const std = @import("std"); const math = std.math; const common = @import("./common.zig"); const normalize = common.normalize; /// Ported from: /// /// https://github.com/llvm/llvm-project/blob/02d85149a05cb1f6dc49f0ba7a2ceca53718ae17/compiler-rt/lib/builtins/fp_add_impl.inc pub inline fn addf3(comptime T: type, a: T, b: T) T { const bits = @typeInfo(T).Float.bits; const Z = std.meta.Int(.unsigned, bits); const S = std.meta.Int(.unsigned, bits - @clz(@as(Z, bits) - 1)); const typeWidth = bits; const significandBits = math.floatMantissaBits(T); const fractionalBits = math.floatFractionalBits(T); const exponentBits = math.floatExponentBits(T); const signBit = (@as(Z, 1) << (significandBits + exponentBits)); const maxExponent = ((1 << exponentBits) - 1); const integerBit = (@as(Z, 1) << fractionalBits); const quietBit = integerBit >> 1; const significandMask = (@as(Z, 1) << significandBits) - 1; const absMask = signBit - 1; const qnanRep = @as(Z, @bitCast(math.nan(T))) | quietBit; var aRep = @as(Z, @bitCast(a)); var bRep = @as(Z, @bitCast(b)); const aAbs = aRep & absMask; const bAbs = bRep & absMask; const infRep = @as(Z, @bitCast(math.inf(T))); // Detect if a or b is zero, infinity, or NaN. if (aAbs -% @as(Z, 1) >= infRep - @as(Z, 1) or bAbs -% @as(Z, 1) >= infRep - @as(Z, 1)) { // NaN + anything = qNaN if (aAbs > infRep) return @as(T, @bitCast(@as(Z, @bitCast(a)) | quietBit)); // anything + NaN = qNaN if (bAbs > infRep) return @as(T, @bitCast(@as(Z, @bitCast(b)) | quietBit)); if (aAbs == infRep) { // +/-infinity + -/+infinity = qNaN if ((@as(Z, @bitCast(a)) ^ @as(Z, @bitCast(b))) == signBit) { return @as(T, @bitCast(qnanRep)); } // +/-infinity + anything remaining = +/- infinity else { return a; } } // anything remaining + +/-infinity = +/-infinity if (bAbs == infRep) return b; // zero + anything = anything if (aAbs == 0) { // but we need to get the sign right for zero + zero if (bAbs == 0) { return @as(T, @bitCast(@as(Z, @bitCast(a)) & @as(Z, @bitCast(b)))); } else { return b; } } // anything + zero = anything if (bAbs == 0) return a; } // Swap a and b if necessary so that a has the larger absolute value. if (bAbs > aAbs) { const temp = aRep; aRep = bRep; bRep = temp; } // Extract the exponent and significand from the (possibly swapped) a and b. var aExponent = @as(i32, @intCast((aRep >> significandBits) & maxExponent)); var bExponent = @as(i32, @intCast((bRep >> significandBits) & maxExponent)); var aSignificand = aRep & significandMask; var bSignificand = bRep & significandMask; // Normalize any denormals, and adjust the exponent accordingly. if (aExponent == 0) aExponent = normalize(T, &aSignificand); if (bExponent == 0) bExponent = normalize(T, &bSignificand); // The sign of the result is the sign of the larger operand, a. If they // have opposite signs, we are performing a subtraction; otherwise addition. const resultSign = aRep & signBit; const subtraction = (aRep ^ bRep) & signBit != 0; // Shift the significands to give us round, guard and sticky, and or in the // implicit significand bit. (If we fell through from the denormal path it // was already set by normalize( ), but setting it twice won't hurt // anything.) aSignificand = (aSignificand | integerBit) << 3; bSignificand = (bSignificand | integerBit) << 3; // Shift the significand of b by the difference in exponents, with a sticky // bottom bit to get rounding correct. const @"align" = @as(u32, @intCast(aExponent - bExponent)); if (@"align" != 0) { if (@"align" < typeWidth) { const sticky = if (bSignificand << @as(S, @intCast(typeWidth - @"align")) != 0) @as(Z, 1) else 0; bSignificand = (bSignificand >> @as(S, @truncate(@"align"))) | sticky; } else { bSignificand = 1; // sticky; b is known to be non-zero. } } if (subtraction) { aSignificand -= bSignificand; // If a == -b, return +zero. if (aSignificand == 0) return @as(T, @bitCast(@as(Z, 0))); // If partial cancellation occured, we need to left-shift the result // and adjust the exponent: if (aSignificand < integerBit << 3) { const shift = @as(i32, @intCast(@clz(aSignificand))) - @as(i32, @intCast(@clz(integerBit << 3))); aSignificand <<= @as(S, @intCast(shift)); aExponent -= shift; } } else { // addition aSignificand += bSignificand; // If the addition carried up, we need to right-shift the result and // adjust the exponent: if (aSignificand & (integerBit << 4) != 0) { const sticky = aSignificand & 1; aSignificand = aSignificand >> 1 | sticky; aExponent += 1; } } // If we have overflowed the type, return +/- infinity: if (aExponent >= maxExponent) return @as(T, @bitCast(infRep | resultSign)); if (aExponent <= 0) { // Result is denormal; the exponent and round/sticky bits are zero. // All we need to do is shift the significand and apply the correct sign. aSignificand >>= @as(S, @intCast(4 - aExponent)); return @as(T, @bitCast(resultSign | aSignificand)); } // Low three bits are round, guard, and sticky. const roundGuardSticky = aSignificand & 0x7; // Shift the significand into place, and mask off the integer bit, if it's implicit. var result = (aSignificand >> 3) & significandMask; // Insert the exponent and sign. result |= @as(Z, @intCast(aExponent)) << significandBits; result |= resultSign; // Final rounding. The result may overflow to infinity, but that is the // correct result in that case. if (roundGuardSticky > 0x4) result += 1; if (roundGuardSticky == 0x4) result += result & 1; // Restore any explicit integer bit, if it was rounded off if (significandBits != fractionalBits) { if ((result >> significandBits) != 0) result |= integerBit; } return @as(T, @bitCast(result)); } test { _ = @import("addf3_test.zig"); }