacket; try callback(ctx, p[1], p[10..][0..len], r); p += 10 + len; } } fn dnsParseCallback(ctx: dpc_ctx, rr: u8, data: []const u8, packet: []const u8) !void { switch (rr) { os.RR.A => { if (data.len != 4) return error.InvalidDnsARecord; const new_addr = try ctx.addrs.addOne(); new_addr.* = LookupAddr{ .addr = Address.initIp4(data[0..4].*, ctx.port), }; }, os.RR.AAAA => { if (data.len != 16) return error.InvalidDnsAAAARecord; const new_addr = try ctx.addrs.addOne(); new_addr.* = LookupAddr{ .addr = Address.initIp6(data[0..16].*, ctx.port, 0, 0), }; }, os.RR.CNAME => { var tmp: [256]u8 = undefined; // Returns len of compressed name. strlen to get canon name. _ = try os.dn_expand(packet, data, &tmp); const canon_name = mem.sliceTo(&tmp, 0); if (isValidHostName(canon_name)) { ctx.canon.items.len = 0; try ctx.canon.appendSlice(canon_name); } }, else => return, } } pub const Stream = struct { // Underlying socket descriptor. // Note that on some platforms this may not be interchangeable with a // regular files descriptor. handle: os.socket_t, pub fn close(self: Stream) void { os.closeSocket(self.handle); } pub const ReadError = os.ReadError; pub const WriteError = os.WriteError; pub const Reader = io.Reader(Stream, ReadError, read); pub const Writer = io.Writer(Stream, WriteError, write); pub fn reader(self: Stream) Reader { return .{ .context = self }; } pub fn writer(self: Stream) Writer { return .{ .context = self }; } pub fn read(self: Stream, buffer: []u8) ReadError!usize { if (builtin.os.tag == .windows) { return os.windows.ReadFile(self.handle, buffer, null, io.default_mode); } if (std.io.is_async) { return std.event.Loop.instance.?.read(self.handle, buffer, false); } else { return os.read(self.handle, buffer); } } pub fn readv(s: Stream, iovecs: []const os.iovec) ReadError!usize { if (builtin.os.tag == .windows) { // TODO improve this to use ReadFileScatter if (iovecs.len == 0) return @as(usize, 0); const first = iovecs[0]; return os.windows.ReadFile(s.handle, first.iov_base[0..first.iov_len], null, io.default_mode); } return os.readv(s.handle, iovecs); } /// Returns the number of bytes read. If the number read is smaller than /// `buffer.len`, it means the stream reached the end. Reaching the end of /// a stream is not an error condition. pub fn readAll(s: Stream, buffer: []u8) ReadError!usize { return readAtLeast(s, buffer, buffer.len); } /// Returns the number of bytes read, calling the underlying read function /// the minimal number of times until the buffer has at least `len` bytes /// filled. If the number read is less than `len` it means the stream /// reached the end. Reaching the end of the stream is not an error /// condition. pub fn readAtLeast(s: Stream, buffer: []u8, len: usize) ReadError!usize { assert(len <= buffer.len); var index: usize = 0; while (index < len) { const amt = try s.read(buffer[index..]); if (amt == 0) break; index += amt; } return index; } /// TODO in evented I/O mode, this implementation incorrectly uses the event loop's /// file system thread instead of non-blocking. It needs to be reworked to properly /// use non-blocking I/O. pub fn write(self: Stream, buffer: []const u8) WriteError!usize { if (builtin.os.tag == .windows) { return os.windows.WriteFile(self.handle, buffer, null, io.default_mode); } if (std.io.is_async) { return std.event.Loop.instance.?.write(self.handle, buffer, false); } else { return os.write(self.handle, buffer); } } pub fn writeAll(self: Stream, bytes: []const u8) WriteError!void { var index: usize = 0; while (index < bytes.len) { index += try self.write(bytes[index..]); } } /// See https://github.com/ziglang/zig/issues/7699 /// See equivalent function: `std.fs.File.writev`. pub fn writev(self: Stream, iovecs: []const os.iovec_const) WriteError!usize { if (std.io.is_async) { // TODO improve to actually take advantage of writev syscall, if available. if (iovecs.len == 0) return 0; const first_buffer = iovecs[0].iov_base[0..iovecs[0].iov_len]; try self.write(first_buffer); return first_buffer.len; } else { return os.writev(self.handle, iovecs); } } /// The `iovecs` parameter is mutable because this function needs to mutate the fields in /// order to handle partial writes from the underlying OS layer. /// See https://github.com/ziglang/zig/issues/7699 /// See equivalent function: `std.fs.File.writevAll`. pub fn writevAll(self: Stream, iovecs: []os.iovec_const) WriteError!void { if (iovecs.len == 0) return; var i: usize = 0; while (true) { var amt = try self.writev(iovecs[i..]); while (amt >= iovecs[i].iov_len) { amt -= iovecs[i].iov_len; i += 1; if (i >= iovecs.len) return; } iovecs[i].iov_base += amt; iovecs[i].iov_len -= amt; } } }; pub const StreamServer = struct { /// Copied from `Options` on `init`. kernel_backlog: u31, reuse_address: bool, reuse_port: bool, /// `undefined` until `listen` returns successfully. listen_address: Address, sockfd: ?os.socket_t, pub const Options = struct { /// How many connections the kernel will accept on the application's behalf. /// If more than this many connections pool in the kernel, clients will start /// seeing "Connection refused". kernel_backlog: u31 = 128, /// Enable SO.REUSEADDR on the socket. reuse_address: bool = false, /// Enable SO.REUSEPORT on the socket. reuse_port: bool = false, }; /// After this call succeeds, resources have been acquired and must /// be released with `deinit`. pub fn init(options: Options) StreamServer { return StreamServer{ .sockfd = null, .kernel_backlog = options.kernel_backlog, .reuse_address = options.reuse_address, .reuse_port = options.reuse_port, .listen_address = undefined, }; } /// Release all resources. The `StreamServer` memory becomes `undefined`. pub fn deinit(self: *StreamServer) void { self.close(); self.* = undefined; } pub fn listen(self: *StreamServer, address: Address) !void { const nonblock = if (std.io.is_async) os.SOCK.NONBLOCK else 0; const sock_flags = os.SOCK.STREAM | os.SOCK.CLOEXEC | nonblock; const proto = if (address.any.family == os.AF.UNIX) @as(u32, 0) else os.IPPROTO.TCP; const sockfd = try os.socket(address.any.family, sock_flags, proto); self.sockfd = sockfd; errdefer { os.closeSocket(sockfd); self.sockfd = null; } if (self.reuse_address) { try os.setsockopt( sockfd, os.SOL.SOCKET, os.SO.REUSEADDR, &mem.toBytes(@as(c_int, 1)), ); } if (@hasDecl(os.SO, "REUSEPORT") and self.reuse_port) { try os.setsockopt( sockfd, os.SOL.SOCKET, os.SO.REUSEPORT, &mem.toBytes(@as(c_int, 1)), ); } var socklen = address.getOsSockLen(); try os.bind(sockfd, &address.any, socklen); try os.listen(sockfd, self.kernel_backlog); try os.getsockname(sockfd, &self.listen_address.any, &socklen); } /// Stop listening. It is still necessary to call `deinit` after stopping listening. /// Calling `deinit` will automatically call `close`. It is safe to call `close` when /// not listening. pub fn close(self: *StreamServer) void { if (self.sockfd) |fd| { os.closeSocket(fd); self.sockfd = null; self.listen_address = undefined; } } pub const AcceptError = error{ ConnectionAborted, /// The per-process limit on the number of open file descriptors has been reached. ProcessFdQuotaExceeded, /// The system-wide limit on the total number of open files has been reached. SystemFdQuotaExceeded, /// Not enough free memory. This often means that the memory allocation is limited /// by the socket buffer limits, not by the system memory. SystemResources, /// Socket is not listening for new connections. SocketNotListening, ProtocolFailure, /// Firewall rules forbid connection. BlockedByFirewall, FileDescriptorNotASocket, ConnectionResetByPeer, NetworkSubsystemFailed, OperationNotSupported, } || os.UnexpectedError; pub const Connection = struct { stream: Stream, address: Address, }; /// If this function succeeds, the returned `Connection` is a caller-managed resource. pub fn accept(self: *StreamServer) AcceptError!Connection { var accepted_addr: Address = undefined; var adr_len: os.socklen_t = @sizeOf(Address); const accept_result = blk: { if (std.io.is_async) { const loop = std.event.Loop.instance orelse return error.UnexpectedError; break :blk loop.accept(self.sockfd.?, &accepted_addr.any, &adr_len, os.SOCK.CLOEXEC); } else { break :blk os.accept(self.sockfd.?, &accepted_addr.any, &adr_len, os.SOCK.CLOEXEC); } }; if (accept_result) |fd| { return Connection{ .stream = Stream{ .handle = fd }, .address = accepted_addr, }; } else |err| switch (err) { error.WouldBlock => unreachable, else => |e| return e, } } }; test { _ = @import("net/test.zig"); }