//! The standard memory allocation interface. const std = @import("../std.zig"); const assert = std.debug.assert; const math = std.math; const mem = std.mem; const Allocator = @This(); const builtin = @import("builtin"); pub const Error = error{OutOfMemory}; pub const Log2Align = math.Log2Int(usize); // The type erased pointer to the allocator implementation ptr: *anyopaque, vtable: *const VTable, pub const VTable = struct { /// Attempt to allocate exactly `len` bytes aligned to `1 << ptr_align`. /// /// `ret_addr` is optionally provided as the first return address of the /// allocation call stack. If the value is `0` it means no return address /// has been provided. alloc: *const fn (ctx: *anyopaque, len: usize, ptr_align: u8, ret_addr: usize) ?[*]u8, /// Attempt to expand or shrink memory in place. `buf.len` must equal the /// length requested from the most recent successful call to `alloc` or /// `resize`. `buf_align` must equal the same value that was passed as the /// `ptr_align` parameter to the original `alloc` call. /// /// A result of `true` indicates the resize was successful and the /// allocation now has the same address but a size of `new_len`. `false` /// indicates the resize could not be completed without moving the /// allocation to a different address. /// /// `new_len` must be greater than zero. /// /// `ret_addr` is optionally provided as the first return address of the /// allocation call stack. If the value is `0` it means no return address /// has been provided. resize: *const fn (ctx: *anyopaque, buf: []u8, buf_align: u8, new_len: usize, ret_addr: usize) bool, /// Free and invalidate a buffer. /// /// `buf.len` must equal the most recent length returned by `alloc` or /// given to a successful `resize` call. /// /// `buf_align` must equal the same value that was passed as the /// `ptr_align` parameter to the original `alloc` call. /// /// `ret_addr` is optionally provided as the first return address of the /// allocation call stack. If the value is `0` it means no return address /// has been provided. free: *const fn (ctx: *anyopaque, buf: []u8, buf_align: u8, ret_addr: usize) void, }; pub fn noResize( self: *anyopaque, buf: []u8, log2_buf_align: u8, new_len: usize, ret_addr: usize, ) bool { _ = self; _ = buf; _ = log2_buf_align; _ = new_len; _ = ret_addr; return false; } pub fn noFree( self: *anyopaque, buf: []u8, log2_buf_align: u8, ret_addr: usize, ) void { _ = self; _ = buf; _ = log2_buf_align; _ = ret_addr; } /// This function is not intended to be called except from within the /// implementation of an Allocator pub inline fn rawAlloc(self: Allocator, len: usize, ptr_align: u8, ret_addr: usize) ?[*]u8 { return self.vtable.alloc(self.ptr, len, ptr_align, ret_addr); } /// This function is not intended to be called except from within the /// implementation of an Allocator pub inline fn rawResize(self: Allocator, buf: []u8, log2_buf_align: u8, new_len: usize, ret_addr: usize) bool { return self.vtable.resize(self.ptr, buf, log2_buf_align, new_len, ret_addr); } /// This function is not intended to be called except from within the /// implementation of an Allocator pub inline fn rawFree(self: Allocator, buf: []u8, log2_buf_align: u8, ret_addr: usize) void { return self.vtable.free(self.ptr, buf, log2_buf_align, ret_addr); } /// Returns a pointer to undefined memory. /// Call `destroy` with the result to free the memory. pub fn create(self: Allocator, comptime T: type) Error!*T { if (@sizeOf(T) == 0) return @as(*T, @ptrFromInt(math.maxInt(usize))); const slice = try self.allocAdvancedWithRetAddr(T, null, 1, @returnAddress()); return &slice[0]; } /// `ptr` should be the return value of `create`, or otherwise /// have the same address and alignment property. pub fn destroy(self: Allocator, ptr: anytype) void { const info = @typeInfo(@TypeOf(ptr)).Pointer; const T = info.child; if (@sizeOf(T) == 0) return; const non_const_ptr = @as([*]u8, @ptrCast(@constCast(ptr))); self.rawFree(non_const_ptr[0..@sizeOf(T)], math.log2(info.alignment), @returnAddress()); } /// Allocates an array of `n` items of type `T` and sets all the /// items to `undefined`. Depending on the Allocator /// implementation, it may be required to call `free` once the /// memory is no longer needed, to avoid a resource leak. If the /// `Allocator` implementation is unknown, then correct code will /// call `free` when done. /// /// For allocating a single item, see `create`. pub fn alloc(self: Allocator, comptime T: type, n: usize) Error![]T { return self.allocAdvancedWithRetAddr(T, null, n, @returnAddress()); } pub fn allocWithOptions( self: Allocator, comptime Elem: type, n: usize, /// null means naturally aligned comptime optional_alignment: ?u29, comptime optional_sentinel: ?Elem, ) Error!AllocWithOptionsPayload(Elem, optional_alignment, optional_sentinel) { return self.allocWithOptionsRetAddr(Elem, n, optional_alignment, optional_sentinel, @returnAddress()); } pub fn allocWithOptionsRetAddr( self: Allocator, comptime Elem: type, n: usize, /// null means naturally aligned comptime optional_alignment: ?u29, comptime optional_sentinel: ?Elem, return_address: usize, ) Error!AllocWithOptionsPayload(Elem, optional_alignment, optional_sentinel) { if (optional_sentinel) |sentinel| { const ptr = try self.allocAdvancedWithRetAddr(Elem, optional_alignment, n + 1, return_address); ptr[n] = sentinel; return ptr[0..n :sentinel]; } else { return self.allocAdvancedWithRetAddr(Elem, optional_alignment, n, return_address); } } fn AllocWithOptionsPayload(comptime Elem: type, comptime alignment: ?u29, comptime sentinel: ?Elem) type { if (sentinel) |s| { return [:s]align(alignment orelse @alignOf(Elem)) Elem; } else { return []align(alignment orelse @alignOf(Elem)) Elem; } } /// Allocates an array of `n + 1` items of type `T` and sets the first `n` /// items to `undefined` and the last item to `sentinel`. Depending on the /// Allocator implementation, it may be required to call `free` once the /// memory is no longer needed, to avoid a resource leak. If the /// `Allocator` implementation is unknown, then correct code will /// call `free` when done. /// /// For allocating a single item, see `create`. pub fn allocSentinel( self: Allocator, comptime Elem: type, n: usize, comptime sentinel: Elem, ) Error![:sentinel]Elem { return self.allocWithOptionsRetAddr(Elem, n, null, sentinel, @returnAddress()); } pub fn alignedAlloc( self: Allocator, comptime T: type, /// null means naturally aligned comptime alignment: ?u29, n: usize, ) Error![]align(alignment orelse @alignOf(T)) T { return self.allocAdvancedWithRetAddr(T, alignment, n, @returnAddress()); } pub fn allocAdvancedWithRetAddr( self: Allocator, comptime T: type, /// null means naturally aligned comptime alignment: ?u29, n: usize, return_address: usize, ) Error![]align(alignment orelse @alignOf(T)) T { const a = alignment orelse @alignOf(T); // The Zig Allocator interface is not intended to solve alignments beyond // the minimum OS page size. For these use cases, the caller must use OS // APIs directly. comptime assert(a <= mem.page_size); if (n == 0) { const ptr = comptime std.mem.alignBackward(usize, math.maxInt(usize), a); return @as([*]align(a) T, @ptrFromInt(ptr))[0..0]; } const byte_count = math.mul(usize, @sizeOf(T), n) catch return Error.OutOfMemory; const byte_ptr = self.rawAlloc(byte_count, log2a(a), return_address) orelse return Error.OutOfMemory; // TODO: https://github.com/ziglang/zig/issues/4298 @memset(byte_ptr[0..byte_count], undefined); const byte_slice: []align(a) u8 = @alignCast(byte_ptr[0..byte_count]); return mem.bytesAsSlice(T, byte_slice); } /// Requests to modify the size of an allocation. It is guaranteed to not move /// the pointer, however the allocator implementation may refuse the resize /// request by returning `false`. pub fn resize(self: Allocator, old_mem: anytype, new_n: usize) bool { const Slice = @typeInfo(@TypeOf(old_mem)).Pointer; const T = Slice.child; if (new_n == 0) { self.free(old_mem); return true; } if (old_mem.len == 0) { return false; } const old_byte_slice = mem.sliceAsBytes(old_mem); // I would like to use saturating multiplication here, but LLVM cannot lower it // on WebAssembly: https://github.com/ziglang/zig/issues/9660 //const new_byte_count = new_n *| @sizeOf(T); const new_byte_count = math.mul(usize, @sizeOf(T), new_n) catch return false; return self.rawResize(old_byte_slice, log2a(Slice.alignment), new_byte_count, @returnAddress()); } /// This function requests a new byte size for an existing allocation, which /// can be larger, smaller, or the same size as the old memory allocation. /// If `new_n` is 0, this is the same as `free` and it always succeeds. pub fn realloc(self: Allocator, old_mem: anytype, new_n: usize) t: { const Slice = @typeInfo(@TypeOf(old_mem)).Pointer; break :t Error![]align(Slice.alignment) Slice.child; } { return self.reallocAdvanced(old_mem, new_n, @returnAddress()); } pub fn reallocAdvanced( self: Allocator, old_mem: anytype, new_n: usize, return_address: usize, ) t: { const Slice = @typeInfo(@TypeOf(old_mem)).Pointer; break :t Error![]align(Slice.alignment) Slice.child; } { const Slice = @typeInfo(@TypeOf(old_mem)).Pointer; const T = Slice.child; if (old_mem.len == 0) { return self.allocAdvancedWithRetAddr(T, Slice.alignment, new_n, return_address); } if (new_n == 0) { self.free(old_mem); const ptr = comptime std.mem.alignBackward(usize, math.maxInt(usize), Slice.alignment); return @as([*]align(Slice.alignment) T, @ptrFromInt(ptr))[0..0]; } const old_byte_slice = mem.sliceAsBytes(old_mem); const byte_count = math.mul(usize, @sizeOf(T), new_n) catch return Error.OutOfMemory; // Note: can't set shrunk memory to undefined as memory shouldn't be modified on realloc failure if (mem.isAligned(@intFromPtr(old_byte_slice.ptr), Slice.alignment)) { if (self.rawResize(old_byte_slice, log2a(Slice.alignment), byte_count, return_address)) { const new_bytes: []align(Slice.alignment) u8 = @alignCast(old_byte_slice.ptr[0..byte_count]); return mem.bytesAsSlice(T, new_bytes); } } const new_mem = self.rawAlloc(byte_count, log2a(Slice.alignment), return_address) orelse return error.OutOfMemory; const copy_len = @min(byte_count, old_byte_slice.len); @memcpy(new_mem[0..copy_len], old_byte_slice[0..copy_len]); // TODO https://github.com/ziglang/zig/issues/4298 @memset(old_byte_slice, undefined); self.rawFree(old_byte_slice, log2a(Slice.alignment), return_address); const new_bytes: []align(Slice.alignment) u8 = @alignCast(new_mem[0..byte_count]); return mem.bytesAsSlice(T, new_bytes); } /// Free an array allocated with `alloc`. To free a single item, /// see `destroy`. pub fn free(self: Allocator, memory: anytype) void { const Slice = @typeInfo(@TypeOf(memory)).Pointer; const bytes = mem.sliceAsBytes(memory); const bytes_len = bytes.len + if (Slice.sentinel != null) @sizeOf(Slice.child) else 0; if (bytes_len == 0) return; const non_const_ptr = @constCast(bytes.ptr); // TODO: https://github.com/ziglang/zig/issues/4298 @memset(non_const_ptr[0..bytes_len], undefined); self.rawFree(non_const_ptr[0..bytes_len], log2a(Slice.alignment), @returnAddress()); } /// Copies `m` to newly allocated memory. Caller owns the memory. pub fn dupe(allocator: Allocator, comptime T: type, m: []const T) ![]T { const new_buf = try allocator.alloc(T, m.len); @memcpy(new_buf, m); return new_buf; } /// Copies `m` to newly allocated memory, with a null-terminated element. Caller owns the memory. pub fn dupeZ(allocator: Allocator, comptime T: type, m: []const T) ![:0]T { const new_buf = try allocator.alloc(T, m.len + 1); @memcpy(new_buf[0..m.len], m); new_buf[m.len] = 0; return new_buf[0..m.len :0]; } /// TODO replace callsites with `@log2` after this proposal is implemented: /// https://github.com/ziglang/zig/issues/13642 inline fn log2a(x: anytype) switch (@typeInfo(@TypeOf(x))) { .Int => math.Log2Int(@TypeOf(x)), .ComptimeInt => comptime_int, else => @compileError("int please"), } { switch (@typeInfo(@TypeOf(x))) { .Int => return math.log2_int(@TypeOf(x), x), .ComptimeInt => return math.log2(x), else => @compileError("bad"), } }