const std = @import("std"); const builtin = @import("builtin"); pub const linkage: std.builtin.GlobalLinkage = if (builtin.is_test) .Internal else .Weak; pub const want_aeabi = switch (builtin.abi) { .eabi, .eabihf, .musleabi, .musleabihf, .gnueabi, .gnueabihf, => switch (builtin.cpu.arch) { .arm, .armeb, .thumb, .thumbeb => true, else => false, }, else => false, }; pub const want_ppc_abi = builtin.cpu.arch.isPPC() or builtin.cpu.arch.isPPC64(); /// This governs whether to use these symbol names for f16/f32 conversions /// rather than the standard names: /// * __gnu_f2h_ieee /// * __gnu_h2f_ieee /// Known correct configurations: /// x86_64-freestanding-none => true /// x86_64-linux-none => true /// x86_64-linux-gnu => true /// x86_64-linux-musl => true /// x86_64-linux-eabi => true /// arm-linux-musleabihf => true /// arm-linux-gnueabihf => true /// arm-linux-eabihf => false /// wasm32-wasi-musl => false /// wasm32-freestanding-none => false /// x86_64-windows-gnu => true /// x86_64-windows-msvc => true /// any-macos-any => false pub const gnu_f16_abi = switch (builtin.cpu.arch) { .wasm32, .wasm64, .riscv64, .riscv32 => false, .arm, .armeb, .thumb, .thumbeb => switch (builtin.abi) { .eabi, .eabihf => false, else => true, }, else => !builtin.os.tag.isDarwin(), }; pub const want_sparc_abi = builtin.cpu.arch.isSPARC(); // Avoid dragging in the runtime safety mechanisms into this .o file, // unless we're trying to test compiler-rt. pub fn panic(msg: []const u8, error_return_trace: ?*std.builtin.StackTrace) noreturn { _ = error_return_trace; if (builtin.is_test) { @setCold(true); std.debug.panic("{s}", .{msg}); } else { unreachable; } } /// AArch64 is the only ABI (at the moment) to support f16 arguments without the /// need for extending them to wider fp types. /// TODO remove this; do this type selection in the language rather than /// here in compiler-rt. pub const F16T = if (builtin.cpu.arch.isAARCH64()) f16 else u16; pub fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void { switch (Z) { u16 => { // 16x16 --> 32 bit multiply const product = @as(u32, a) * @as(u32, b); hi.* = @intCast(u16, product >> 16); lo.* = @truncate(u16, product); }, u32 => { // 32x32 --> 64 bit multiply const product = @as(u64, a) * @as(u64, b); hi.* = @truncate(u32, product >> 32); lo.* = @truncate(u32, product); }, u64 => { const S = struct { fn loWord(x: u64) u64 { return @truncate(u32, x); } fn hiWord(x: u64) u64 { return @truncate(u32, x >> 32); } }; // 64x64 -> 128 wide multiply for platforms that don't have such an operation; // many 64-bit platforms have this operation, but they tend to have hardware // floating-point, so we don't bother with a special case for them here. // Each of the component 32x32 -> 64 products const plolo: u64 = S.loWord(a) * S.loWord(b); const plohi: u64 = S.loWord(a) * S.hiWord(b); const philo: u64 = S.hiWord(a) * S.loWord(b); const phihi: u64 = S.hiWord(a) * S.hiWord(b); // Sum terms that contribute to lo in a way that allows us to get the carry const r0: u64 = S.loWord(plolo); const r1: u64 = S.hiWord(plolo) +% S.loWord(plohi) +% S.loWord(philo); lo.* = r0 +% (r1 << 32); // Sum terms contributing to hi with the carry from lo hi.* = S.hiWord(plohi) +% S.hiWord(philo) +% S.hiWord(r1) +% phihi; }, u128 => { const Word_LoMask = @as(u64, 0x00000000ffffffff); const Word_HiMask = @as(u64, 0xffffffff00000000); const Word_FullMask = @as(u64, 0xffffffffffffffff); const S = struct { fn Word_1(x: u128) u64 { return @truncate(u32, x >> 96); } fn Word_2(x: u128) u64 { return @truncate(u32, x >> 64); } fn Word_3(x: u128) u64 { return @truncate(u32, x >> 32); } fn Word_4(x: u128) u64 { return @truncate(u32, x); } }; // 128x128 -> 256 wide multiply for platforms that don't have such an operation; // many 64-bit platforms have this operation, but they tend to have hardware // floating-point, so we don't bother with a special case for them here. const product11: u64 = S.Word_1(a) * S.Word_1(b); const product12: u64 = S.Word_1(a) * S.Word_2(b); const product13: u64 = S.Word_1(a) * S.Word_3(b); const product14: u64 = S.Word_1(a) * S.Word_4(b); const product21: u64 = S.Word_2(a) * S.Word_1(b); const product22: u64 = S.Word_2(a) * S.Word_2(b); const product23: u64 = S.Word_2(a) * S.Word_3(b); const product24: u64 = S.Word_2(a) * S.Word_4(b); const product31: u64 = S.Word_3(a) * S.Word_1(b); const product32: u64 = S.Word_3(a) * S.Word_2(b); const product33: u64 = S.Word_3(a) * S.Word_3(b); const product34: u64 = S.Word_3(a) * S.Word_4(b); const product41: u64 = S.Word_4(a) * S.Word_1(b); const product42: u64 = S.Word_4(a) * S.Word_2(b); const product43: u64 = S.Word_4(a) * S.Word_3(b); const product44: u64 = S.Word_4(a) * S.Word_4(b); const sum0: u128 = @as(u128, product44); const sum1: u128 = @as(u128, product34) +% @as(u128, product43); const sum2: u128 = @as(u128, product24) +% @as(u128, product33) +% @as(u128, product42); const sum3: u128 = @as(u128, product14) +% @as(u128, product23) +% @as(u128, product32) +% @as(u128, product41); const sum4: u128 = @as(u128, product13) +% @as(u128, product22) +% @as(u128, product31); const sum5: u128 = @as(u128, product12) +% @as(u128, product21); const sum6: u128 = @as(u128, product11); const r0: u128 = (sum0 & Word_FullMask) +% ((sum1 & Word_LoMask) << 32); const r1: u128 = (sum0 >> 64) +% ((sum1 >> 32) & Word_FullMask) +% (sum2 & Word_FullMask) +% ((sum3 << 32) & Word_HiMask); lo.* = r0 +% (r1 << 64); hi.* = (r1 >> 64) +% (sum1 >> 96) +% (sum2 >> 64) +% (sum3 >> 32) +% sum4 +% (sum5 << 32) +% (sum6 << 64); }, else => @compileError("unsupported"), } } pub fn normalize(comptime T: type, significand: *std.meta.Int(.unsigned, @typeInfo(T).Float.bits)) i32 { const Z = std.meta.Int(.unsigned, @typeInfo(T).Float.bits); const integerBit = @as(Z, 1) << std.math.floatFractionalBits(T); const shift = @clz(Z, significand.*) - @clz(Z, integerBit); significand.* <<= @intCast(std.math.Log2Int(Z), shift); return @as(i32, 1) - shift; } pub inline fn fneg(a: anytype) @TypeOf(a) { const F = @TypeOf(a); const bits = @typeInfo(F).Float.bits; const U = @Type(.{ .Int = .{ .signedness = .unsigned, .bits = bits, } }); const sign_bit_mask = @as(U, 1) << (bits - 1); const negated = @bitCast(U, a) ^ sign_bit_mask; return @bitCast(F, negated); }