const std = @import("std.zig"); const cstr = std.cstr; const unicode = std.unicode; const io = std.io; const fs = std.fs; const os = std.os; const process = std.process; const File = std.fs.File; const windows = os.windows; const mem = std.mem; const debug = std.debug; const BufMap = std.BufMap; const Buffer = std.Buffer; const builtin = @import("builtin"); const Os = builtin.Os; const TailQueue = std.TailQueue; const maxInt = std.math.maxInt; pub const ChildProcess = struct { pid: if (builtin.os == .windows) void else i32, handle: if (builtin.os == .windows) windows.HANDLE else void, thread_handle: if (builtin.os == .windows) windows.HANDLE else void, allocator: *mem.Allocator, stdin: ?File, stdout: ?File, stderr: ?File, term: ?(SpawnError!Term), argv: []const []const u8, /// Leave as null to use the current env map using the supplied allocator. env_map: ?*const BufMap, stdin_behavior: StdIo, stdout_behavior: StdIo, stderr_behavior: StdIo, /// Set to change the user id when spawning the child process. uid: if (builtin.os == .windows) void else ?u32, /// Set to change the group id when spawning the child process. gid: if (builtin.os == .windows) void else ?u32, /// Set to change the current working directory when spawning the child process. cwd: ?[]const u8, err_pipe: if (builtin.os == .windows) void else [2]os.fd_t, llnode: if (builtin.os == .windows) void else TailQueue(*ChildProcess).Node, pub const SpawnError = error{ OutOfMemory, /// POSIX-only. `StdIo.Ignore` was selected and opening `/dev/null` returned ENODEV. NoDevice, /// Windows-only. One of: /// * `cwd` was provided and it could not be re-encoded into UTF16LE, or /// * The `PATH` or `PATHEXT` environment variable contained invalid UTF-8. InvalidUtf8, /// Windows-only. `cwd` was provided, but the path did not exist when spawning the child process. CurrentWorkingDirectoryUnlinked, } || os.ExecveError || os.SetIdError || os.ChangeCurDirError || windows.CreateProcessError || windows.WaitForSingleObjectError; pub const Term = union(enum) { Exited: u32, Signal: u32, Stopped: u32, Unknown: u32, }; pub const StdIo = enum { Inherit, Ignore, Pipe, Close, }; /// First argument in argv is the executable. /// On success must call deinit. pub fn init(argv: []const []const u8, allocator: *mem.Allocator) !*ChildProcess { const child = try allocator.create(ChildProcess); child.* = ChildProcess{ .allocator = allocator, .argv = argv, .pid = undefined, .handle = undefined, .thread_handle = undefined, .err_pipe = undefined, .llnode = undefined, .term = null, .env_map = null, .cwd = null, .uid = if (builtin.os == .windows) {} else null, .gid = if (builtin.os == .windows) {} else null, .stdin = null, .stdout = null, .stderr = null, .stdin_behavior = StdIo.Inherit, .stdout_behavior = StdIo.Inherit, .stderr_behavior = StdIo.Inherit, }; errdefer allocator.destroy(child); return child; } pub fn setUserName(self: *ChildProcess, name: []const u8) !void { const user_info = try os.getUserInfo(name); self.uid = user_info.uid; self.gid = user_info.gid; } /// On success must call `kill` or `wait`. pub fn spawn(self: *ChildProcess) SpawnError!void { if (builtin.os == .windows) { return self.spawnWindows(); } else { return self.spawnPosix(); } } pub fn spawnAndWait(self: *ChildProcess) SpawnError!Term { try self.spawn(); return self.wait(); } /// Forcibly terminates child process and then cleans up all resources. pub fn kill(self: *ChildProcess) !Term { if (builtin.os == .windows) { return self.killWindows(1); } else { return self.killPosix(); } } pub fn killWindows(self: *ChildProcess, exit_code: windows.UINT) !Term { if (self.term) |term| { self.cleanupStreams(); return term; } try windows.TerminateProcess(self.handle, exit_code); try self.waitUnwrappedWindows(); return self.term.?; } pub fn killPosix(self: *ChildProcess) !Term { if (self.term) |term| { self.cleanupStreams(); return term; } try os.kill(self.pid, os.SIGTERM); self.waitUnwrapped(); return self.term.?; } /// Blocks until child process terminates and then cleans up all resources. pub fn wait(self: *ChildProcess) !Term { if (builtin.os == .windows) { return self.waitWindows(); } else { return self.waitPosix(); } } pub const ExecResult = struct { term: Term, stdout: []u8, stderr: []u8, }; /// Spawns a child process, waits for it, collecting stdout and stderr, and then returns. /// If it succeeds, the caller owns result.stdout and result.stderr memory. pub fn exec( allocator: *mem.Allocator, argv: []const []const u8, cwd: ?[]const u8, env_map: ?*const BufMap, max_output_size: usize, ) !ExecResult { const child = try ChildProcess.init(argv, allocator); defer child.deinit(); child.stdin_behavior = ChildProcess.StdIo.Ignore; child.stdout_behavior = ChildProcess.StdIo.Pipe; child.stderr_behavior = ChildProcess.StdIo.Pipe; child.cwd = cwd; child.env_map = env_map; try child.spawn(); var stdout = Buffer.initNull(allocator); var stderr = Buffer.initNull(allocator); defer Buffer.deinit(&stdout); defer Buffer.deinit(&stderr); var stdout_file_in_stream = child.stdout.?.inStream(); var stderr_file_in_stream = child.stderr.?.inStream(); try stdout_file_in_stream.stream.readAllBuffer(&stdout, max_output_size); try stderr_file_in_stream.stream.readAllBuffer(&stderr, max_output_size); return ExecResult{ .term = try child.wait(), .stdout = stdout.toOwnedSlice(), .stderr = stderr.toOwnedSlice(), }; } fn waitWindows(self: *ChildProcess) !Term { if (self.term) |term| { self.cleanupStreams(); return term; } try self.waitUnwrappedWindows(); return self.term.?; } fn waitPosix(self: *ChildProcess) !Term { if (self.term) |term| { self.cleanupStreams(); return term; } self.waitUnwrapped(); return self.term.?; } pub fn deinit(self: *ChildProcess) void { self.allocator.destroy(self); } fn waitUnwrappedWindows(self: *ChildProcess) !void { const result = windows.WaitForSingleObjectEx(self.handle, windows.INFINITE, false); self.term = @as(SpawnError!Term, x: { var exit_code: windows.DWORD = undefined; if (windows.kernel32.GetExitCodeProcess(self.handle, &exit_code) == 0) { break :x Term{ .Unknown = 0 }; } else { break :x Term{ .Exited = exit_code }; } }); os.close(self.handle); os.close(self.thread_handle); self.cleanupStreams(); return result; } fn waitUnwrapped(self: *ChildProcess) void { const status = os.waitpid(self.pid, 0); self.cleanupStreams(); self.handleWaitResult(status); } fn handleWaitResult(self: *ChildProcess, status: u32) void { // TODO https://github.com/ziglang/zig/issues/3190 var term = self.cleanupAfterWait(status); self.term = term; } fn cleanupStreams(self: *ChildProcess) void { if (self.stdin) |*stdin| { stdin.close(); self.stdin = null; } if (self.stdout) |*stdout| { stdout.close(); self.stdout = null; } if (self.stderr) |*stderr| { stderr.close(); self.stderr = null; } } fn cleanupAfterWait(self: *ChildProcess, status: u32) !Term { defer { os.close(self.err_pipe[0]); os.close(self.err_pipe[1]); } // Write maxInt(ErrInt) to the write end of the err_pipe. This is after // waitpid, so this write is guaranteed to be after the child // pid potentially wrote an error. This way we can do a blocking // read on the error pipe and either get maxInt(ErrInt) (no error) or // an error code. try writeIntFd(self.err_pipe[1], maxInt(ErrInt)); const err_int = try readIntFd(self.err_pipe[0]); // Here we potentially return the fork child's error // from the parent pid. if (err_int != maxInt(ErrInt)) { return @errSetCast(SpawnError, @intToError(err_int)); } return statusToTerm(status); } fn statusToTerm(status: u32) Term { return if (os.WIFEXITED(status)) Term{ .Exited = os.WEXITSTATUS(status) } else if (os.WIFSIGNALED(status)) Term{ .Signal = os.WTERMSIG(status) } else if (os.WIFSTOPPED(status)) Term{ .Stopped = os.WSTOPSIG(status) } else Term{ .Unknown = status }; } fn spawnPosix(self: *ChildProcess) SpawnError!void { const stdin_pipe = if (self.stdin_behavior == StdIo.Pipe) try os.pipe() else undefined; errdefer if (self.stdin_behavior == StdIo.Pipe) { destroyPipe(stdin_pipe); }; const stdout_pipe = if (self.stdout_behavior == StdIo.Pipe) try os.pipe() else undefined; errdefer if (self.stdout_behavior == StdIo.Pipe) { destroyPipe(stdout_pipe); }; const stderr_pipe = if (self.stderr_behavior == StdIo.Pipe) try os.pipe() else undefined; errdefer if (self.stderr_behavior == StdIo.Pipe) { destroyPipe(stderr_pipe); }; const any_ignore = (self.stdin_behavior == StdIo.Ignore or self.stdout_behavior == StdIo.Ignore or self.stderr_behavior == StdIo.Ignore); const dev_null_fd = if (any_ignore) os.openC("/dev/null", os.O_RDWR, 0) catch |err| switch (err) { error.PathAlreadyExists => unreachable, error.NoSpaceLeft => unreachable, error.FileTooBig => unreachable, error.DeviceBusy => unreachable, else => |e| return e, } else undefined; defer { if (any_ignore) os.close(dev_null_fd); } var env_map_owned: BufMap = undefined; var we_own_env_map: bool = undefined; const env_map = if (self.env_map) |env_map| x: { we_own_env_map = false; break :x env_map; } else x: { we_own_env_map = true; env_map_owned = try process.getEnvMap(self.allocator); break :x &env_map_owned; }; defer { if (we_own_env_map) env_map_owned.deinit(); } // This pipe is used to communicate errors between the time of fork // and execve from the child process to the parent process. const err_pipe = try os.pipe(); errdefer destroyPipe(err_pipe); const pid_result = try os.fork(); if (pid_result == 0) { // we are the child setUpChildIo(self.stdin_behavior, stdin_pipe[0], os.STDIN_FILENO, dev_null_fd) catch |err| forkChildErrReport(err_pipe[1], err); setUpChildIo(self.stdout_behavior, stdout_pipe[1], os.STDOUT_FILENO, dev_null_fd) catch |err| forkChildErrReport(err_pipe[1], err); setUpChildIo(self.stderr_behavior, stderr_pipe[1], os.STDERR_FILENO, dev_null_fd) catch |err| forkChildErrReport(err_pipe[1], err); if (self.stdin_behavior == .Pipe) { os.close(stdin_pipe[0]); os.close(stdin_pipe[1]); } if (self.stdout_behavior == .Pipe) { os.close(stdout_pipe[0]); os.close(stdout_pipe[1]); } if (self.stderr_behavior == .Pipe) { os.close(stderr_pipe[0]); os.close(stderr_pipe[1]); } if (self.cwd) |cwd| { os.chdir(cwd) catch |err| forkChildErrReport(err_pipe[1], err); } if (self.gid) |gid| { os.setregid(gid, gid) catch |err| forkChildErrReport(err_pipe[1], err); } if (self.uid) |uid| { os.setreuid(uid, uid) catch |err| forkChildErrReport(err_pipe[1], err); } const err = os.execvpe(self.allocator, self.argv, env_map); forkChildErrReport(err_pipe[1], err); } // we are the parent const pid = @intCast(i32, pid_result); if (self.stdin_behavior == StdIo.Pipe) { self.stdin = File.openHandle(stdin_pipe[1]); } else { self.stdin = null; } if (self.stdout_behavior == StdIo.Pipe) { self.stdout = File.openHandle(stdout_pipe[0]); } else { self.stdout = null; } if (self.stderr_behavior == StdIo.Pipe) { self.stderr = File.openHandle(stderr_pipe[0]); } else { self.stderr = null; } self.pid = pid; self.err_pipe = err_pipe; self.llnode = TailQueue(*ChildProcess).Node.init(self); self.term = null; if (self.stdin_behavior == StdIo.Pipe) { os.close(stdin_pipe[0]); } if (self.stdout_behavior == StdIo.Pipe) { os.close(stdout_pipe[1]); } if (self.stderr_behavior == StdIo.Pipe) { os.close(stderr_pipe[1]); } } fn spawnWindows(self: *ChildProcess) SpawnError!void { const saAttr = windows.SECURITY_ATTRIBUTES{ .nLength = @sizeOf(windows.SECURITY_ATTRIBUTES), .bInheritHandle = windows.TRUE, .lpSecurityDescriptor = null, }; const any_ignore = (self.stdin_behavior == StdIo.Ignore or self.stdout_behavior == StdIo.Ignore or self.stderr_behavior == StdIo.Ignore); // TODO use CreateFileW here since we are using a string literal for the path const nul_handle = if (any_ignore) windows.CreateFile( "NUL", windows.GENERIC_READ, windows.FILE_SHARE_READ, null, windows.OPEN_EXISTING, windows.FILE_ATTRIBUTE_NORMAL, null, ) catch |err| switch (err) { error.SharingViolation => unreachable, // not possible for "NUL" error.PathAlreadyExists => unreachable, // not possible for "NUL" error.PipeBusy => unreachable, // not possible for "NUL" error.InvalidUtf8 => unreachable, // not possible for "NUL" error.BadPathName => unreachable, // not possible for "NUL" error.FileNotFound => unreachable, // not possible for "NUL" error.AccessDenied => unreachable, // not possible for "NUL" error.NameTooLong => unreachable, // not possible for "NUL" else => |e| return e, } else undefined; defer { if (any_ignore) os.close(nul_handle); } if (any_ignore) { try windows.SetHandleInformation(nul_handle, windows.HANDLE_FLAG_INHERIT, 0); } var g_hChildStd_IN_Rd: ?windows.HANDLE = null; var g_hChildStd_IN_Wr: ?windows.HANDLE = null; switch (self.stdin_behavior) { StdIo.Pipe => { try windowsMakePipeIn(&g_hChildStd_IN_Rd, &g_hChildStd_IN_Wr, &saAttr); }, StdIo.Ignore => { g_hChildStd_IN_Rd = nul_handle; }, StdIo.Inherit => { g_hChildStd_IN_Rd = windows.GetStdHandle(windows.STD_INPUT_HANDLE) catch null; }, StdIo.Close => { g_hChildStd_IN_Rd = null; }, } errdefer if (self.stdin_behavior == StdIo.Pipe) { windowsDestroyPipe(g_hChildStd_IN_Rd, g_hChildStd_IN_Wr); }; var g_hChildStd_OUT_Rd: ?windows.HANDLE = null; var g_hChildStd_OUT_Wr: ?windows.HANDLE = null; switch (self.stdout_behavior) { StdIo.Pipe => { try windowsMakePipeOut(&g_hChildStd_OUT_Rd, &g_hChildStd_OUT_Wr, &saAttr); }, StdIo.Ignore => { g_hChildStd_OUT_Wr = nul_handle; }, StdIo.Inherit => { g_hChildStd_OUT_Wr = windows.GetStdHandle(windows.STD_OUTPUT_HANDLE) catch null; }, StdIo.Close => { g_hChildStd_OUT_Wr = null; }, } errdefer if (self.stdin_behavior == StdIo.Pipe) { windowsDestroyPipe(g_hChildStd_OUT_Rd, g_hChildStd_OUT_Wr); }; var g_hChildStd_ERR_Rd: ?windows.HANDLE = null; var g_hChildStd_ERR_Wr: ?windows.HANDLE = null; switch (self.stderr_behavior) { StdIo.Pipe => { try windowsMakePipeOut(&g_hChildStd_ERR_Rd, &g_hChildStd_ERR_Wr, &saAttr); }, StdIo.Ignore => { g_hChildStd_ERR_Wr = nul_handle; }, StdIo.Inherit => { g_hChildStd_ERR_Wr = windows.GetStdHandle(windows.STD_ERROR_HANDLE) catch null; }, StdIo.Close => { g_hChildStd_ERR_Wr = null; }, } errdefer if (self.stdin_behavior == StdIo.Pipe) { windowsDestroyPipe(g_hChildStd_ERR_Rd, g_hChildStd_ERR_Wr); }; const cmd_line = try windowsCreateCommandLine(self.allocator, self.argv); defer self.allocator.free(cmd_line); var siStartInfo = windows.STARTUPINFOW{ .cb = @sizeOf(windows.STARTUPINFOW), .hStdError = g_hChildStd_ERR_Wr, .hStdOutput = g_hChildStd_OUT_Wr, .hStdInput = g_hChildStd_IN_Rd, .dwFlags = windows.STARTF_USESTDHANDLES, .lpReserved = null, .lpDesktop = null, .lpTitle = null, .dwX = 0, .dwY = 0, .dwXSize = 0, .dwYSize = 0, .dwXCountChars = 0, .dwYCountChars = 0, .dwFillAttribute = 0, .wShowWindow = 0, .cbReserved2 = 0, .lpReserved2 = null, }; var piProcInfo: windows.PROCESS_INFORMATION = undefined; const cwd_slice = if (self.cwd) |cwd| try cstr.addNullByte(self.allocator, cwd) else null; defer if (cwd_slice) |cwd| self.allocator.free(cwd); const cwd_w = if (cwd_slice) |cwd| try unicode.utf8ToUtf16LeWithNull(self.allocator, cwd) else null; defer if (cwd_w) |cwd| self.allocator.free(cwd); const cwd_w_ptr = if (cwd_w) |cwd| cwd.ptr else null; const maybe_envp_buf = if (self.env_map) |env_map| try createWindowsEnvBlock(self.allocator, env_map) else null; defer if (maybe_envp_buf) |envp_buf| self.allocator.free(envp_buf); const envp_ptr = if (maybe_envp_buf) |envp_buf| envp_buf.ptr else null; // the cwd set in ChildProcess is in effect when choosing the executable path // to match posix semantics const app_name = x: { if (self.cwd) |cwd| { const resolved = try fs.path.resolve(self.allocator, &[_][]const u8{ cwd, self.argv[0] }); defer self.allocator.free(resolved); break :x try cstr.addNullByte(self.allocator, resolved); } else { break :x try cstr.addNullByte(self.allocator, self.argv[0]); } }; defer self.allocator.free(app_name); const app_name_w = try unicode.utf8ToUtf16LeWithNull(self.allocator, app_name); defer self.allocator.free(app_name_w); const cmd_line_w = try unicode.utf8ToUtf16LeWithNull(self.allocator, cmd_line); defer self.allocator.free(cmd_line_w); windowsCreateProcess(app_name_w.ptr, cmd_line_w.ptr, envp_ptr, cwd_w_ptr, &siStartInfo, &piProcInfo) catch |no_path_err| { if (no_path_err != error.FileNotFound) return no_path_err; var free_path = true; const PATH = process.getEnvVarOwned(self.allocator, "PATH") catch |err| switch (err) { error.EnvironmentVariableNotFound => blk: { free_path = false; break :blk ""; }, else => |e| return e, }; defer if (free_path) self.allocator.free(PATH); var free_path_ext = true; const PATHEXT = process.getEnvVarOwned(self.allocator, "PATHEXT") catch |err| switch (err) { error.EnvironmentVariableNotFound => blk: { free_path_ext = false; break :blk ""; }, else => |e| return e, }; defer if (free_path_ext) self.allocator.free(PATHEXT); var it = mem.tokenize(PATH, ";"); retry: while (it.next()) |search_path| { var ext_it = mem.tokenize(PATHEXT, ";"); while (ext_it.next()) |app_ext| { const app_basename = try mem.concat(self.allocator, u8, &[_][]const u8{ app_name[0 .. app_name.len - 1], app_ext }); defer self.allocator.free(app_basename); const joined_path = try fs.path.join(self.allocator, &[_][]const u8{ search_path, app_basename }); defer self.allocator.free(joined_path); const joined_path_w = try unicode.utf8ToUtf16LeWithNull(self.allocator, joined_path); defer self.allocator.free(joined_path_w); if (windowsCreateProcess(joined_path_w.ptr, cmd_line_w.ptr, envp_ptr, cwd_w_ptr, &siStartInfo, &piProcInfo)) |_| { break :retry; } else |err| switch (err) { error.FileNotFound => continue, error.AccessDenied => continue, else => return err, } } } else { return no_path_err; // return the original error } }; if (g_hChildStd_IN_Wr) |h| { self.stdin = File.openHandle(h); } else { self.stdin = null; } if (g_hChildStd_OUT_Rd) |h| { self.stdout = File.openHandle(h); } else { self.stdout = null; } if (g_hChildStd_ERR_Rd) |h| { self.stderr = File.openHandle(h); } else { self.stderr = null; } self.handle = piProcInfo.hProcess; self.thread_handle = piProcInfo.hThread; self.term = null; if (self.stdin_behavior == StdIo.Pipe) { os.close(g_hChildStd_IN_Rd.?); } if (self.stderr_behavior == StdIo.Pipe) { os.close(g_hChildStd_ERR_Wr.?); } if (self.stdout_behavior == StdIo.Pipe) { os.close(g_hChildStd_OUT_Wr.?); } } fn setUpChildIo(stdio: StdIo, pipe_fd: i32, std_fileno: i32, dev_null_fd: i32) !void { switch (stdio) { StdIo.Pipe => try os.dup2(pipe_fd, std_fileno), StdIo.Close => os.close(std_fileno), StdIo.Inherit => {}, StdIo.Ignore => try os.dup2(dev_null_fd, std_fileno), } } }; fn windowsCreateProcess(app_name: [*]u16, cmd_line: [*]u16, envp_ptr: ?[*]u16, cwd_ptr: ?[*]u16, lpStartupInfo: *windows.STARTUPINFOW, lpProcessInformation: *windows.PROCESS_INFORMATION) !void { // TODO the docs for environment pointer say: // > A pointer to the environment block for the new process. If this parameter // > is NULL, the new process uses the environment of the calling process. // > ... // > An environment block can contain either Unicode or ANSI characters. If // > the environment block pointed to by lpEnvironment contains Unicode // > characters, be sure that dwCreationFlags includes CREATE_UNICODE_ENVIRONMENT. // > If this parameter is NULL and the environment block of the parent process // > contains Unicode characters, you must also ensure that dwCreationFlags // > includes CREATE_UNICODE_ENVIRONMENT. // This seems to imply that we have to somehow know whether our process parent passed // CREATE_UNICODE_ENVIRONMENT if we want to pass NULL for the environment parameter. // Since we do not know this information that would imply that we must not pass NULL // for the parameter. // However this would imply that programs compiled with -DUNICODE could not pass // environment variables to programs that were not, which seems unlikely. // More investigation is needed. return windows.CreateProcessW( app_name, cmd_line, null, null, windows.TRUE, windows.CREATE_UNICODE_ENVIRONMENT, @ptrCast(?*c_void, envp_ptr), cwd_ptr, lpStartupInfo, lpProcessInformation, ); } /// Caller must dealloc. /// Guarantees a null byte at result[result.len]. fn windowsCreateCommandLine(allocator: *mem.Allocator, argv: []const []const u8) ![]u8 { var buf = try Buffer.initSize(allocator, 0); defer buf.deinit(); var buf_stream = &io.BufferOutStream.init(&buf).stream; for (argv) |arg, arg_i| { if (arg_i != 0) try buf.appendByte(' '); if (mem.indexOfAny(u8, arg, " \t\n\"") == null) { try buf.append(arg); continue; } try buf.appendByte('"'); var backslash_count: usize = 0; for (arg) |byte| { switch (byte) { '\\' => backslash_count += 1, '"' => { try buf_stream.writeByteNTimes('\\', backslash_count * 2 + 1); try buf.appendByte('"'); backslash_count = 0; }, else => { try buf_stream.writeByteNTimes('\\', backslash_count); try buf.appendByte(byte); backslash_count = 0; }, } } try buf_stream.writeByteNTimes('\\', backslash_count * 2); try buf.appendByte('"'); } return buf.toOwnedSlice(); } fn windowsDestroyPipe(rd: ?windows.HANDLE, wr: ?windows.HANDLE) void { if (rd) |h| os.close(h); if (wr) |h| os.close(h); } fn windowsMakePipeIn(rd: *?windows.HANDLE, wr: *?windows.HANDLE, sattr: *const windows.SECURITY_ATTRIBUTES) !void { var rd_h: windows.HANDLE = undefined; var wr_h: windows.HANDLE = undefined; try windows.CreatePipe(&rd_h, &wr_h, sattr); errdefer windowsDestroyPipe(rd_h, wr_h); try windows.SetHandleInformation(wr_h, windows.HANDLE_FLAG_INHERIT, 0); rd.* = rd_h; wr.* = wr_h; } fn windowsMakePipeOut(rd: *?windows.HANDLE, wr: *?windows.HANDLE, sattr: *const windows.SECURITY_ATTRIBUTES) !void { var rd_h: windows.HANDLE = undefined; var wr_h: windows.HANDLE = undefined; try windows.CreatePipe(&rd_h, &wr_h, sattr); errdefer windowsDestroyPipe(rd_h, wr_h); try windows.SetHandleInformation(rd_h, windows.HANDLE_FLAG_INHERIT, 0); rd.* = rd_h; wr.* = wr_h; } fn destroyPipe(pipe: [2]os.fd_t) void { os.close(pipe[0]); os.close(pipe[1]); } // Child of fork calls this to report an error to the fork parent. // Then the child exits. fn forkChildErrReport(fd: i32, err: ChildProcess.SpawnError) noreturn { writeIntFd(fd, @as(ErrInt, @errorToInt(err))) catch {}; os.exit(1); } const ErrInt = @IntType(false, @sizeOf(anyerror) * 8); fn writeIntFd(fd: i32, value: ErrInt) !void { const stream = &File.openHandle(fd).outStream().stream; stream.writeIntNative(ErrInt, value) catch return error.SystemResources; } fn readIntFd(fd: i32) !ErrInt { const stream = &File.openHandle(fd).inStream().stream; return stream.readIntNative(ErrInt) catch return error.SystemResources; } /// Caller must free result. pub fn createWindowsEnvBlock(allocator: *mem.Allocator, env_map: *const BufMap) ![]u16 { // count bytes needed const max_chars_needed = x: { var max_chars_needed: usize = 4; // 4 for the final 4 null bytes var it = env_map.iterator(); while (it.next()) |pair| { // +1 for '=' // +1 for null byte max_chars_needed += pair.key.len + pair.value.len + 2; } break :x max_chars_needed; }; const result = try allocator.alloc(u16, max_chars_needed); errdefer allocator.free(result); var it = env_map.iterator(); var i: usize = 0; while (it.next()) |pair| { i += try unicode.utf8ToUtf16Le(result[i..], pair.key); result[i] = '='; i += 1; i += try unicode.utf8ToUtf16Le(result[i..], pair.value); result[i] = 0; i += 1; } result[i] = 0; i += 1; result[i] = 0; i += 1; result[i] = 0; i += 1; result[i] = 0; i += 1; return allocator.shrink(result, i); }