// Ported from musl, which is licensed under the MIT license: // https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT // // https://git.musl-libc.org/cgit/musl/tree/src/math/expf.c // https://git.musl-libc.org/cgit/musl/tree/src/math/exp.c const std = @import("std"); const builtin = @import("builtin"); const arch = builtin.cpu.arch; const math = std.math; const expect = std.testing.expect; const common = @import("common.zig"); pub const panic = common.panic; comptime { @export(__exph, .{ .name = "__exph", .linkage = common.linkage }); @export(expf, .{ .name = "expf", .linkage = common.linkage }); @export(exp, .{ .name = "exp", .linkage = common.linkage }); @export(__expx, .{ .name = "__expx", .linkage = common.linkage }); const expq_sym_name = if (common.want_ppc_abi) "expf128" else "expq"; @export(expq, .{ .name = expq_sym_name, .linkage = common.linkage }); @export(expl, .{ .name = "expl", .linkage = common.linkage }); } pub fn __exph(a: f16) callconv(.C) f16 { // TODO: more efficient implementation return @floatCast(f16, expf(a)); } pub fn expf(x_: f32) callconv(.C) f32 { const half = [_]f32{ 0.5, -0.5 }; const ln2hi = 6.9314575195e-1; const ln2lo = 1.4286067653e-6; const invln2 = 1.4426950216e+0; const P1 = 1.6666625440e-1; const P2 = -2.7667332906e-3; var x = x_; var hx = @bitCast(u32, x); const sign = @intCast(i32, hx >> 31); hx &= 0x7FFFFFFF; if (math.isNan(x)) { return x; } // |x| >= -87.33655 or nan if (hx >= 0x42AEAC50) { // nan if (hx > 0x7F800000) { return x; } // x >= 88.722839 if (hx >= 0x42b17218 and sign == 0) { return x * 0x1.0p127; } if (sign != 0) { math.doNotOptimizeAway(-0x1.0p-149 / x); // overflow // x <= -103.972084 if (hx >= 0x42CFF1B5) { return 0; } } } var k: i32 = undefined; var hi: f32 = undefined; var lo: f32 = undefined; // |x| > 0.5 * ln2 if (hx > 0x3EB17218) { // |x| > 1.5 * ln2 if (hx > 0x3F851592) { k = @floatToInt(i32, invln2 * x + half[@intCast(usize, sign)]); } else { k = 1 - sign - sign; } const fk = @intToFloat(f32, k); hi = x - fk * ln2hi; lo = fk * ln2lo; x = hi - lo; } // |x| > 2^(-14) else if (hx > 0x39000000) { k = 0; hi = x; lo = 0; } else { math.doNotOptimizeAway(0x1.0p127 + x); // inexact return 1 + x; } const xx = x * x; const c = x - xx * (P1 + xx * P2); const y = 1 + (x * c / (2 - c) - lo + hi); if (k == 0) { return y; } else { return math.scalbn(y, k); } } pub fn exp(x_: f64) callconv(.C) f64 { const half = [_]f64{ 0.5, -0.5 }; const ln2hi: f64 = 6.93147180369123816490e-01; const ln2lo: f64 = 1.90821492927058770002e-10; const invln2: f64 = 1.44269504088896338700e+00; const P1: f64 = 1.66666666666666019037e-01; const P2: f64 = -2.77777777770155933842e-03; const P3: f64 = 6.61375632143793436117e-05; const P4: f64 = -1.65339022054652515390e-06; const P5: f64 = 4.13813679705723846039e-08; var x = x_; var ux = @bitCast(u64, x); var hx = ux >> 32; const sign = @intCast(i32, hx >> 31); hx &= 0x7FFFFFFF; if (math.isNan(x)) { return x; } // |x| >= 708.39 or nan if (hx >= 0x4086232B) { // nan if (hx > 0x7FF00000) { return x; } if (x > 709.782712893383973096) { // overflow if x != inf if (!math.isInf(x)) { math.raiseOverflow(); } return math.inf(f64); } if (x < -708.39641853226410622) { // underflow if x != -inf // math.doNotOptimizeAway(@as(f32, -0x1.0p-149 / x)); if (x < -745.13321910194110842) { return 0; } } } // argument reduction var k: i32 = undefined; var hi: f64 = undefined; var lo: f64 = undefined; // |x| > 0.5 * ln2 if (hx > 0x3FD62E42) { // |x| >= 1.5 * ln2 if (hx > 0x3FF0A2B2) { k = @floatToInt(i32, invln2 * x + half[@intCast(usize, sign)]); } else { k = 1 - sign - sign; } const dk = @intToFloat(f64, k); hi = x - dk * ln2hi; lo = dk * ln2lo; x = hi - lo; } // |x| > 2^(-28) else if (hx > 0x3E300000) { k = 0; hi = x; lo = 0; } else { // inexact if x != 0 // math.doNotOptimizeAway(0x1.0p1023 + x); return 1 + x; } const xx = x * x; const c = x - xx * (P1 + xx * (P2 + xx * (P3 + xx * (P4 + xx * P5)))); const y = 1 + (x * c / (2 - c) - lo + hi); if (k == 0) { return y; } else { return math.scalbn(y, k); } } pub fn __expx(a: f80) callconv(.C) f80 { // TODO: more efficient implementation return @floatCast(f80, expq(a)); } pub fn expq(a: f128) callconv(.C) f128 { // TODO: more correct implementation return exp(@floatCast(f64, a)); } pub fn expl(x: c_longdouble) callconv(.C) c_longdouble { switch (@typeInfo(c_longdouble).Float.bits) { 16 => return __exph(x), 32 => return expf(x), 64 => return exp(x), 80 => return __expx(x), 128 => return expq(x), else => @compileError("unreachable"), } } test "exp32" { const epsilon = 0.000001; try expect(expf(0.0) == 1.0); try expect(math.approxEqAbs(f32, expf(0.0), 1.0, epsilon)); try expect(math.approxEqAbs(f32, expf(0.2), 1.221403, epsilon)); try expect(math.approxEqAbs(f32, expf(0.8923), 2.440737, epsilon)); try expect(math.approxEqAbs(f32, expf(1.5), 4.481689, epsilon)); } test "exp64" { const epsilon = 0.000001; try expect(exp(0.0) == 1.0); try expect(math.approxEqAbs(f64, exp(0.0), 1.0, epsilon)); try expect(math.approxEqAbs(f64, exp(0.2), 1.221403, epsilon)); try expect(math.approxEqAbs(f64, exp(0.8923), 2.440737, epsilon)); try expect(math.approxEqAbs(f64, exp(1.5), 4.481689, epsilon)); } test "exp32.special" { try expect(math.isPositiveInf(expf(math.inf(f32)))); try expect(math.isNan(expf(math.nan(f32)))); } test "exp64.special" { try expect(math.isPositiveInf(exp(math.inf(f64)))); try expect(math.isNan(exp(math.nan(f64)))); }