//===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // // Main internal TSan header file. // // Ground rules: // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static // function-scope locals) // - All functions/classes/etc reside in namespace __tsan, except for those // declared in tsan_interface.h. // - Platform-specific files should be used instead of ifdefs (*). // - No system headers included in header files (*). // - Platform specific headres included only into platform-specific files (*). // // (*) Except when inlining is critical for performance. //===----------------------------------------------------------------------===// #ifndef TSAN_RTL_H #define TSAN_RTL_H #include "sanitizer_common/sanitizer_allocator.h" #include "sanitizer_common/sanitizer_allocator_internal.h" #include "sanitizer_common/sanitizer_asm.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_deadlock_detector_interface.h" #include "sanitizer_common/sanitizer_libignore.h" #include "sanitizer_common/sanitizer_suppressions.h" #include "sanitizer_common/sanitizer_thread_registry.h" #include "sanitizer_common/sanitizer_vector.h" #include "tsan_clock.h" #include "tsan_defs.h" #include "tsan_flags.h" #include "tsan_mman.h" #include "tsan_sync.h" #include "tsan_trace.h" #include "tsan_report.h" #include "tsan_platform.h" #include "tsan_mutexset.h" #include "tsan_ignoreset.h" #include "tsan_stack_trace.h" #if SANITIZER_WORDSIZE != 64 # error "ThreadSanitizer is supported only on 64-bit platforms" #endif namespace __tsan { #if !SANITIZER_GO struct MapUnmapCallback; #if defined(__mips64) || defined(__aarch64__) || defined(__powerpc__) struct AP32 { static const uptr kSpaceBeg = 0; static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE; static const uptr kMetadataSize = 0; typedef __sanitizer::CompactSizeClassMap SizeClassMap; static const uptr kRegionSizeLog = 20; using AddressSpaceView = LocalAddressSpaceView; typedef __tsan::MapUnmapCallback MapUnmapCallback; static const uptr kFlags = 0; }; typedef SizeClassAllocator32 PrimaryAllocator; #else struct AP64 { // Allocator64 parameters. Deliberately using a short name. static const uptr kSpaceBeg = Mapping::kHeapMemBeg; static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg; static const uptr kMetadataSize = 0; typedef DefaultSizeClassMap SizeClassMap; typedef __tsan::MapUnmapCallback MapUnmapCallback; static const uptr kFlags = 0; using AddressSpaceView = LocalAddressSpaceView; }; typedef SizeClassAllocator64 PrimaryAllocator; #endif typedef CombinedAllocator Allocator; typedef Allocator::AllocatorCache AllocatorCache; Allocator *allocator(); #endif const u64 kShadowRodata = (u64)-1; // .rodata shadow marker // FastState (from most significant bit): // ignore : 1 // tid : kTidBits // unused : - // history_size : 3 // epoch : kClkBits class FastState { public: FastState(u64 tid, u64 epoch) { x_ = tid << kTidShift; x_ |= epoch; DCHECK_EQ(tid, this->tid()); DCHECK_EQ(epoch, this->epoch()); DCHECK_EQ(GetIgnoreBit(), false); } explicit FastState(u64 x) : x_(x) { } u64 raw() const { return x_; } u64 tid() const { u64 res = (x_ & ~kIgnoreBit) >> kTidShift; return res; } u64 TidWithIgnore() const { u64 res = x_ >> kTidShift; return res; } u64 epoch() const { u64 res = x_ & ((1ull << kClkBits) - 1); return res; } void IncrementEpoch() { u64 old_epoch = epoch(); x_ += 1; DCHECK_EQ(old_epoch + 1, epoch()); (void)old_epoch; } void SetIgnoreBit() { x_ |= kIgnoreBit; } void ClearIgnoreBit() { x_ &= ~kIgnoreBit; } bool GetIgnoreBit() const { return (s64)x_ < 0; } void SetHistorySize(int hs) { CHECK_GE(hs, 0); CHECK_LE(hs, 7); x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift); } ALWAYS_INLINE int GetHistorySize() const { return (int)((x_ >> kHistoryShift) & kHistoryMask); } void ClearHistorySize() { SetHistorySize(0); } ALWAYS_INLINE u64 GetTracePos() const { const int hs = GetHistorySize(); // When hs == 0, the trace consists of 2 parts. const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1; return epoch() & mask; } private: friend class Shadow; static const int kTidShift = 64 - kTidBits - 1; static const u64 kIgnoreBit = 1ull << 63; static const u64 kFreedBit = 1ull << 63; static const u64 kHistoryShift = kClkBits; static const u64 kHistoryMask = 7; u64 x_; }; // Shadow (from most significant bit): // freed : 1 // tid : kTidBits // is_atomic : 1 // is_read : 1 // size_log : 2 // addr0 : 3 // epoch : kClkBits class Shadow : public FastState { public: explicit Shadow(u64 x) : FastState(x) { } explicit Shadow(const FastState &s) : FastState(s.x_) { ClearHistorySize(); } void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) { DCHECK_EQ((x_ >> kClkBits) & 31, 0); DCHECK_LE(addr0, 7); DCHECK_LE(kAccessSizeLog, 3); x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits; DCHECK_EQ(kAccessSizeLog, size_log()); DCHECK_EQ(addr0, this->addr0()); } void SetWrite(unsigned kAccessIsWrite) { DCHECK_EQ(x_ & kReadBit, 0); if (!kAccessIsWrite) x_ |= kReadBit; DCHECK_EQ(kAccessIsWrite, IsWrite()); } void SetAtomic(bool kIsAtomic) { DCHECK(!IsAtomic()); if (kIsAtomic) x_ |= kAtomicBit; DCHECK_EQ(IsAtomic(), kIsAtomic); } bool IsAtomic() const { return x_ & kAtomicBit; } bool IsZero() const { return x_ == 0; } static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) { u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift; DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore()); return shifted_xor == 0; } static ALWAYS_INLINE bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) { u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31; return masked_xor == 0; } static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2, unsigned kS2AccessSize) { bool res = false; u64 diff = s1.addr0() - s2.addr0(); if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // if (s1.addr0() + size1) > s2.addr0()) return true; if (s1.size() > -diff) res = true; } else { // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true; if (kS2AccessSize > diff) res = true; } DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2)); DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1)); return res; } u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; } u64 ALWAYS_INLINE size() const { return 1ull << size_log(); } bool ALWAYS_INLINE IsWrite() const { return !IsRead(); } bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; } // The idea behind the freed bit is as follows. // When the memory is freed (or otherwise unaccessible) we write to the shadow // values with tid/epoch related to the free and the freed bit set. // During memory accesses processing the freed bit is considered // as msb of tid. So any access races with shadow with freed bit set // (it is as if write from a thread with which we never synchronized before). // This allows us to detect accesses to freed memory w/o additional // overheads in memory access processing and at the same time restore // tid/epoch of free. void MarkAsFreed() { x_ |= kFreedBit; } bool IsFreed() const { return x_ & kFreedBit; } bool GetFreedAndReset() { bool res = x_ & kFreedBit; x_ &= ~kFreedBit; return res; } bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const { bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift) | (u64(kIsAtomic) << kAtomicShift)); DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic)); return v; } bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const { bool v = ((x_ >> kReadShift) & 3) <= u64((kIsWrite ^ 1) | (kIsAtomic << 1)); DCHECK_EQ(v, (IsAtomic() < kIsAtomic) || (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite)); return v; } bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const { bool v = ((x_ >> kReadShift) & 3) >= u64((kIsWrite ^ 1) | (kIsAtomic << 1)); DCHECK_EQ(v, (IsAtomic() > kIsAtomic) || (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite)); return v; } private: static const u64 kReadShift = 5 + kClkBits; static const u64 kReadBit = 1ull << kReadShift; static const u64 kAtomicShift = 6 + kClkBits; static const u64 kAtomicBit = 1ull << kAtomicShift; u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; } static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) { if (s1.addr0() == s2.addr0()) return true; if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0()) return true; if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0()) return true; return false; } }; struct ThreadSignalContext; struct JmpBuf { uptr sp; int int_signal_send; bool in_blocking_func; uptr in_signal_handler; uptr *shadow_stack_pos; }; // A Processor represents a physical thread, or a P for Go. // It is used to store internal resources like allocate cache, and does not // participate in race-detection logic (invisible to end user). // In C++ it is tied to an OS thread just like ThreadState, however ideally // it should be tied to a CPU (this way we will have fewer allocator caches). // In Go it is tied to a P, so there are significantly fewer Processor's than // ThreadState's (which are tied to Gs). // A ThreadState must be wired with a Processor to handle events. struct Processor { ThreadState *thr; // currently wired thread, or nullptr #if !SANITIZER_GO AllocatorCache alloc_cache; InternalAllocatorCache internal_alloc_cache; #endif DenseSlabAllocCache block_cache; DenseSlabAllocCache sync_cache; DenseSlabAllocCache clock_cache; DDPhysicalThread *dd_pt; }; #if !SANITIZER_GO // ScopedGlobalProcessor temporary setups a global processor for the current // thread, if it does not have one. Intended for interceptors that can run // at the very thread end, when we already destroyed the thread processor. struct ScopedGlobalProcessor { ScopedGlobalProcessor(); ~ScopedGlobalProcessor(); }; #endif // This struct is stored in TLS. struct ThreadState { FastState fast_state; // Synch epoch represents the threads's epoch before the last synchronization // action. It allows to reduce number of shadow state updates. // For example, fast_synch_epoch=100, last write to addr X was at epoch=150, // if we are processing write to X from the same thread at epoch=200, // we do nothing, because both writes happen in the same 'synch epoch'. // That is, if another memory access does not race with the former write, // it does not race with the latter as well. // QUESTION: can we can squeeze this into ThreadState::Fast? // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are // taken by epoch between synchs. // This way we can save one load from tls. u64 fast_synch_epoch; // Technically `current` should be a separate THREADLOCAL variable; // but it is placed here in order to share cache line with previous fields. ThreadState* current; // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read. // We do not distinguish beteween ignoring reads and writes // for better performance. int ignore_reads_and_writes; int ignore_sync; int suppress_reports; // Go does not support ignores. #if !SANITIZER_GO IgnoreSet mop_ignore_set; IgnoreSet sync_ignore_set; #endif // C/C++ uses fixed size shadow stack embed into Trace. // Go uses malloc-allocated shadow stack with dynamic size. uptr *shadow_stack; uptr *shadow_stack_end; uptr *shadow_stack_pos; u64 *racy_shadow_addr; u64 racy_state[2]; MutexSet mset; ThreadClock clock; #if !SANITIZER_GO Vector jmp_bufs; int ignore_interceptors; #endif const u32 tid; const int unique_id; bool in_symbolizer; bool in_ignored_lib; bool is_inited; bool is_dead; bool is_freeing; bool is_vptr_access; const uptr stk_addr; const uptr stk_size; const uptr tls_addr; const uptr tls_size; ThreadContext *tctx; DDLogicalThread *dd_lt; // Current wired Processor, or nullptr. Required to handle any events. Processor *proc1; #if !SANITIZER_GO Processor *proc() { return proc1; } #else Processor *proc(); #endif atomic_uintptr_t in_signal_handler; ThreadSignalContext *signal_ctx; #if !SANITIZER_GO u32 last_sleep_stack_id; ThreadClock last_sleep_clock; #endif // Set in regions of runtime that must be signal-safe and fork-safe. // If set, malloc must not be called. int nomalloc; const ReportDesc *current_report; explicit ThreadState(Context *ctx, u32 tid, int unique_id, u64 epoch, unsigned reuse_count, uptr stk_addr, uptr stk_size, uptr tls_addr, uptr tls_size); }; #if !SANITIZER_GO #if SANITIZER_MAC || SANITIZER_ANDROID ThreadState *cur_thread(); void set_cur_thread(ThreadState *thr); void cur_thread_finalize(); inline void cur_thread_init() { } #else __attribute__((tls_model("initial-exec"))) extern THREADLOCAL char cur_thread_placeholder[]; inline ThreadState *cur_thread() { return reinterpret_cast(cur_thread_placeholder)->current; } inline void cur_thread_init() { ThreadState *thr = reinterpret_cast(cur_thread_placeholder); if (UNLIKELY(!thr->current)) thr->current = thr; } inline void set_cur_thread(ThreadState *thr) { reinterpret_cast(cur_thread_placeholder)->current = thr; } inline void cur_thread_finalize() { } #endif // SANITIZER_MAC || SANITIZER_ANDROID #endif // SANITIZER_GO class ThreadContext final : public ThreadContextBase { public: explicit ThreadContext(int tid); ~ThreadContext(); ThreadState *thr; u32 creation_stack_id; SyncClock sync; // Epoch at which the thread had started. // If we see an event from the thread stamped by an older epoch, // the event is from a dead thread that shared tid with this thread. u64 epoch0; u64 epoch1; // Override superclass callbacks. void OnDead() override; void OnJoined(void *arg) override; void OnFinished() override; void OnStarted(void *arg) override; void OnCreated(void *arg) override; void OnReset() override; void OnDetached(void *arg) override; }; struct RacyStacks { MD5Hash hash[2]; bool operator==(const RacyStacks &other) const { if (hash[0] == other.hash[0] && hash[1] == other.hash[1]) return true; if (hash[0] == other.hash[1] && hash[1] == other.hash[0]) return true; return false; } }; struct RacyAddress { uptr addr_min; uptr addr_max; }; struct FiredSuppression { ReportType type; uptr pc_or_addr; Suppression *supp; }; struct Context { Context(); bool initialized; #if !SANITIZER_GO bool after_multithreaded_fork; #endif MetaMap metamap; Mutex report_mtx; int nreported; int nmissed_expected; atomic_uint64_t last_symbolize_time_ns; void *background_thread; atomic_uint32_t stop_background_thread; ThreadRegistry *thread_registry; Mutex racy_mtx; Vector racy_stacks; Vector racy_addresses; // Number of fired suppressions may be large enough. Mutex fired_suppressions_mtx; InternalMmapVector fired_suppressions; DDetector *dd; ClockAlloc clock_alloc; Flags flags; u64 int_alloc_cnt[MBlockTypeCount]; u64 int_alloc_siz[MBlockTypeCount]; }; extern Context *ctx; // The one and the only global runtime context. ALWAYS_INLINE Flags *flags() { return &ctx->flags; } struct ScopedIgnoreInterceptors { ScopedIgnoreInterceptors() { #if !SANITIZER_GO cur_thread()->ignore_interceptors++; #endif } ~ScopedIgnoreInterceptors() { #if !SANITIZER_GO cur_thread()->ignore_interceptors--; #endif } }; const char *GetObjectTypeFromTag(uptr tag); const char *GetReportHeaderFromTag(uptr tag); uptr TagFromShadowStackFrame(uptr pc); class ScopedReportBase { public: void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, StackTrace stack, const MutexSet *mset); void AddStack(StackTrace stack, bool suppressable = false); void AddThread(const ThreadContext *tctx, bool suppressable = false); void AddThread(int unique_tid, bool suppressable = false); void AddUniqueTid(int unique_tid); void AddMutex(const SyncVar *s); u64 AddMutex(u64 id); void AddLocation(uptr addr, uptr size); void AddSleep(u32 stack_id); void SetCount(int count); const ReportDesc *GetReport() const; protected: ScopedReportBase(ReportType typ, uptr tag); ~ScopedReportBase(); private: ReportDesc *rep_; // Symbolizer makes lots of intercepted calls. If we try to process them, // at best it will cause deadlocks on internal mutexes. ScopedIgnoreInterceptors ignore_interceptors_; void AddDeadMutex(u64 id); ScopedReportBase(const ScopedReportBase &) = delete; void operator=(const ScopedReportBase &) = delete; }; class ScopedReport : public ScopedReportBase { public: explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone); ~ScopedReport(); private: ScopedErrorReportLock lock_; }; bool ShouldReport(ThreadState *thr, ReportType typ); ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack); void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk, MutexSet *mset, uptr *tag = nullptr); // The stack could look like: // |
| | tag | // This will extract the tag and keep: // |
| | template void ExtractTagFromStack(StackTraceTy *stack, uptr *tag = nullptr) { if (stack->size < 2) return; uptr possible_tag_pc = stack->trace[stack->size - 2]; uptr possible_tag = TagFromShadowStackFrame(possible_tag_pc); if (possible_tag == kExternalTagNone) return; stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1]; stack->size -= 1; if (tag) *tag = possible_tag; } template void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack, uptr *tag = nullptr) { uptr size = thr->shadow_stack_pos - thr->shadow_stack; uptr start = 0; if (size + !!toppc > kStackTraceMax) { start = size + !!toppc - kStackTraceMax; size = kStackTraceMax - !!toppc; } stack->Init(&thr->shadow_stack[start], size, toppc); ExtractTagFromStack(stack, tag); } #define GET_STACK_TRACE_FATAL(thr, pc) \ VarSizeStackTrace stack; \ ObtainCurrentStack(thr, pc, &stack); \ stack.ReverseOrder(); void MapShadow(uptr addr, uptr size); void MapThreadTrace(uptr addr, uptr size, const char *name); void DontNeedShadowFor(uptr addr, uptr size); void UnmapShadow(ThreadState *thr, uptr addr, uptr size); void InitializeShadowMemory(); void InitializeInterceptors(); void InitializeLibIgnore(); void InitializeDynamicAnnotations(); void ForkBefore(ThreadState *thr, uptr pc); void ForkParentAfter(ThreadState *thr, uptr pc); void ForkChildAfter(ThreadState *thr, uptr pc); void ReportRace(ThreadState *thr); bool OutputReport(ThreadState *thr, const ScopedReport &srep); bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace); bool IsExpectedReport(uptr addr, uptr size); void PrintMatchedBenignRaces(); #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1 # define DPrintf Printf #else # define DPrintf(...) #endif #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2 # define DPrintf2 Printf #else # define DPrintf2(...) #endif u32 CurrentStackId(ThreadState *thr, uptr pc); ReportStack *SymbolizeStackId(u32 stack_id); void PrintCurrentStack(ThreadState *thr, uptr pc); void PrintCurrentStackSlow(uptr pc); // uses libunwind void Initialize(ThreadState *thr); void MaybeSpawnBackgroundThread(); int Finalize(ThreadState *thr); void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write); void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write); void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic); void MemoryAccessImpl(ThreadState *thr, uptr addr, int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, u64 *shadow_mem, Shadow cur); void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size, bool is_write); void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr, uptr size, uptr step, bool is_write); void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, int size, bool kAccessIsWrite, bool kIsAtomic); const int kSizeLog1 = 0; const int kSizeLog2 = 1; const int kSizeLog4 = 2; const int kSizeLog8 = 3; void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc, uptr addr, int kAccessSizeLog) { MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false); } void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc, uptr addr, int kAccessSizeLog) { MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false); } void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc, uptr addr, int kAccessSizeLog) { MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true); } void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc, uptr addr, int kAccessSizeLog) { MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true); } void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size); void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size); void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size); void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size); void ThreadIgnoreBegin(ThreadState *thr, uptr pc, bool save_stack = true); void ThreadIgnoreEnd(ThreadState *thr, uptr pc); void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc, bool save_stack = true); void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc); void FuncEntry(ThreadState *thr, uptr pc); void FuncExit(ThreadState *thr); int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached); void ThreadStart(ThreadState *thr, int tid, tid_t os_id, ThreadType thread_type); void ThreadFinish(ThreadState *thr); int ThreadConsumeTid(ThreadState *thr, uptr pc, uptr uid); void ThreadJoin(ThreadState *thr, uptr pc, int tid); void ThreadDetach(ThreadState *thr, uptr pc, int tid); void ThreadFinalize(ThreadState *thr); void ThreadSetName(ThreadState *thr, const char *name); int ThreadCount(ThreadState *thr); void ProcessPendingSignals(ThreadState *thr); void ThreadNotJoined(ThreadState *thr, uptr pc, int tid, uptr uid); Processor *ProcCreate(); void ProcDestroy(Processor *proc); void ProcWire(Processor *proc, ThreadState *thr); void ProcUnwire(Processor *proc, ThreadState *thr); // Note: the parameter is called flagz, because flags is already taken // by the global function that returns flags. void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0, int rec = 1); int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr); void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr); void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr); void Acquire(ThreadState *thr, uptr pc, uptr addr); // AcquireGlobal synchronizes the current thread with all other threads. // In terms of happens-before relation, it draws a HB edge from all threads // (where they happen to execute right now) to the current thread. We use it to // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal // right before executing finalizers. This provides a coarse, but simple // approximation of the actual required synchronization. void AcquireGlobal(ThreadState *thr, uptr pc); void Release(ThreadState *thr, uptr pc, uptr addr); void ReleaseStoreAcquire(ThreadState *thr, uptr pc, uptr addr); void ReleaseStore(ThreadState *thr, uptr pc, uptr addr); void AfterSleep(ThreadState *thr, uptr pc); void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c); void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c); void ReleaseStoreAcquireImpl(ThreadState *thr, uptr pc, SyncClock *c); void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c); void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c); // The hacky call uses custom calling convention and an assembly thunk. // It is considerably faster that a normal call for the caller // if it is not executed (it is intended for slow paths from hot functions). // The trick is that the call preserves all registers and the compiler // does not treat it as a call. // If it does not work for you, use normal call. #if !SANITIZER_DEBUG && defined(__x86_64__) && !SANITIZER_MAC // The caller may not create the stack frame for itself at all, // so we create a reserve stack frame for it (1024b must be enough). #define HACKY_CALL(f) \ __asm__ __volatile__("sub $1024, %%rsp;" \ CFI_INL_ADJUST_CFA_OFFSET(1024) \ ".hidden " #f "_thunk;" \ "call " #f "_thunk;" \ "add $1024, %%rsp;" \ CFI_INL_ADJUST_CFA_OFFSET(-1024) \ ::: "memory", "cc"); #else #define HACKY_CALL(f) f() #endif void TraceSwitch(ThreadState *thr); uptr TraceTopPC(ThreadState *thr); uptr TraceSize(); uptr TraceParts(); Trace *ThreadTrace(int tid); extern "C" void __tsan_trace_switch(); void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs, EventType typ, u64 addr) { if (!kCollectHistory) return; DCHECK_GE((int)typ, 0); DCHECK_LE((int)typ, 7); DCHECK_EQ(GetLsb(addr, kEventPCBits), addr); u64 pos = fs.GetTracePos(); if (UNLIKELY((pos % kTracePartSize) == 0)) { #if !SANITIZER_GO HACKY_CALL(__tsan_trace_switch); #else TraceSwitch(thr); #endif } Event *trace = (Event*)GetThreadTrace(fs.tid()); Event *evp = &trace[pos]; Event ev = (u64)addr | ((u64)typ << kEventPCBits); *evp = ev; } #if !SANITIZER_GO uptr ALWAYS_INLINE HeapEnd() { return HeapMemEnd() + PrimaryAllocator::AdditionalSize(); } #endif ThreadState *FiberCreate(ThreadState *thr, uptr pc, unsigned flags); void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber); void FiberSwitch(ThreadState *thr, uptr pc, ThreadState *fiber, unsigned flags); // These need to match __tsan_switch_to_fiber_* flags defined in // tsan_interface.h. See documentation there as well. enum FiberSwitchFlags { FiberSwitchFlagNoSync = 1 << 0, // __tsan_switch_to_fiber_no_sync }; } // namespace __tsan #endif // TSAN_RTL_H